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Abstract

This report introduces an algorithm for rule induction intended to provide new insights, improve the
reliability and expedite the utilization of large geologic and petrophysical databases. Geoscientists
are often challenged to predict subsurface lithologies and properties from multivariate relationships
within large databases of core, wireline, and seismic data. Many data analysis techniques are used
including histograms, regression, N-dimensional histograms, cluster analysis, discrimininant anlysis,
and principal components analysis to assist the geoscientist. This report introduces an algorithm that
seeks to discover rule-like relationships within the data that can be used to make predictions. The
method is loosely derived from a data mining technology of classification and borrows from rough
sets theory, which yields rules of relations between data categories that explain decision outcomes.
For a database consisting of multiple data attributes that yield one or more decision outcomes, the
algorithm determines the data configurations or rules and their associated coverages, accuracies, and
significances. Concepts of data attribute distinguishability and importance are introduced to assess
the value of the data and the outcomes to predictability. This report presents the algorithm and is
followed by a companion paper that presents an example for object-based modeling.

KEYWORDS: geostatistics, data mining, seismic data, multivariate statistics

Introduction

Very large geological, geophysical, and petrophysical databases often contain multiple data types
which must be interpreted for applications in subsurface modeling. Significant advances in discov-
ering complex and even nonintuitive data relationships could lead to better predictions. Obvious
applications include (1) predicting reservoir facies from multiple wireline logs, (2) predicting reservoir
facies from multiple seismic attributes, (3) predicting stratigraphic geometries and spatial architec-
ture from quanitified analog, outcrop, seismic, and numerical stratigraphy data, and (4) predicting
reservoir permeability from wireline logs.

There are a litany of data analysis techniques used today. These include cluster analysis, prin-
cipal components analysis, discriminant analysis, parametric and nonparametric regression, and
N- dimensional histograms. Regression techniques, which include neural networks, have in common
their multivariate combination of predictor variables. These combination relations are often excellent
at interpolating within the data boundaries of the training data, but may be poor for extrapolation
because the regression fits the training data but does not lead to an understanding of the underlying
relationships in the variables. In seeking an alternative method, we identified the technology of
Rough Sets, which holds the promise of finding data category relationships and expressing those in
a rule-based language. We initiated research on rule induction to address the problem of estimating
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reservoir flow unit geology from known analog data. As a first step, we have written an algorithm
for rule induction.

This report describes the proposed rule induction methodology in detail. A companion paper
presents an example of induction of rules between effective permeability and geometric features of
object facies models. A short description of facies assignment from rules that identify reservoir facies
from a wireline log suite in uncored wells is described in Appendix A. A detailed description of the
implementation of the proposed rule induction algorithm can be found in Appendix B.

Background

The field of data mining [2, 7, 8, 10, 16, 17] has grown in recent years to deal with large databases
available in different industries, in particular, in the financial and medical fields. Data mining is the
identification or discovery of patterns in data. There are several different types of data mining. These
include classification, clustering, association, and sequence discovery. The main focus of classification
is supervised induction, that is, inference of rules and relationships from large databases. The aim is
to extract knowledge from data, so that results not directly in the training data set can be predicted.
The training data helps to distinguish predefined classes. Neural networks [3, 9, 12, 13, 26], decision
trees [5, 6, 15, 18, 25, 28] and if-then-else rules are classification techniques. A disadvantage of NNs
is that it is difficult to provide a good rationale for the predictions made, that is the rules are not
always clear.

Data mining is an interdisciplinary field bringing together techniques from statistics, machine
learning, artificial intelligence, pattern recognition, database, and visualization technologies. The
methods used in data mining are not fundamentally different from older quantitative model-building
techniques, but are natural extensions and generalizations of such methods. There are many appli-
cations of various data mining techniques to petroleum characterization [1, 4, 11, 14, 27]

A rule-based algorithm is intended to provide understandable rule-like relationships in the data.
A rule is a prevailing quality or state. Induction is an instance of reasoning from a part to a
whole. Rough Sets (Lin and Cercone [16], Orlowska [19], Pal and Skowron [20], Pawlak [21],
Polkowski [22, 23, 24], Slowinski [29], Ziarko [30]) is a specialized method for inducing rules. Rules
indicate the degree of association between variables, map data into predefined classes, and identify
a finite set of categories or clusters to describe the data. The rules support specific tasks and are
generated by repeated application of a certain technique, or more generally an algorithm, on the
data. Rule based techniques present knowledge extracted from data in natural language with un-
derstandable semantics and syntax. Rough Sets is a promising method in the field of data mining.
The methodology is concerned with the classification of uncertain knowledge. The essential idea of
rough sets is to express uncertain knowledge through an approximation space, which is constructed
as certain sets.

Many other methods, including regression analysis, assume that there is a functional form be-
tween the predictor and response variables. These smooth out variations and are difficult to apply
to multivariate nonlinear responses. Discriminant analysis separates samples into groups based on
relationships in the training data. The relations must be linear combinations of variables that are
made explicit. N- dimensional histograms are used to delineate a relationship between a response
and multiple predictors which preserves the uncertainty in the relation by reading the value of the
response directly from the set of predictors. Principal components analysis is a popular technique
to discover the source of variation within the data but again expresses that as a linear combination
of multiple variables for which the reason for the combination is often not apparent. All of these
techniques can “fit” the data but might not be good predictors.

Clustering is a method to partition the database into segments where each segment member
shares similar qualities. Clustering techniques may include optimization algorithms to determine the
maximum similarity among members within each group and a minimum similarity among members
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across the groups.

Rule Induction Algorithm

In rough set theory, a data table is partitioned by condition attributes into three different spaces: a
positive region, a boundary region, and a negative region. Rules are then induced from the positive
and boundary region. Concepts of coverage and accuracy are introduced to describe the uncertainty
in probabilistic rules inferred from the boundary region. In practice, every object in the data table
may lead to a rule. The challenge is to identify significant rules, that is, accurate rules with high
frequency of occurrence. Data mining has no a priori model, that is, does not assume a functional
relationship between the data.

A feature of geological data is that most rules fall in the boundary region. Another aspect of
geological data is that there are relatively few attributes from a classical data mining perspective.
These two considerations were used to develop the concepts and terms used in this report. Following
is a list, in alphabetic order, of key terms and concepts:

Accuracy : a measure of the closeness of a probability to 1 or 0.

Condition attribute value : a measure of the value contributed by every possible combination
of conditioning attributes to a decision outcome.

Conditional probability : for each decision outcome and condition configuration pair, the fraction
of occurences in the data table out of configuration coverage.

Conditional probability table : a complete table of all decision outcomes for all condition con-
figurations. This table will be used in modeling of predicted outcomes.

Configuration coverage : the number of observations associated with each condition configura-
tion.

Configuration space : the set of possible configurations of the classes for all the condition at-
tributes.

Data table : table of observed decisions for each instance of the combination of conditioning
attributes that includes all “clean” data. The set of conditioning attributes are analyzed
through basic statistics and clustering so that class assignments can be made.

Decision coverage : number of observations associated with each decision outcome.

Decision space : the set of all possible decision outcomes in the data table.

Distinguishability : a measure of distinctiveness between decision outcomes, based on their prob-
abilities.

Relative configuration coverage : a measure of closeness to a sufficiency, defined as a propor-
tionality related to the configuration coverage.

Relative (decision) coverage : a measure of the proportion of each decision outcome out of the
global number for that outcome.

Rule table : a table of the positive and negative rules with associated probabilities, which are
filtered by significance. The rules are used to predict outcomes from condition configuration.

Significance : a measure of how an outcome is both sufficient and accurate; in practice, a combi-
nation of the relative coverage, accuracy, and decision coverage that leads to a rule.
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Cond. Attr. 1 Cond. Attr. 2 . . . Cond. Attr. N-1 Cond. Attr. N Dec. Attr.

Observation 1 0 2 . . . 1 2 1

Observation 2 2 1 . . . 1 2 1

. . . . . . . . . . . . . . . . . . . . .

Observation M-1 2 2 . . . 0 1 0

Observation M 1 0 . . . 2 2 2

Table 1: A typical data table for rule induction

Data Table

Table 1 is a schematic data table for rule induction. The table has M observations, N condition
attributes and a single decision attribute. Initially, the condition attributes and decision attribute
can have different values or categories, which are finally transformed into discreted codes representing
the corresponding value level. The codes are based on statistical analysis of the data. For example,
the data table might consist of M observations of seismic facies decision attributes, for which the
continuous conditioning attributes are amplitude, phase, frequency content, velocity, and density,
which have been coded in two to four classifications each.

In Table 1, M is the number of observations, N is the number of condition attributes, ni, (i =
1, . . . , N) is the number of categorical values that condition attribute i can take, no is the number
of categorical value the decision attribute can have. It should be pointed out that the number of
categorical values for an attribute is fixed for a problem, say n1 = 3, but the codes themselves can
be different; both 0, 1, 2 and 5, 9, 11 are valid codes for the three categorical values of attribute 1.

Without loss of generality, it is assumed that there is a single decision attribute. Multiple decision
attributes merely increase the number of rules and the configuration space.

Configuration and Data Coverages

The total number of possible configurations of the conditioning attributes is: NN =
∏N

i=1 ni, where
ni, i = 1, . . . , N is the number of categorical values of condition attribute i.

Note that many configurations may not appear in the training data table.
Further, define Ni(=

∏i
k=1 nk) as the cumulative number for condition attribute i, i = 1, . . . , N

and all “lower” condition attributes.
Configuration index j, j = 1, . . . , NN , has correspondence with the values li, i = 1, . . . , N taken

by each condition attribute through j =
∑N

i=1(li − 1)× NN

Ni
+ 1, where li is the value, li ∈ 1, . . . , ni,

taken by condition attribute i.
The retrival of the condition atttribute configuration li, i = 1, . . . , N from a configuration index

j will be accomplished:
A0 = NN and B0 = j

————————————

Ai =
Ai−1

ni
, i = 1, . . . , N − 1

li = int(
Bi−1 − 1

Ai
) + 1, i = 1, . . . , N − 1

Bi = Bi−1 − (li − 1)× Ai, i = 1, . . . , N − 1

————————————
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lN = BN−1

Every configuration is a potential rule in the system. Since the decision attribute can have no

outcomes, there are NN × no potential rules for the system.
From the data table, the occurence of configuration j with an outcome o is counted as Cj,o,

(j = 1, . . . , NN and o = 1, . . . , no). If Cj,o = 0, then there are no observations in the data table
corresponding to that configuration and outcome pair. It is noticed that the number of observations
M, that is, the size of the data table is:

M =
NN∑
j=1

no∑
o=1

Cj,o

The configuration coverage Cj is the total number of observations associated with configuration j ,
i.e.,

Cj =
no∑

o=1

Cj,o, j = 1, . . . , N

The decision coverage Do is defined as the number of observations associated with outcome o of the
condition attribute, i.e.,

Do =
NN∑
j=1

Cj,o, j = 1, . . . , N

The relative (configuration) coverage of configuration j, Ĉj is a measure used to determine a closeness
to sufficiency of number of observations in obtaining a reliable rule. Ĉj is asymptotic to one, as the
coverage increases in number for configuration j.

Ĉj = 1− 1
Cj

The definition of relative (configuration) coverage is not unique. For example, if a prori information
exists to tell us that the number of observations is sufficient when exceeding a critical number is
avialable, the relative coverage can be defined as:

Cj = 1− exp
−Cj

ncrit

where ncrit is a critical number for the sufficiency of the number of observations.
The relative (decision) coverage of a decision value, D̂j,o, is a measure of the proportion of each

decision outcome out of the global number for that outcome, i.e.,

D̂j,o =
Cj,o

Do

This will be used to place more weight on decision values with small global proportions to avoid
cases where Cj,o is small, but is close to Do. In such a case, this configuration is very important to
that decision.

Accuracy

The conditional probability of each outcome value, o, (o = 1, . . . , no) of configuration j is defined as:

Po|j =
Cj,o

Cj
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Since there are no possible decision attributes, a probability of 1
no

implies no information. Any
conditional probability different from 1

no
entails preference in the decision category, i.e., hints at

knowledge. Specifically, as Po|j nears 1, configuration j implies decision category o. A closeness of
Po|j to 0 means configuration j does not lead to decision category o. Conditional probabilities close
to 1 or 0 contain equally important information for rule induction. The former leads to a positive
rule relating configuration j to a specific decision category o and the latter leads to a negative rule
relating configuration to some other decision category. This leads us to define a measure of accuracy
as follows:

ao|j =

{
po|j × no − 1 if po|j ≤ 1

no
(po|j×no)

no−1 otherwise

The accuracy ao|j = 0 if Po|j = 1
no

(no knowledge); the accuracy ao|j = 1 when we have Po|j equals
to 1 (perfect positive rule); and, ao|j = 11 when we have Po|j equals to 0 (perfect negative rule). A
graph of accuracy versus probability is shown on Figure 1.

Significance

The significance is defined as a combined measure of the accuracy and coverage, which is used to
provide a relative ranking to the rules. The significance is the product of the accuracy and the
relative configuration coverage, i.e.,

Sj,o = Ĉj × ao|j
This equation holds for negative accuracy. For positive accuracy, the significance is further modified
to account for the relative decision coverage, i.e.,

Sj,o = Ĉj × ao|j × D̂j,o

Rule Table

Positive rules are extracted from the configurations ranked from positive 1 to zero by positive
significances, and negative rules are extracted from the configurations ranked from negative one to
zero negative significances. A practioner can decide whether to assign a minimum value for positive
significance for positive rules and a maximum (negative) value for negative significance for negative
rules.

The rules are those configurations that meet the assigned significance criteria, whether positive
or negative. Positive rules provide evidence for the decision outcome for a rule (configuration) and
negative rules provide evidence against the decision that meet the cutoff criteria, respectively. The
degree of positive evidence is taken as the positive value of the accuracy and the negative evidence
is taken as the negative accuracy. If a decision outcome’s accuracy does not meet the significance
criteria, the rule table entry is simple NA for not sufficient evidence for supporting that outcome,
either positive or negative.

It is expected that the rule tables, with ao|j , po|j or so|j , will have many NA entries for rule
induction with a real data set due to both the lack of any coverage and insignificance of some
configurations. We will describe the procedure to eliminate or minimize the number of NA entries
based on the maximal retrival of information from the data set by searching compatible rules in the
rule set generated from subsets.

Distinguishability

In a data mining exercise, there is often an implicit assumption that all the decision outcome
attributes are important in the context of the data, that is, they are distinguishable. This assumption
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Observation (m=) Predicted probability from the rules Real outcome (õm)

1 p1,1, p1,2, . . . , p1,no õ1

2 p2,1, p2,2, . . . , p2,no õ2

. . . . . . . . .

m pm,1, pm,2, . . . , pm,no õm

. . . . . . . . .

M − 1 pM−1,1, pM−1,2, . . . , pM−1,no õM−1

M pM,1, pM,2, . . . , pM,no õM

Table 2: Predicted Probability from the Rules

is not always true and a measure of “distinctiveness” can assist in determining which decision
outcomes may not be distinct on the basis of the data table.

The conditional probability of the occurrence of decision category o given configuration j of
condition attributes is the essence of measures such as accuracy and significance. In rule induction
and classification, such conditional probabilities play a critical role. For optimal classification the
conditional probabilities po|j should be maximum for every observation where the decision category
is actually o. Therefore, the average of po|j should be a proper measure of the quality of the rules
and its classification.

Once the rule induction computation (training) is finished, one can construct a data table like
the one shown in Table 2. For each observation in the training data set, predicted probability will
be assigned to it by looking for the configuration j the observation corresponds to and finding the
corresponding po|j .

The data table may be divided into no classes with an indicator function:

ind(m; o) =
{

1 if õm = o
0 otherwise

The summation of ind(m; o) is a counting of all outcomes related to decision value o, that actually
is the decision coverage:

Do =
M∑

m=1

ind(m; o)

The average probability associated with prediction of o is:

p̂o =
1

Do

M∑
m=1

ind(m; o)× pm,õm
, o = 1, . . . , no

As p̂o approaches 1, prediction should be good. As p̂o goes to po = Do

M , i.e., the global proportion
for decision outcome o, there is no information provided by the rules.

Therefore, the relative information value for prediction outcome o is defined as:

Io =
p̂o − po

po

A single information value could be defined as the average over all outcomes o = 1, . . . , no, i.e.,

Î =
1
no

no∑
o=1

Io

The expected probability and information measure can be used to determine whether outcomes o
and o’ are distinct.
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Number of condition attribute Number of subsets with such number of condition attributes

N 1
N-1 N
. . . . . .

l Cl
N = N !

(N−l)!l!

. . . . . .
1 N

Table 3: Number of subsets with various number of condition attributes

Let’s consider merging two different decision outcomes o and o’, then we have no−1 new decision
outcomes and the predicted probability table as Table 2 will be updated. Updating the predicted
probability is straighforward. We derive no − 1 probability values from the previous no values. One
of them will be po|j + po′|j when the actual outcome turns out to be o or o’.

Following the same procedure calculating p̂ and I above, new Do

Po
, the Po, and Io, and the Î values

will be calculated. If we define Îo,o′ as the information value with o and o’ merged, the change in Î
is:

�Îo:o′ = Îo:o′ − Î

�Îo:o′ > 0 means that o and o’ merged leads to an improved prediction. Thus, one should consider
whether to treat these outcomes together, i.e., as indistinguishable, since the given training data
table cannot differentiate them. One could seek to obtain additional data on a different data type
that would distinguish those outcomes. �Îo:o′ < 0 means that merging the outcomes leads to a
poorer prediction. Thus, the outcomes should be treated as distinct.

Lumping could be considered for all possible pairs of outcome values, and the �Îs can be tabu-
lated, plotted or ranked from high to low. The high values are candidates for merging while the low
values should be kept separate. The �Îo:o′ table can be visualized as a color map. For example,
Figure 2 shows a map of the matrix pairing of nine decision outcomes’ �Î values. The diagonal
is the pairing of each outcome with itself and has a �Î value of 0. The warm colors indicate a
positive �Î value which shows high distinguishability of outcomes. The rows of red and orange for
outcomes 7, 8, 9 indicate that those are very distinguishable from other outcomes. The upper left
corner area with cool colors of negative �Î values indicate that outcomes 1-2, 2-3,and 2-4 are not
as distinguishable and might be candidates for some combination.

Data or Condition Attribute Value

The same measure of information can be used to consider the value (importance) of condition
attributes or sets of condition attributes. All procedures described above are based on the entire
data set with all condition attributes, but the procedures can be applied to any data subset with
partial condition attributes.

For a N condition attribute data set, there are 2N −1(=
∑N

l=1 Cl
N ), (l is the number of condition

attribute in the subset) subsets. The number of subsets is shown in Table 3.
For each subset of condition attibutes, a new data set is derived and the algorithm is applied.

A new set of configurations of condition attributes are obtained and po|js are calculated for every
decision category o for a given configuration j. For each individual decision category, the average
conditional probability of the occurrence of decision category o when given the data entry having
decision category o is also calculated as well as the information measure.

The information value for each subset is, for example, Î{1,2,3,...,N} = Î for all attributes, Î{2,3,...,N}
for leaving out condition attribute 1, Î{2} for just attribute 2, etc. These results can be plotted as
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Number of condition attribute 1 2 . . . N-1

highest value information value 2 2 3 . . . 2 4 5 (N-2)
. . . . . . . . . . . . . . .

lowest values information value N-5 1 4 . . . 1 2 4 (N)

Table 4: Number of subsets with various number of condition attributes

a graph or a table that ranks the value of the attributes. For example, Table 4 shows a ranking by
condition attribute subsets schematically.

The largest values, or maximums of information in the subsets with the same number of condition
attributes, would normally trend to increase as the number of attributes in the subsets increases.
However, noisy data or attributes that do not yield additional information value could reduce Î.

Probability table

The utilization of the rules is two-fold: (1) gain insight and make general observations from the
rule table, and (2) use the conditional probability associated with each configuration and decision
outcome in the probability table to model the predictions probabilistically. These application will
be illustrated in the companion paper.

The rule (probability) tables built from the entire data set are not complete since there may
be no observations for some condition attribute configurations and there are some rules have been
screened out due to small significance. A complete rule table is necessary for practical usage of rule
induction algorithm and empty entries in the rule table must be filled in.

Filling blank entries in the rule table will be accomplished based on significant rule derived
from data subsets. In the rule set induced from a data subset, we search for the rules with the
configurations which are the subset of the configurations where we have not got rules for them from
the entire data set. If rules are significant they will be used as in the rule table.

There are many subsets of condition attributes, therefore, it is necessary to order the subsets
for the searching and filling procedure. This ordering will be based on their information value. The
ordered subsets will be considered until all blanks are filled in. Those entries filled from subsets
searching will be flagged to indicate rules from which subsets are filled.

The predictions can then utilize the probabilities in modeling. There is opportunity to reduce
the uncertainties by incorporating additional data sources in the modeling phase.

Implementation

An implementation issue is the selection of categorical classes by application of thresholds to a
continuous variable. This could be performed by optimization.

Regarding the rule induction implementation there are issues related to (1) the physical meaning
of the rules, (2) the usage of results, (3) the meaning of a probability prediction, (4) data integration,
and (5) subjective understanding. The significance is between -1 to + 1. In principle, the potential
rules with largest absolute significance values will be chosen as important rules, but there exists
ambiguity of how to define big and small, e.g., is 0.9 close enough? When there are -1 and/or
+1 in the significance list, those rules will be chosen without question. The others will depend on
judgment.

Fortunately, we do not care much about rules in the middle of the list. The rule induction is
only as good as the training data. But in contrast to other techniques, e.g. neural networks, each
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rule should be clear and understandable to a practioner as to its applicability. Limited to training
data, representativity, “meaning” of probability value or significance value (nonlinear).

Summary of Procedure

The rule induction procedure consists of the following steps:

• Prepare the data table and determine optimal classes for the conditioning attributes (dis-
cretization).

• Enumerate all possible configurations and outcomes.

• Calculate the configuration coverage, decision coverage, accuracy, and significance.

• Present a table for each outcome o = 1, . . . , no with the configurations sorted from low to high
significance.

• Apply cutoff criteria on significance to build a Rule table.

• Evaluate information value for the condition attributes and/or decision outcome

• Build up a probability table that picks up probabilities from subsets of the conditioning at-
tributes that meet significance criteria.

Discussion

The proposed algorithm and significance measures work well for the simple example. The most
important positive and negative rules are retrieved successfully. The proposed significance definition
combines measures of accuracy and coverage and serves as a “quality” measure of rules. Also, the
significance identifies positive and negative rules, similar to the positive region and negative region
in rough sets.

The proposed rule induction technique is suited to geological data where most attributes are
significant. The proposed significance measure can be used in combination with other rule induction
techniques and serves as a ranking measure to identify the most important rules. In general, however,
the algorithm will need to be extended to include attribute reduction.

Careful examination of a data table may lead an experienced person to infer similar, if not the
same rules; however, there are many advantages to automatic rule induction. The procedure works
for very large data tables with many attributes, it is repeatable, and avoids personal biases. It could
also lead to nonintuitive, but meaningful data relations. The effort in making predictions can be
greatly reduced.

Appendix A and the companion paper will present petrophysical examples and introduce next
steps in the research.

Appendix A: Facies Assignment from Wireline Well Logs

This example consists of various well logs data and cored facies assignment. The purpose of the
study is to investigate the potential to use well logs for facies assignment in uncored wells.

Various well logs data are available including Gamma Ray (GR), Resistivity (Res), Bulk Density
(BD) and Neutron Activation (NA). Both Bulk Density (BD) and Neutron Activation (NA) are
measures of density and the cross over of the difference between normalized Bulk Density (BD)
and normalized Neutron Activation is important in well log interpretation. Therefore, instead of
using Neutron Activation, the difference of normalized Bulk Density (BD) and Neutron Activation
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Facies Description Number of data

1 Cross-bedded med. to coarse-grained sandstone 158
2 Medium to fine-grained sandstone 283
3 Well sorted fine-grained sandstone; Shoreface 241
4 Very fine to fine-grained sandstone 181
5 Heterolithic: coarse-/fine-grained intervals; sand-filled burrow 117
6 Transition zone, lower shoreface to inner shelf 77
7 Muddy v. fine-grained sandstone and sandy shale 62
8 Very fine sandy shale 70
9 Shale 27

Table 5: Description of facies

Code 0 1 2 3 4 5 6 7 8

GR 0-30 30-55 ≥ 55
Resistivity 0-1.5 1.5-2.5 2.5-20 ≥ 20
Bulk Density 0-2.05 2.05-2.30 ≥ 2.30
Crossover + -0.5-0 ≤ −0.5
Water/Oil Zone 0 (Water Zone) 1 (Oil Zone) 2 (Gas Zone)

Facies 1 2 3 4 5 6 7 8 9

Table 6: Coding of condition and decision attributes

are calculated as a new attribute, CROSSOVER, which is used instead of Neutron Activation. Also,
we have water/oil/gas zone information for the wells and we use this piece of information as well.

There are 9 facies recognized from cores and Table 5 lists the description of facies. The depth
resolution in the wells is 0.5 feet. After removing missing data, there are a total of 1216 data points
(observations) and the number of observations for each facies (decision value) are listed in Table 5
as well. Figure 3 shows the distribution of the four condition attributes of the entire data set.

In order to use the rule induction algorithm, the four continuous attributes need to be discretized.
This is not a trival issue and research is ongoing for optimal disrectization. We inspected and
compared the distributions of the four attributes for each individual facies (decision attribute) to
decide the discretization. The discretizations of the attributes are listed in Table 6. Note that we
number all the attributes from 0. Finally a 1216 by 5 data table is constructed for rule induction.

Theoretically there are 324 (= 3×4×3×3×3) configurations of condition attributes; however, only
54 configurations have nonzero coverage. There are 31 (= 25−1) subsets of condition attributes and
the complete rule table are obtained from the entire attribute subset supplemented with blank entries
filled with rules from the subsets. The top plot of Figure 4 shows the ranked information measure
of all 31 subsets of condition attributes. The bottom plot of Figure 4 shows the ranked information
measure within groups of subsets with the same number of condition attributes. Even though there
is no universal increase in the information measure as the increase of number of condition attributes,
the largest information in the subsets with the same number of condition attributes increases as the
number of condition attributes in the subsets increases. For this example, the entire set has the
largest information measure, therefore the entire set of variables should be used for rule induction.

The complete set of rules and probability table contain 324 lines (configurations). In each
line, the positive numbers are probability values for decision outcome with a significant positive
significance and the negative number are the probabilities for decision outcome with a significant
negative significance added a minus sign. Table 7 lists several lines of the final rule table filtered by
the significance threshold and Table 8 lists the same lines in the probability table. The difference

11



No Code of Condition Attributes Filtered Significance of Decision Values a b c

1 0 0 0 0 0 .00 .00 .93 .00 .00 .00 .00 .00 .00 3 23 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66 0 2 1 0 2 -1.00 -1.00 -1.00 .00 .00 .00 .00 .22 .22 4 30 36
67 0 2 1 1 0 1.00 .00 .00 .00 .00 .00 .00 .00 .00 5 31 8
68 0 2 1 1 1 -1.00 .00 .22 .39 -1.00 .22 -.99 .00 .00 4 30 99
69 0 2 1 1 2 .00 .00 -1.00 .00 .58 .17 .00 .00 -.99 4 30 98
70 0 2 1 2 0 1.00 .00 .00 .00 .00 .00 .00 .00 .00 4 27 8
71 0 2 1 2 1 -1.00 .00 .00 .36 -1.00 .22 .00 .00 .00 3 23 122
72 0 2 1 2 2 .00 .00 .00 .00 1.00 .00 .00 .00 .00 4 30 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324 2 3 2 2 2 .00 .00 .00 .00 .00 .00 .00 .00 .00 4 28 11

Table 7: Rules in the complete rule table a: Level of subset b: Index of subset c: Configuration coverage

No Code of Condition Attributes Conditional Probability of Decision Values a b c

1 0 0 0 0 0 .00 .00 .93 .07 .00 .00 .00 .00 .00 3 23 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66 0 2 1 0 2 .00 .00 .00 .02 .14 .19 .19 .22 .22 4 30 36
67 0 2 1 1 0 1.00 .00 .00 .00 .00 .00 .00 .00 .00 5 31 8
68 0 2 1 1 1 .00 .11 .22 .39 .00 .22 .01 .02 .02 4 30 99
69 0 2 1 1 2 .03 .06 .00 .06 .58 .17 .06 .02 .01 4 30 98
70 0 2 1 2 0 1.00 .00 .00 .00 .00 .00 .00 .00 .00 4 27 8
71 0 2 1 2 1 .00 .09 .18 .36 .00 .22 .12 .02 .02 3 23 122
72 0 2 1 2 2 .00 .00 .00 .00 1.00 .00 .00 .00 .00 4 30 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324 2 3 2 2 2 .09 .27 .00 .27 .36 .00 .00 .00 .00 4 28 11

Table 8: Conditional Probability in the complete probability table a: Level of subset b: Index of subset c:
Configuration coverage

between these two tables are the effects of the significance thresholds used for filtering the rules.
The rules were applied to the training data set. Figure 5 presents the rules when applied to the

training data in Well 1. The top plot shows the positive rules which are the probabilities of facies
appearing along the depth and the bottom plot shows the negative rules which are the probabilities
of facies unlikely to appear.

Figure 6 shows the true cored facies of the training data in Well one (top) and the assigned facies
based on well logs (bottom). For this example, the information changes when lumpping decision
outcome pairewise are shown in Figure 2.

Appendix B: Description of Program: ruleind

Figure 7 shows the parameter file of ruleind. Figure 8 displays a flow chart of the algorithm.
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Figure 1: Relationship between accuracy and conditional probability
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Figure 2: Changes in information measure when decision values lumped
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Figure 3: Hisograms of Condition Attributes
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Positive Rules Applied to Well 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
6

5
5

5
6

6
5

5
6

7
5

5
6

8
5

5
6

9
5

5
7

0
5

5
7

1
5

5
7

2
5

5
7

3
5

5
7

4
5

Depth (feet)

P
ro

b
a
b

il
it

y

facies 9

facies 8

facies 7

facies 6

facies 5

facies 4

facies 3

facies 2

facies 1

Negative Rules Applied to Well 1
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Figure 5: Induced rules (top: positive and bottom negative) when applied to training data from one well
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True Facies of Well 1
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Figure 6: top: true cored facies bottom: assigned facies based on rules and well logs
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Parameters for ruleind
**********************

START OF PARAMETERS:
facies.sys - input data file for rule induction
5 - no. of cond. attr.
1,2,3,4,5 - cols. of cond. attr.
3,4,3,3,3 - no. of levels of cond. attrs.
0,1,2 - levels of cond. attr. 1
0,1,2,3 - levels of cond. attr. 2
0,1,2 - levels of cond. attr. 3
0,1,2 - levels of cond. attr. 4
0,1,2 - levels of cond. attr. 5
1 - no. of decision attr.
6 - col of decision attr.
9 - no. of levels of decision attr.
0,1,2,3,4,5,6,7,8 - levels of decision attr.
facies - name of project

Figure 7: Parameter file of ruleind
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Figure 8: Flow chart of program ruleind
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