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Abstract

Gaussian simulation techniques are the most common and simple simulation approaches
used in reservoir modeling. The use of Gaussian techniques requires that model variables
be multivariate Gaussian; however, earth science phenomena are rarely Gaussian. Trans-
formation techniques are applied to make the model variables Gaussian. The conventional
technique is the normal score transform (also known as the `graphical' or `quantile' trans-
formation). This technique generates univariate Gaussian distributions but does not enforce
bivariate or higher order Gaussianity.

The stepwise conditional transformation technique introduced by M. Rosenblatt [7] promises
to greatly simplify cosimulation of multiple variables. Several issues were identi�ed for fur-
ther research at the conclusion of the second CCG report[5]. This paper addresses the
outstanding issues, including the e�ects of transformation ordering, independence at lag
h > 0, in
uence of the cross covariance structure and scatterplot smoothing in presence of
sparse data.

Introduction

The increasing demand for realistic reservoir models has brought greater attention to the
�eld of geostatistics. Gaussian techniques are commonly applied to create numerical mod-
els because of their simplicity. Implicit to this group of techniques is the requirement for
multivariate Gaussianity; however, geologic data rarely conform to such well behaved dis-
tributions.

Application of conventional data transformation techniques can generate univariate
Gaussian distributions, but do not ensure bivariate or multivariate Gaussianity. Instead,
the multivariate distributions may show signs of non-linearity, mineralogical constraints,
and heteroscedasticity (See Figure 1).

The stepwise conditional transformation technique is a powerful and robust technique
for multivariate data transformation. The idea of applying this transform to geostatis-
tical modeling was introduced in the previous CCG report [5]. This paper continues to
explore the theoretical and practical aspects of applying Rosenblatt's stepwise conditional
transformation in a geostatistical framework.
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Figure 1: Examples of problematic bivariate distributions for Gaussian simulation: non-
linear relations(left), potential mineralogical constraints(centre), and heteroscedasticity
(right).

Recall of Stepwise Conditional Transformation

The stepwise-conditional technique is identical to the normal score transform in the uni-
variate case. For bivariate problems, the normal transformation of the second variable
is conditional to the probability class of the �rst variable. Correspondingly, for k-variate
problems, the kth variable is conditionally transformed based on the (k-1) th variable, that
is,

Y1 = G�1[Prob(Z1 � z1)]
Y2j1 = G�1[Prob(Z2 � z2 j Y1 = y1)]

Y3j21 = G�1[Prob(Z3 � z3 j Y2 = y2; Y1 = y1)]

Figure 2 shows the steps to accomplish this conditional transformation for a bivariate
case. Once the data are separated into classes based on their conditional probabilities, each
group of data is normal score transformed. Simulation is then performed on the normal
score values and back transformation is performed in the reverse order of transformation.
For example, Z1 can be determined from Y1 with the correct conditional distribution; Z2
can be calculated from Z1 and the simulated value of Y2.

Conditional transformation of the data results in transformed secondary variables that
are now arti�cial variables with little physical interpretation. It is a combination of both
the primary and the secondary variable. Also, the multivariate spatial relationship of the
original model variable is not transformed for h > 0, that is, there is no modi�cation of
bivariate spatial distributions Y (u) and Y (u+h), or trivariate distributions Y (u), Y (u+h1)
and Y (u+h2), etc. . . .

The result of this transformation is independence of the transformed variables at h = 0.
Since each class of Y2 data is independently transformed to a normal distribution, correla-
tion between Y2j1 and Y1 is removed at h = 0. Consequently, the simulation of multivariate
problems does not require cosimulation due to the independence of the transformed vari-
ables. This is the primary motivation for transforming multiple variables in a step-wise
conditional fashion.
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Figure 2: Processes involved in Stepwise Conditional Transformation, a) Distribution of
data variables and the scatterplot of Z2 and Z1; b) Transform variable Z1 into normal
scored data, Y1, and categorize Z2 data conditional to probability classes of Y1 ; c) Determine
conditional distributions for each Z2 class conditional to Y1 data; and d) Normally transform
each Z2jY1 class independent from each other, and the scatterplot between one Z2jYi class
and Z2jYi+1 will show no correlation between the normally transformed classes.
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E�ect of Ordering

The �rst transformed variable is the primary variable on which all other variable transfor-
mations are based. Consider transforming two variables Z1 and Z2, transformation of the
primary variable is identical to performing a normal score transform. Two possible scenar-
ios exist for transformation: (1) choose Z1 as primary variable and normal score transform
to get Y1, and then transform Z2 to get Y2j1; and (2) choose Z2 as the primary variable to
get Y2, and then Z1 is transformed to produce Y1j2. In case (1), the simulation results for
Y1 would be identical to those obtained by conventional simulation using the normal scores
of Z1, and the same can be said for Y2 in the second scenario.

Unlike the primary variable, simulation of the secondary variables does not produce the
same results as conventional simulation. The secondary variable is a combination of the
original variable and the normal scores of the primary variable.

For both ordering sequences, the semivariogram is calculated for both the primary and
secondary variable. Sequential Gaussian simulation is independently performed for each
transformed variable. Back transformation of the simulated values returns values to the
original units. We determine the normal scores semivariogram of the simulated values.
The resulting semivariogram of the primary variable is that obtained from the sequential
Gaussian simulation. A comparison of the semivariograms for the same variable, when it
is taken as (1) the primary variable, and (2) the secondary variable, will show the e�ect of
ordering.

This methodology was applied to several petroleum-related examples. The �rst data set
is the \two-well" data used in the GSLIB training course (see CCG Report 1). The second
is East Texas core data where only vertical coordinates are available. For both data sets,
porosity and log(permeability) are the two variables of interest, for which the e�ect of the
transformation ordering sequence is examined. The �rst transformation order takes porosity
as the primary variable, and the second transformation order takes log(permeability) as the
primary variable.

Conditional simulation was performed with the \two-well" data. Figure 3 shows the
comparison of the semivariograms for both ordering sequences using this data set. The
semivariograms for porosity show that when porosity is chosen as the primary variable, the
post- simulation semivariograms closely follow the input normal scores semivariogram - as
it should. Conversely, the semivariograms corresponding to the scenario in which porosity
is the secondary variable shows greater variability and a shorter range. Di�erences in the
permeability variograms as a result of transformation ordering sequence are not so obvious;
however, closer examination shows slight deviations of the secondary case from the primary
case. In this instance, the secondary semivariograms for permeability have longer range.

Unconditional simulation was performed for the East Texas data. Figure 4 shows the
comparison of the semivariograms for the East Texas data. Similar to the previous example,
each scenario of ordering clearly shows departure of the secondary variable semivariograms
from the direct semivariograms using the traditional normal scores. Unlike the Two Well
example, the permeability semivariograms di�er considerably after stepwise transformation.
Further investigation showed that the stepwise transformation produced an arti�cial sec-
ondary variables with signi�cantly di�erent spatial correlation (higher nugget e�ect and
longer range of correlation).
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Figure 3: E�ect of ordering using Two Well Data: normal scores variogram using simulated
data for porosity (top) and log(permeability) (bottom). Variograms in red correspond to the
simulation sequence in which porosity is the primary variable, blue variograms correspond
to the simulations where log(permeability) is the primary variable. In both variograms, the
blue variograms are higher.

The variogram departure of the conditionally transformed variable from that obtained
using direct normal scores is attributed to the arti�cial nature of the transformed secondary
data. The stepwise conditional transformation produces a variable that is a combination
of the original primary and secondary data. As a result, the spatial variability of the new
variable retains some of the spatial structure of both constituent variables. The exact nature
of the contribution of the direct and cross covariance structures to the spatial variability of
the new variable is explored in more detail in the following section.

Cross covariance structure

The main attraction of the stepwise conditional transformation is the resulting independence
of the transformed variables at h = 0. Consequently, the cumbersome modeling of the cross
variogram in compliance with the linear model of coregionalization (LMC) can be avoided.
A number of exercises were undertaken to gain a better understanding of the structure of
the Y2j1 variogram.

5



γ

Distance

East Texas NS Porosity (Primary-red)

.0 10.0 20.0 30.0 40.0 50.0 60.0

.00

.20

.40

.60

.80

1.00

1.20

γ

Distance

East Texas NS logK (Secondary-red)

.0 10.0 20.0 30.0 40.0 50.0 60.0

.00

.20

.40

.60

.80

1.00

1.20

Figure 4: E�ect of ordering using East Texas core data: normal scores variogram using
simulated data for porosity (top) and log(permeability) (bottom). Variograms in red (i.e.
the higher variograms) correspond to the simulation sequence in which porosity is the
primary variable, blue variograms correspond to the simulations where log(permeability) is
the primary variable.

Without loss of generality, consider two multi-Gaussian variables, Y1 and Y2, with the
same direct isotropic variogram:


(h) = 0:5Spha=3(h) + 0:5Spha=15(h)

The correlation between Y1 and Y2 was chosen to be 0.70. Three di�erent cross vari-
ograms were considered: short-range, intrinsic, and long-range. The \short-range" case gave
a maximum variance contribution to the short range structure; while the \long- range" case
gave the maximum variance contribution to the long range structure. The models are given
below and illustrated in Figure 5.

short� range : 
(h) = 0:50Spha=3(h) + 0:20Spha=15(h)
intrinsic : 
(h) = 0:35Spha=3(h) + 0:35Spha=15(h)
long � range : 
(h) = 0:20Spha=3(h) + 0:50Spha=15(h)

For each case, stepwise conditional transformation was applied, direct and cross vari-
ograms were calculated and modeled, sequential Gaussian simulation was performed, simu-
lated values were back transformed, and the resulting simulated direct and cross variograms
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Figure 5: Direct variogram of Y1 and Y2 (left), and the three di�erent cross variogram
models (right) : short-range (red), intrinsic (black), and long-range (blue).

were examined. Figure 6 shows the direct variograms for Y2j1 and the cross variogram of
Y1 and Y2j1, following application of the stepwise transform.

In the case where greater contribution is given to the short-range structure, the cross
variogram was slightly higher than zero over small lag distances and then returns to zero
just past the short-range distance. Conversely, the long-range scenario showed that the
cross variogram was negative over the short-range, and then increased to zero beyond the
short-range distance. Unlike the two extreme cases, the intrinsic case showed independence
of the transformed pairs, with no deviation from zero over all lags. These results con�rm
that the stepwise transformation implicitly assumes that the direct and cross variograms
are intrinsic. Independence at h � 0 is satis�ed only for the intrinsic case.

Following simulation the values were back transformed and the cross variogram was
checked for each scenario. Figure 7 shows the model cross variograms of the original
variables and the cross variogram obtained after simulation of the conditionally transformed
variables. The relative range of correlation is preserved, i.e. the short range model produces
an average cross variogram with the shortest range of the three simulated scenarios. In all
three cases, the range of correlation following simulation shows that the stepwise conditional
transform reduces the overall range of correlation of the variables. As well, the variogram
structure of the extreme cases (short- and long- range cross variograms) appear to be shifted
towards the intrinsic model.

To gain a better understanding of the di�erences between the direct variogram of the
transformed variable, Y2j1, and the original Y2 variable, a small analytical exercise was
carried out. Two points separated by a distance h was considered (see Figure 8). At each
point, Y1 data is available and an estimate at Y2(u) is required using Y1(u) and Y1(u+h).
Both the original variables, Y1 and Y2, are homoscedastic, multi-Gaussian variables with
univariate N(0,1) distribution.

To determine the covariance structure of the transformed secondary variable, Y2j1, we
�rst need to de�ne its conditional distribution. The parameters that de�ne the conditional
distribution of Y2j1 can be obtained by solving the kriging system of equations. The mean
and variance of the conditional distribution are given by the kriged estimate and the error
variance, respectively.
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Figure 6: Direct variogram of Y2j1 (left) and cross variogram of Y1 and Y2j1(right), after
stepwise conditional transformation. The black line on the cross variograms represent the
cross variogram model used to create the unconditioned simulation prior to transformation.
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Figure 7: Input model of cross variogram of Y1 and Y2 (left), and the cross variogram ob-
tained after simulating with stepwise transformed variables Y1 and Y2j1 (right). In both
cases, the variograms follow the same color/line code: short-range (red, top dashed), intrin-
sic (black, middle), and long-range (blue, bottom dashed).
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Figure 8: Schematic illustration of two points separated by a distance h.

The simple kriging (SK) equations for this system are:

�2E = C1(0) +
2X

�=1

2X
�=1

C(u� � u�)� 2
2X

�=1

C(u� u�)

Solving the kriging equations gives:

2X
�=1

C(u� � u�) = C(u� u�) (1)

For two points, Equation 1 becomes:

�C1(0) + �0C1(h) = C12(0) (2)

�C1(h) + �0C1(0) = C12(h) (3)

where C1(h) is the covariance for Y1 at distance h, and C12(h) is the cross covariance
between Y1 and Y2. Note that C1(h) = 0 and C12(0) = �. So equations 2 and 3 becomes:

�+ �0C1(h) = � (4)

�C1(h) + �0 = C12(h) (5)
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Solving equations 4 and 5 yields the following SK weights:

� =
�� C12(h) � C1(h)

1�C1(h)2
(6)

�0 =
�� C12(h) � C1(h)

1�C1(h)2
(7)

Equations 6 and 7 shows the weights for the general case with two data points.

Intrinsic Coregionalization

For the special case of an intrinsic coregionalization, C12(h) = � �C1(h) and the SK weights
become:

� = �

�0 = 0

The kriged estimate is:

Y2j1 = �Y1(u)

�2j1 = �Y1(u)

The kriging variance becomes:

�2E = 1� �2

So the conditional distribution of Y2j1 for the intrinsic case is N(�Y1(u); 1 � �2), which
agrees with the conditional distribution obtained by applying Bayes postulate on conditional
expectation.

Using the mean and variance of the conditional distribution, the covariance model of
the transformed variable can be determined:

Y2j1(u) =
Y2(u)� �2j1

�2j1

C2j1 = EfY2j1(u) � Y2j1(u+h)g

C2j1 = E

( 
Y2(u)� �Y1(u)p

1� �2

!
�

 
Y2(u+h)� �Y1(u+h)p

1� �2

!)

=
1

1� �2
E f[Y2(u)� �Y1(u)] � [Y2(u+h)� �Y1(u+h)]g

=
1

1� �2
E
n
Y2(u)Y2(u+h)� �Y2(u)Y1(u+h)� �Y1(u)Y2(u+h) + �2Y1(u) � Y1(u+h)

o
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C2j1 =
1

1� �2

n
C2(h)� 2�C12(h) + �2C1(h)

o

=
1

1� �2

n
C1(h)� 2�(�C1(h) + �2C1(h)

o

=
1

1� �2

n
C1(h)� �2C1(h)

o

=
C1(h)(1 � �2)

1� �2

= C1(h)

Comparison of the above analytical result with the numerical results shown in Figure
6 for the intrinsic case shows that the numerical result deviates only slightly from the
analytical solution. This deviation can be attributed to numerical artefacts, likely resulting
from any or a combination of the following factors: search radius, search strategy, number
of data and simulated data for simulation, and/or the actual algorithm used.

General Case with Two Points

Using the general SK weights given in equations 6 and 7, the mean and variance of the
conditional distribution for the general case is:

�2j1 = �Y1(u) + �
0
Y1(u+h)

�2j1 =

�
�� C12(h) � C1(h)

1� C2
1 (h)

�
Y1(u) +

�
C12(h)� � � C1(h)

1� C2
1 (h)

�
Y1(u+h) (8)

�2E = C1(0)�
n
�C12(0) + �

0
C12(h)

o
�2E = 1�

��
�� C12(h) � C1(h)

1� C2
1 (h)

�
C12(0) +

�
C12(h)� � � C1(h)

1� C2
1 (h)

�
C12(h)

�
(9)

As before, the general covariance model is given as:

Y2j1(u) =
Y2(u)� �2j1

�2j1

C2j1 = EfY2j1(u) � Y2j1(u+h)g

C2j1 = E

( 
Y2(u)� �2j1

�2j1

!
�

 
Y2(u+h)� �2j1

�2j1

!)
(10)

where �2j1 and �2j1 are given in equations 8 and 9, respectively. It is clear that the covariance
structure of the conditionally transformed variable (in equation 10) implicitly incorporates
the cross-covariance structure of the original variables.
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Independence at lag distances

The shape of the cross variogram structure after transformation was examined to investigate
the issue of independence for distance lags greater than zero (h > 0). The ideal case
would be a cross variogram 
(h) = 0;8h, since independent simulation of the transformed
variables, Y1 and Y2j1, assumes that the cross variogram 
Y1�Y2j1(h) = 0;8h.

The same two data sets (Two Well and East Texas Core data) were used to study the
e�ect of the transformation on the multivariate spatial distribution. For each data set, the
cross variogram was calculated after the variables were transformed. At lag distances where
the cross variogram deviated most from zero, the crossplots at that lag, h, was generated.
Figures 9 and 10 show the crossplot of the transformed variables at h = 0, the resulting
cross variogram and a crossplot taken at lag h, corresponding to the maximum deviation
of the cross variogram from 
(h) = 0.

It is diÆcult to understand the numerical results from the crossplots. Distinguishing
between class artifacts and actual structural trends is not obvious.

Transformation in Presence of Sparse Data

The �rst paper identi�ed the lack of suÆcient data as a major limitation to the practicality
of this transformation technique. At the same time, it was suggested that the application
of a smoothing technique should create more representative conditional distributions in
the application of a stepwise transformation. This avenue of research was followed up by
exploring the kernel density estimator.

Smoothing using a kernel density is characterized by the following probability distribu-
tion [8]:

f̂(x) =
1

nh

nX
i=1

K

�
x� xi

h

�
(11)

where K(�) is a kernel function associated to some speci�ed density function. Since we are
primarily concerned with discretizing the bivariate distribution, the kernel density is chosen
to be a non-standard bivariate Gaussian density distribution with speci�ed correlation:

fxy =
1

2��x�y
p
1� �2

� exp

"
�1

2(1 � �2)
�

 
(x�mx)

2

�2x
�

2�(x�mx)(y �my)

�x�y
+

(y �my)
2

�2y

!#

where mx and �2x is the mean and variance corresponding to the random variable X, my

and �2y is the variance corresponding to the random variable Y , and � is the correlation
coeÆcient between X and Y .

The general algorithm is to generate a bivariate density distribution centered about
each data pair. The frequencies for each X and Y are then averaged to obtain density
estimates for that particular pair. The result is a "cloud" of values centered about the
data. Discretizing the bivariate distribution for the stepwise conditional transformation
will then be accomplished using the smoothed bivariate distribution. The basic steps in
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Figure 9: Two Well data: Cross plot of transformed data at lag h=0 (top) ,cross vari-
ogram of the transformed variables (centre), and of crossplot at lag h=9, corresponding to
maximum value on cross-semivariogram (bottom).
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smoothing using a kernel estimator are (with user speci�ed correlation coeÆcient, �, and
variance for each variable, �1 and �2):

1. Using the scatterplot limits for both variables, discretize the scatterplot to create a
regular grid of X and Y values.

2. Go to each data pair:

� Set mx = x and my = y.

� Visit each node in the new scatterplot grid and calculate the bivariate frequency
using the non-standard Gaussian density function.

3. Visit each node in the grid again, and average all the calculated frequencies at each
node.

Implementation

The program scatsmth k was developed to implement this algorithm. Figure 11 shows
the e�ect of variance and correlation coeÆcient on the smoothed bivariate distribution.
Speci�cation of a unit variance is considered high since the variance of normal scored data
is 1.0 in Gaussian space. This translates to assigning each paired data the full variance
of the sample distribution leading to an over-smoothing of the bivariate distribution. The
speci�ed correlation coeÆcient should correspond to the correlation between the normal
scored data.

The programs stepcon and backstep were modi�ed to perform the stepwise conditional
transformation and the back transformation using the smoothed distribution, respectively.
Parameters required for each program are given in the Appendix.

The data should �rst be transformed into normal scores using nscore. Using the nor-
mal score values of the multivariate data, the program scatsmth k applied to smooth the
bivariate distribution of the normal scores. Using the output bivariate transformation table
from scatsmth k, stepwise transformation can be performed for the smoothed distribution
in stepcon. Independent simulation of the model variables can now proceed in Gaus-
sian space. Back transformation of the simulated values is implemented by calling on the
univariate and the bivariate transformation tables output from nscore and scatsmth k,
respectively.

This methodology was applied to several small petroleum-related data sets. The �rst
data set is referred to as the Reservoir data, and consists of 164 paired samples of porosity
and log(permeability). Figure 12 shows the results of the applying the above methodology
to this data set. As expected, the cross plot of the smoothed bivariate distribution has a
similar shape to that of the normal score data. The correlation coeÆcient after stepwise
transformation using the smoothed distribution is not as low as that obtained using only the
data. The conditional cumulative distribution function (ccdf) for each class of the primary
data is more clearly de�ned as a result of the smoothing algorithm; however, this ccdf is
not perfectly Gaussian. Although the algorithm and proposed methodology is suÆcient for
geostatistical simulation to proceed in the presence of sparse data, it is not meant to take
the place of real data. A comparison of the cross plot of the original 164 data and the

15



Variance = 0.1, corr. coef. = 0.5

NS Porosity

N
S

 lo
g 

K

-4.000 4.000
-4.000

4.000

.0

.2000

.4000

.6000

.8000

1.000

1.200

1.400

1.600

1.800

2.000

Variance = 1.0, corr. coef. = 0.5

NS Porosity

N
S

 lo
g 

K

-4.000 4.000
-4.000

4.000

.0

.02000

.04000

.06000

.08000

.1000

.1200

.1400

.1600

.1800

.2000

Variance = 1.0, corr. coef. = 0.8

NS Porosity

N
S

 lo
g 

K

-4.000 4.000
-4.000

4.000

.0

.03000

.06000

.09000

.1200

.1500

.1800

.2100

.2400

.2700

.3000

Figure 11: E�ect of variance and correlation coeÆcient on the bivariate frequency distri-
bution after smoothing using 1 data point. The top two �gures show the e�ect of variance
on the \spread" of the bivariate distribution centred at the data point, while the bottom
two �gures show the e�ect of the correlation coeÆcient on the skew angle of the bivariate
distribution.
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Figure 12: Reservoir data: Cross plot of the original data (top left), cross plot of the
normal scored data (top right), cross plot of the stepwise conditionally transformed data
using only the original 164 data values (middle left), smoothed bivariate distribution using
kernel estimation (middle right), cross plot of stepwise conditionally transformed data using
the smoothed distribution (bottom left), and a cross plot of the simulated values after back
transformation (bottom right).
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Figure 13: Gomcore data: Cross plot of the original data (top left), cross plot of the stepwise
conditionally transformed data using only the original 27 data values (top right), cross plot
of stepwise conditionally transformed data using the smoothed distribution (bottom left),
and a cross plot of the simulated values after back transformation (bottom right).
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simulated values after back transformation shows that the bivariate distribution of the data
is reproduced with only a minor di�erence in correlation.

The second data set is known as the Gomcore data set. It consists of only 27 data pairs
of porosity and log(permeability). Figure 13 shows several comparative cross plots. The
two cross plots of the stepwise conditionally transformed variables resulting from (1) only
the data, and (2) the smoothed distribution have similar correlation magnitudes, but with
opposite signs. Simulation and back transformation of the transformed variables according
to the smoothed distribution shows good reproduction of bivariate distribution with only a
0.007 di�erence in correlation.

Conclusion

The stepwise conditional transform presents great bene�ts in multivariate geostatistical
simulation. Unlike the linear model of coregionalization, the model of regionalization in-
voked as a result of the transform is not easily de�ned analytically. Theoretical exercises
showed that the covariance structure of the conditionally transformed secondary variables is
a function of the cross covariance model between the original variables. The transformation
results in non-physical secondary variables that simplify multivariate simulation without
changing the underlying multivariate distribution between the original variables.

A bivariate distribution smoothing algorithm was presented for application in the pres-
ence of sparse data. With few data, a representative conditional distribution is diÆcult to
infer. Smoothing of the bivariate distribution helps to identify a conditional distribution
based on the available data, so that stepwise conditional transformation can be e�ectively
applied. Simulation using the smoothed distributions reproduces the original bivariate dis-
tribution.

The theoretical and practical details addressed in this paper lend support to the advan-
tages of applying this transformation method over conventional univariate techniques.
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Appendix

Example parameter �les scatsmth k.par, stepcon.par and backstep.par are shown in
Figures 14, 15 and 16, respectively. The parameters are self explanatory.

Parameters for SCATSMTH_K

*************************

START OF PARAMETERS:

../data/cluster.dat - file with data

4 5 0 - columns for X, Y, wt

-1.0e21 1.0e21 - trimming limits

-4.0 4.00 - min and max

-4.0 4.00 - Y min and max

scatsmth_k.out - file for smoothed distribution output

scatsmth_k.trn - file for transformation table

0.602 - correlation coefficient

0.05 0.05 - x and y variance for kernel density

Figure 14: Parameters for scatsmth k.
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Parameters for STEPCON

**********************

START OF PARAMETERS:

../data/cluster.dat - file with data

3 - number of variables to transform

13 14 15 - columns for variable transformation

-1.0e21 1.0e21 - trimming limits

10 - number of classes

1 - smoothed distribution, yes=1,no=0

scatsmth_k.trn - file for input transformation table

stepcon.out - file for output

stepcon.trn - file for output transformation table

Figure 15: Parameters for stepcon.

Parameters for BACKSTEP

***********************

START OF PARAMETERS:

2 - number of variables

file1.dat - data file number 1

file2.dat - data file number 2

-1.0e21 1.0e21 - trimming limits

10 - number of classes

stepcon.trn - file with transformation table

scatsmth_kfl.trn - file with input transformation table

nspor.trn - univariate transformation table for variable 1

nsper.trn - univariate transformation table for variable 2

backstep.out - file for output

Figure 16: Parameters for backstep.
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