
Two Artifacts of Probability Field Simulation

M. Pyrcz

University of Alberta (mpyrcz@ualberta.ca)

C. V. Deutsch1

University of Alberta (cdeutsch@civil.ualberta.ca)

Probability field simulation is being increasingly used to simulate geostatistical realizations.

The method can be faster than conventional simulation algorithms and it is well suited to

integrate prior soft information in the form of local probability distributions. The theoretical

basis of probability field simulation has been established when there are no conditioning data;

however, no such basis has been established in presence of conditioning data. Realizations

generated by probability field simulation show two severe artifacts near conditioning data.

We document these artifacts and show theoretically why they exist.

The two artifacts that have been investigated are (1) local conditioning data appear as

local minima or maxima of the simulated values, and (2) the variogram model in range of

conditioning data is not honored; the simulated values have significantly greater continuity

than they are supposed to. These two artifacts are predicted by theory. An example flow

simulation study is presented to illustrate that they affect more than the visual appearance

of the simulated realizations.

Notwithstanding the flexibility of the probability field simulation method, these two arti-

facts suggest that it be used with caution in presence of conditioning data. Future research

may overcome these limitations.
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Introduction

The Probability Field Simulation algorithm (PFSIM) is becoming popular due to its unique

strengths. PFSIM was introduced by Srivastava [4]. The advantages of the method were

further documented by Froidevaux [2]. Although based on a conceptually simple idea, there

is no theoretical basis behind the method. Journel [3] presented a proof that the univariate

and bivariate statistics of simulated values in presence of no local conditioning data are
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correct. The PFSIM algorithm is increasingly available in software packages such as GSLIB

[1], gOcad, and other commercial software.

PFSIM separates the two key steps of geostatistical simulation, that is, data conditioning

and Monte Carlo simulation. This separation of tasks leads to (1) conceptual simplicity

through decomposition of unit operations, (2) greater CPU-efficiency than conventional

simulation methods such as sequential Gaussian simulation, and (3) flexibility to integrate

a wide variety of secondary data through modification of the local probability distributions

prior to simulation. Although PFSIM enjoys these advantages, there are two significant

artifacts, which affect the visual appearance and behavior of the realizations in subsequent

decision making.

The first artifact was identified in the original paper on probability field simulation by

Srivastava [4]. Conditioning data are honored as local minimums or maximums. Secondly,

the covariance or variogram of the simulated values deviates from the specified covariance

or variogram model. In particular, the simulated values have reduced short scale variability.

This paper will (1) recall the PFSIM algorithm, (2) revisit and quantify the local extrema

artifact, (3) give theoretical and experimental evidence of the covariance bias artifact, (4)

present a flow simulation example to assess the impact of the artifacts, and (5) conclude

with a discussion of possible corrective methods.

Probability Field Simulation

The PFSIM algorithm consists of two distinct steps: (1) establishing a set of local proba-

bility distributions, and (2) repeated Monte Carlo simulation from these distributions with

correlated probability values. Firstly, local probability distributions must be derived at

each location to be simulated. These local probability distributions account for local hard

conditioning data and all secondary data. The probability distribution will be a Dirac step

function at the exact location of a local hard datum. MultiGaussian theory, indicator geo-

statistics, or other heurisitic calibration procedures may be used to arrive at the set of local

probability distributions. The set of distributions may be denoted:

{F (u|(n)), ∀ u ∈ A} (1)

where F (u|(n)) are the probability distributions for all locations u in the area of interest

A. The notation |(n) implies that this set of distributions honors the n conditioning data

(both hard and soft).

A wide variety of methods may be used to establish the local distributions, which is

a significant advantage of PFSIM. In a multGaussian setting, the local distributions are
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Gaussian with a mean and variance determined by simple cokriging. In an indicator setting,

cumulative probability values are estimated, at fixed threshold values, by indicator kriging.

For simplicity of presentation we use Gaussian distributions; however, similar results would

be obtained with probability distributions derived by other means.

The second step is to draw simulated values from the set of probability distributions

(1). As explained by Srivastava, Monte Carlo simulation from each distribution would lead

to significant noise or nugget effect in the simulation results. Srivastava’s key idea was

to draw from the local distributions with correlated probability fields. It was conjectured

that the probability fields should have the same correlation as the uniform transform of

the conditioning data. By considering probability fields with a uniform [0, 1] histogram,

the histogram of the simulated values has the correct level of variability. Correlation in the

probability values imparts correlation to the simulated values. A particular set of correlated

probabilities (l) may be denoted:
{
p(l)(u) ∀ u ∈ A

}
, l = 1, . . . , L (2)

where p(l)(u) are the probability value in the interval [0, 1] for all locations u in the area of

interest A. The (l) superscript denotes the realization number l of the probability values;

there are L realizations. These probability values have a uniform histogram and the specified

uniform-score covariance structure, but need not consider any local data.

A set of simulated z-values, for each l-realization is created drawing from the distribu-

tions (1) with the probability values (2):
{
z(l)(u) = F−1(u; p(l)(u)|(n)), ∀ u ∈ A

}
, l = 1, . . . , L (3)

The F−1 operation is classic Monte Carlo simulation from the specified probability distri-

butions.

The L realizations of the z-values may be used to assess joint uncertainty and make

decisions. The specific nature of the uncertainty characterization and decision making

depends on the context of the problem. We do not concern ourselves with these details at

this time; we are concerned that the simulated values (3) are artifact free and theoretically

acceptable.

Journel [3] showed that the simulated values (3) have the correct univariate histogram

and correct bivariate (spatial correlation) structure in presence of no conditioning data.

Problems arise in presence of local data.
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Artifact One: Local Extrema at Conditioning Data

Two examples were created to illustrate this artifact. In the first example, a one dimensional

space of 100 units in length was simulated. The simulation was conditioned with data with

equal spacing of 10 units. The conditioning data were extracted from a nonconditional

Gaussian simulation with a single spherical structure variogram with a range of fifty. Figure

1 displays three realizations of PFSIM and SGSIM, the simple kriging estimates, and the

upper and lower 95th percentile values from the kriging variance. Notice how the PFSIM

realizations honor the local data with a local extrema.

The second example consists of simulated surfaces, see Figures 2 and 3 for cross sections

through different surfaces. As seen consistently in both examples, the data are honored as

local minima or maxima at the local hard data locations.

Source of Artifact

This artifact is caused by the separation of the conditioning and the Monte Carlo Simulation.

As shown in Figure 4, the local probability density functions (pdfs) collapse to a dirac step

function at the local hard data locations. This reduction in pdf variance, as the estimates

near the data location, causes the estimates to “pinch” toward the hard data values in

the vicinity of the hard data. The artifact becomes more significant as the probabilities

depart from 0.5 in the vicinity of the data location. Probability field values greater than

0.5 in the vicinity of the data cause a local minimum. Probability values less than 0.5

cause a local maximum. The only instance in which this artifact will not occur is when

the nonconditional correlated probability value is exactly 0.5 at the data location, which is

unlikely.

Multivariate Statistics

The local extrema artifact is multivariate; it can be seen visually, but not with univariate

or bivariate statistics. We use multivariate statistics to quantify the artifact. A five-variate

statistic is considered to measure local “texture” or variability in a one dimensional context.

Five consecutive points are considered simultaneously:

z(u+ 2), z(u+ 1), z(u), z(u − 1) and z(u − 2)

where z(u) is the value at a data location and the values z(u+2), z(u+1), z(u−1) and z(u−
2) are adjacent values.
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An indicator function of two neighboring values measures whether the values are in-

creasing or decreasing, that is,

ik =



1, if z(u+ k) ≤ z(u+ k − 1)
0, otherwise

There are four indicator values for five adjacent z values. There are 16 different con-

figurations of indicators. Each configuration is a particular pattern of increasing and/or

decreasing values. The 16 configurations are assigned an index:

index = 1 +
4∑

j=1

i(j) · 2(j−1)

Figure 5 shows the 16 configurations.

For illustration, a 100-value one dimensional example was constructed with data points

at locations 10, 50 and 90. A single spherical structure with a range of 50 and no nugget

effect is considered. Five thousand PFSIM and SGSIM realizations were generated and

subsequently classified by the index above. Since all conditioning data have the same

values, each index should be equally probable. SGSIM correctly demonstrates this, but the

PFSIM realizations clearly show a bias towards the two indexes that represent the data

point at 50 being a local minima or maxima (index 4 and 13), see Figures 6 and 7). Other

examples show similar results.

The critical observation is that PFSIM creates unwarranted spatial structures in the

form of discontinuities near conditioning data. A primary criteria of a simulation algorithm

is that realizations be free of unwarranted artifacts. No specific conclusions can be drawn

since the impact of this artifact will depend on the transfer of uncertainty characterization to

decision making. In general we expect PFSIM to incorrectly produce “dimples” or “peaks”

at the data locations. Practitioners must be aware of this and proceed judiciously.

Artifact Two: Covariance Bias Near Conditioning Data

The PFSIM realizations of Figure 1 appear more continuous than the SGSIM realizations.

This is not a bug. After investigation we found the variogram to be correctly reproduced

with no conditioning data, but there is increased continuity in presence of conditioning

data. This is expected from theory. Experimental results confirm theoretical prediction.

Difficulties in the reproduction of the correct bivariate structure have been observed by

Froidevaux [2] who stated that more work was required to put the inference of the probability

field covariance on firmer theoretical ground.
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Theoretical Background for Covariance Artifact

The theoretical background is most easily demonstrated in a multiGaussian setting; the dis-

tributions of uncertainty are Gaussian and defined by the simple cokriging means m(u),u ∈
A and standard deviations σ(u),u ∈ A. As in most geostatistical theory, we work with the

covariance and visualize the variogram.

First, let’s consider the unconditional covariance. By definition the covariance between

two values y and y′ is:
C(h) = E{y · y′} − E{y} · E{y′} (4)

where, in p-field simulation, y and y′ are drawn from Gaussian distributions with uniform,
nonconditioned correlated fields, p and p′. The covariance (4) may be written:

C(h) = E{G−1(p) · G−1(p′)} − m(u) · m(u′)

In the presence of no conditioning:

m(u) = m(u′) = 0

so, the covariance is:

C(h) = E{G−1(p) · G−1(p′)}
where the values p and p′ are separated by h with the “correct” uniform scores covariance.

The covariance C(h) is difficult to simplify, because the inverse of the Gaussian CDF, G−1,

is not known analytically. Nevertheless, we know that this covariance is correct, since it can

be shown with appropriate conditions of ergodicity and deconditioning, that the PFSIM

results are acceptable [3].

This ability to correctly reproduce the model covariance in absence of conditioning data

is confirmed in the following example. A two dimensional space is simulated (100 × 100

units) with no conditioning data. The covariance is a single spherical structure with range

varying from 10 to 20. The resulting omni-directional variograms for both PFSIM and

SGSIM honor the model in expected value, see Figure 8.

Now, let’s consider the case with conditioning data. With conditioning, the distributions

are no longer standard normal. We consider a pair at locations u and u′, within range of
conditioning data. The results will then be generalized by considering that pair translated

over the field A. Near conditioning data, y and y′ are defined as:

y = m(u) + σ(u) · G−1(p)

y′ = m(u′) + σ(u′) · G−1(p′)
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Solving for the covariance (C∗(h)) in presence of such conditioning:

C∗(h) = E{[m(u) + σ(u) · G−1(p)][m(u′) + σ(u′) · G−1(p′)]} − E{y} · E{y′}
= E{m(u) · m(u′) +m(u′) · σ(u) · G−1(p) +m(u) · σ(u′) · G−1

+ σ(u) · σ(u′) · G−1(p) · G−1(p′)} − E{y} · E{y′}
= E{m(u) · m(u′)}+m(u′) · σ(u) · E{G−1(p)}︸ ︷︷ ︸

0

+m(u) · σ(u′) · E{G−1(p)}︸ ︷︷ ︸
0

+ E{σ(u) · σ(u′) · G−1(p) · G−1(p′)} − E{y} · E{y′}
= σ(u) · σ(u′) · E{G−1(p) · G−1(p′)}︸ ︷︷ ︸

C(h)

+E{m(u) · m(u′)} − E{y} · E{y′}︸ ︷︷ ︸
0

since E{G−1(p)} = E{G−1(p′)} = 0. In addition, the global distribution of the regionalized
variable is standard normal; therefore E{y} and E{y′}, which are equivalent to E{m(u)}
and E{m(u′)}, are equal to 0, in expected value over the area, A.
Therefore the biased covariance C∗(h), between u and u′, separated by vector h, in the

presence of conditioning is:

C∗(h) = σ(u) · σ(u′)︸ ︷︷ ︸
Factor1

·C(h) + E{m(u) · m(u′)}︸ ︷︷ ︸
Factor2

(5)

The correct covariance C(h) was derived above in presence of no conditioning. There are

two factors that lead the covariance in presence of conditioning data to be different from

the correct covariance (1) a term that accounts for the reduced variance of the prior distri-

butions, and (2) a term that accounts for correlation in the means of the prior distributions.

We can further simplify this if we consider the limit case at short lag distances, h −→ 0.

In such case, the conditioning data may be assumed to be the same for both locations and

the following approximation can be made for Factor 2:

E{m(u) · m(u′)} = E{
n∑

α=1

λαyα ·
n∑

α=1

λ′
α=1yα}

E{∑n
α=1 λαyα · ∑n

α=1 λ′
αyα} = E{∑n

α=1

∑n
β=1 λα · λ′

β · yα · yβ}
=

∑n
α=1

∑n
β=1 λα · λ′

β · Cov(uα,u′
β)

=
∑n

α=1 λα[
∑n

β=1 λ′
β · Cov(uα,u′

β)]

From the kriging equations above
∑n

β=1 λ′
βCov(uα,u′

β) = Cov(uα,u′
β)

=
∑n

α=1 λαCov(u′,uα)

= c(u,u)− σ2
k

= σ2 − σ2
k
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Which leads to the following approximation that may be used to calculate the adjusted

covariance.
C∗(h) = σ2

k · C(h) + σ2 − σ2
k

= σ2 + σ2
k[C(h)− 1]

(6)

Inspection of this approximation (Equation 6), shows that when the kriging variance is zero,

or in face of perfect correlation, the adjusted correlation is equal to the variance, which is

the sill. This is expected, since the correlation at a lag distance of 0, must be equal to the

sill in order for the variogram to be equal to 0.

Also, the covariance in presence of conditioning becomes with the covariance ,C∗(h) =
C(h), as the kriging variance approaches 1, or as the nonconditioned case is approached

(Equation 6). This agrees with theoretical and experimental findings, that is, the PFSIM

bivariate statistics are correct in the nonconditioned case.

Returning to the general equation for adjusted covariance (Equation 5):

C∗(h) = σ(u) · σ(u′)︸ ︷︷ ︸
Factor1

·C(h) + E{m(u) · m(u′)}︸ ︷︷ ︸
Factor2

The first factor, the cross variance (σ(u) · σ(u′)) of the sample space, is the product of the
kriging standard deviation of the u and u′ separated by h. When calculating variograms,

the covariance is calculated in expected value over the area of interest. Hence, the following

form may be used to predict the PFSIM experimental variogram:

E{C∗(h)} = E{σ(u) · σ(u′)︸ ︷︷ ︸
Factor1

} · E{C(h)}+ E{m(u) · m(u′)}︸ ︷︷ ︸
Factor2

= E{σ(u) · σ(u′)︸ ︷︷ ︸
Factor1

} · C(h) + E{m(u) · m(u′)}︸ ︷︷ ︸
Factor2

∀ u ∈ A (7)

As shown on the left in Figure 9, the expected cross “variance” over a space is approximately

constant in a given conditioning setting and therefore independent of the lag vector.

The second factor, the expected cross mean2 over the area, A, (E{(m(u) · m(u′))}) is
dependent on the lag vector, h. This is demonstrated on the right of Figure 9. The product

of m(u) and m(u′) has a greater probability of being positive as the correlation increases
between u and u′. For example, if m(u) is negative, and m(u′) is well correlated then m(u′)
will also likely be negative. This results in the cross mean2 expressing a maximum at h

= 0, and decreasing to 0 at the range of correlation and remaining at 0 past the range of

correlation.

When the lag distance is equal to 0, the formula (7) simplifies to:

C∗(0) = sill = 1 = (σ(u))2 + E{m(u)2}
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Where E{m(u)2} is the cross mean2 at a h = 0. This provides a method for approximating

the constant cross variance term as:

σ2
k(u) ≈ (σ(u))2 = 1− E{m(u)2} (8)

where σ2
k(u) is the average kriging variance.

To demonstrate the use of the adjusted covariance formulas, two examples are presented.

The first example uses the general equation in expected value, (Equation 7), and considers

the range of 20 case, from the previously mentioned 101 x 101 data set. The cross mean2

and the cross variance were calculated for h = 1, . . . , 14 and the general formula was used

to calculate the biased variogram (1 - C∗(h)), over the area of concern. The plot of the
model, PFSIM experimental and biased or theoretical variogram are shown in Figure 10.

This confirms that Equation 5 accurately predicts the experimental covariance, of PFSIM

estimates.

The second example uses the short lag approximation, Equation 8, to calculate the

adjusted covariance between two close points, which have a model covariance of 0.8. Since

the two points are in close proximity, the kriging variances at each location are assumed to

be equal. The following table summarizes the results.

σ2
k C(h) C∗(h)

1 0.8 0.8

0.8 0.8 0.84

0.6 0.8 0.88

0.4 0.8 0.92

As the amount of conditioning increases (σ2
k decreases) the bias in the covariance in-

creases, that is, it departs significantly from the model covariance of 0.8. As confirmed by

observation, the biased covariance is greater (variogram is lesser) than the specified model.

Empirically results will now be shown that confirm the theoretical bias derived above.

Experimental Results

To illustrate the biased covaraince artifact, a 101 x 101 model was simulated with a 10

x 10 evenly spaced conditioning data grid, using PFSIM and SGSIM. The simulation was

based on a spherical varigoram with an isotropic range. To illustrate the difference between

PFSIM, SGSIM and the specified model, omni-directional variograms were calculated for

five realizations of each algorithm with ranges 10, 12, . . . , 20 (See Figure 11). A characteristic

reduction in short scale variability is manifested in all conditioned PFSIM realizations. This

divergence from the input random function (RF) model, appears to increase as the scale of
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conditioning increases (as the range of the RF increases, or as the conditioning data density

increases). The SGSIM empirical variograms reasonably approximate the RF model.

To more precisely quantify this bias, omni-directional variograms were generated for 20

PFSIM realizations and an average variogram was calculated for ranges = 1, 3, 5, . . . 49. The

averaging of many variograms was used to remove ergodic fluctuations, since the variogram

is only correctly reproduced in expected value. The input RF model and expected exper-

imental variograms were compared for each range (See Figure 12). Some noise remains,

which may be attributed to remaining ergodic fluctuations, a loss in total variability, and

poor uniform approximation of the probabilities [2], which occurs as the ratio of RF range

to data set size increases. These effects become apparent at a range of about 20.

Figure 13) shows the behavior without the noise caused by previously mentioned ergodic

problems. All the comparative plots show the increasing magnitude of the bias with the

increase in conditioning. Not only does the magnitude of the maximum bias increase, but

also the lag distance over which the bias exists also increases as the conditioning increases.

The bias is maximum at the first lag and decreases to 0 at the range of correlation.

Consequences

PFSIM realizations have been shown to systematically misrepresent the variogram (bivariate

statistics). Once again, the impact of this problem is application-dependent. The theoretical

and empirical results empower the practitioner to understand and predict the magnitude

of this artifact. These results reinforce the previous recommendation that caution and

judgment are essential in applying PFSIM.

Some implications of this artifact can be predicted. In petroleum applications, this

smoothness will lead to different flow behavior near wells, which is precisely where the flow

predictions are of critical importance. In petroleum and hydrogeology applications, flow

predictions are extremely sensitive to connectivity of extreme permeability or hydraulic

conductivity; therefore, we anticipate significant consequences of this artifact. In mining

applications, the smoothing of short scale variability will lead to optimistic assessment of

mine selectivity. The drop in short scale continuity may cause an apparent decrease in the

dispersion variance of selective mining units near conditioning data, which would lead to a

model.

Flow Simulation Example

To investigate the effect of the PFSIM artifacts on a transfer function, multiple flow sim-

ulations were run with 100 equal probable models derived from SGSIM and PFSIM. A
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bottom-water drive study was performed using Eclipse100 reservoir simulator. A two di-

mensional cross sectional area of 51 x 50 cells, with 10 foot by 1 foot cell dimensions was

used, see Figure 14.

A porosity of 0.15 was assumed in all locations except for the bottom blocks where the

porosity was increased to simulate a bottom-water drive. The formation volume factor was

set at 1 res vol/STD vol, the compressibility to 1.0×10−5 1
psia , the viscosity to 0.56 cp. The

well was produced with a total liquid rate of 10 STB/day, and the total simulation time

was 9.26 year (3385 days).

Two hundred flow simulations were performed. The water breakthrough time was taken

as a response variable. Water cutoffs of 5%, 10% and 50% were considered, see Figure

15). The watercut variances with respect to time are summarized in Figure 16. There is a

divergence between the two algorithms. Consistently, PFSIM provides biased uncertainty

over all times.

Discussion

The advantages of PFSIM are (1) greater efficiency than sequential Gaussian simulation

when building multiple realizations, (2) conceptual simplicity through decomposition of

steps, and (3) flexibility to integrate a wide variety of secondary data through modification

of the local probability distributions prior to simulation. The disadvantages of PFSIM are

(1) local conditioning data commonly appear as local minima or maxima of the simulated

values, and (2) the variogram model in range of the conditioning data is not honored; the

simulated values have significantly greater continuity than they are supposed to. Since

the PFSIM algorithm has been shown to fill a valuable niche among geostatistical tools, it

would be well worth the effort to remediate the aforementioned artifacts while preserving

PFSIM’s unique strengths.

Conditioning the Correlated Fields

An obvious solution to the local extrema artifact is to condition the correlated fields to a

probability value of 0.5 at all data locations. This has been implemented. The histogram

of the 16 multivariate indexes with conditioned fields, see Figure 19, is much closer to the

expected uniform distribution.

The shortcoming of this correction is a significant reduction in uncertainty of the realiza-

tions. The distributions of uncertainty have less variability within range of the conditioning

probabilities, that is, the distributions of probability values will not be uniform between 0

and 1. As shown in Figure 20 the point-wise and global variance are too low.
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Multiple Point Statistics Correction

Another option for removing the extrema artifact and the covariance bias artifact would

be to work with multiple point statistics. PFSIM realizations could be post-processed

with an algorithm such as simulated annealing. A multiple point statistic and a variogram

(bivariate) components could be part of the objective function to be minimized. Post

processing with iterative techniques would remove the advantage of speed and simplicity

which are central to PFSIM’s attractiveness.
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Figure 4: Two scenarios of nonconditioned correlated fields are shown. The blue line shows a local
minimum caused by fields > 0.5 in the vicinity of the conditioning data, while the red line shows
the opposite case.
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Figure 5: The multivariate index is based on the indicator transform of 1 if z(u+k) is greater than
or equal to z(u+ k − 1), and zero otherwise.
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Figure 7: Illustration of the 16 index categories and their accompanying probabilities.
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Figure 8: A comparison of SGSIM and PFSIM, with various ranges of correlation. All simulations
are nonconditional.
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Figure 9: A plot of the cross variance and cross mean up to a lag distance of 14

Figure 10: A comparison of the experimental PFSIM variogram and the theoretical variogram
calculated with Equation 2
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Figure 11: A comparison of experimental variograms from SGSIM and P-field simulation, with
various ranges of correlation. Compare these results to the unconditional case in Figure 8.
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Figure 12: A comparison of experimental variograms from PFSIM and the underlying random
function model (no nugget, one spherical structure with a variable range).
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Figure 13: A comparison of experimental variograms from PFSIM and the underlying random
function model considering only ranges 1 to 19.

Figure 14: The layout used for the flow simulations.
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Figure 15: The distributions of uncertainty of break through time at 5%, 10% and 50% watercut.
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Figure 16: The watercut variance vs. time to break through
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Figure 17: The watercut vs. time to break through, from multiple PFSIM realizations
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Figure 18: The watercut vs. time to break through, from multiple SGSIM realizations.
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Figure 19: The distribution of the previously defined 16 indexes in from constrained PFSIM.
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Figure 20: The previous 1D example, with three realizations of constrained PFSIM added.
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