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Abstract

Geostatistical simulations aim to mimic the real variations of the underlying phenomena.

Traditional simulation approaches only use two point statistics such as the variogram. In

presence of non linear features or large range connectivity, such traditional methods do not

provide good reproduction of those features. Connectivity of high and low values critical

for most studies, e.g., permeability 
ow paths in a petroleum reservoir, grades in a mineral

deposit, and concentrations of a pollutant in a environmental study.

The proposed methodology builds on the theory of runs used in statistics to character-

ize high order correlation in sequences of data. These \runs" are equivalent to high order

indicator covariances and can be used in the context of extended normal equations or projec-

tion theory for estimation or simulation. Implementation of the extended normal equations
using the information provided by runs is proposed for more realistic simulations. The

methodology is discussed with exploratory examples.

The examples present runs above and below di�erent quantiles to characterize high order

correlation in pseudo-random series and in correlated series; maps of frequency of length of

runs above quantiles and maps of di�erences in frequencies with respect to the random case

were constructed to show the in
uence of correlation.

Introduction

Geostatistical techniques are used to simulate realizations of regionalized variables to help
in decision making; however, the realizations must correctly reproduce important aspects
of the true distribution. When the heterogeneities are not well reproduced in the resulting
model or the uncertainty is inaccurate, incorrect predictions and wrong decisions may be
made.

One feature of classical geostatistical simulation techniques, such as Gaussian and indi-
cator approaches, is that they account only for two- point statistics through a covariance
or variogram function. This limitation is mainly due to the diÆcult inference of higher
order statistics [1, 3, 12, 20]. Simulation techniques would be improved with multiple-point
statistics, since the resulting realizations would share more quantitative information than
two-point statistics. More realistic numerical models likely lead to better decisions.

Several researchers have tried to incorporate multiple-point statistics in geostatistics,
by using simulated annealing or training images [1, 8, 10, 20]. Most of them have failed in
their applicability, because they are extremely CPU time consuming or because they require
too many parameters to be set. Training images have been used to extract multiple-point
statistics from outcrops, which supposedly represent the domain under study. The training
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image may consist of a conceptual geological model of the site being characterized. We will
never know how representative the training image is of the domain of interest.

The indicator approach is based on the use of the rank order of the data. Conditional
probabilities are identi�ed by the conditional expectations of the indicator transforms at
particular thresholds. Kriging or the normal equations are used to estimate the conditional
expectations as a function of the indicator values of the data and previously simulated
locations at the same threshold being estimated. Cokriging can be used to consider the
cross-correlations between indicators at di�erent thresholds. The products of indicators
would require inference of high order correlation functions. This would lead to the best
non-linear unbiased estimator. As mentioned, high correlation is generally ignored, which
reduces the information space and degrades the resulting estimation or simulation.

Some interesting results in number theory motivate us to study application to the indi-
cator approach. This research aims to quantify high order correlation using the frequency
of runs above and below di�erent thresholds. Once high order correlation is known, the
extended kriging equations may be applied in simulation with the consequent improvement
on the result.

The applicability of this method is seen mainly (but not restricted to) using well data
in petroleum applications and drillhole data in mining applications where the number of
data is enough to calculate the expected lengths of runs. Figure 1 presents a well with
22 composites (samples of equal length). The actual values are shown as a solid line, while
the sample values are shown as black dots (they represent the average of the values in
the sample, assuming no sampling and sample preparation errors). Given 5 thresholds,
zi; i = 1; :::; 5, a run of length l can be seen as the event of having l consecutive samples
with grade higher than the threshold. In the example here presented runs are represented
by thicker solid lines. For z1, there is one run of length 16; for z2, there is one run of length
13; for z3, there are two runs, one of length 4 and the other of length 5; for z4 there are three
runs of lengths 2, 2, and 1 respectively; �nally, for z5 there are no runs in this example. The
probability of having a run of length l is equivalent to the expected value of the product
of l indicators corresponding to samples in a row or column. This high order moment is a
multiple point statistic that would better characterize the true multivariate distribution or
\spatial law".

Literature Review

This literature review focuses on the theory of runs, indicator formalism and extended
normal equations.

Theory of Runs

The results presented here are based on a paper by A. M. Mood published in 1940 [16].
This work summarizes most of the work done previously by other authors, and can be
considered as the basis for the majority of the subsequent statistical studies on runs (see
for example [5, 6, 9, 17, 18, 21]). The author derives the \distribution of runs of given

length both from random arrangements of �xed numbers of elements of two or more kinds,

and from binomial and multinomial populations". He also gives the limiting form of these
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Figure 1: Example of calculation of runs in a drillhole with 22 samples. The solid line
represents the actual grade, the black dots are the sample values. The runs are presented
as thick solid lines under each threshold zi; i = 1; :::; 5.
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distributions as the sample size increases. Those limits distributions are all normal. The
results are based on combinatorial analysis results, so independence between the elements
is assumed at all times. Since those results are to be applied in the indicator framework,
only the results for elements of two kinds are of interest for this research.

Lets �rst consider a sequence of uniform random numbers between � and �. We can
set a threshold t and then rename each number with an a (above), if it is greater than t,
or a b (below), if it is less or equal to t. Since the numbers are uniformly distributed, we
can consider that a's are drawn from a Bernoulli distribution with probability p = ��t

���
. b's

are drawn with probability q = 1 � p. Now that we have a sequence of a's and b's, we can
count the length of strings of a's and b's. This is what we call runs.

For uniform random sequences, the distribution of runs of given lengths is known, so
this property can be used to test pseudo-random number generators [2, 13, 14, 16, 19]. The
special cases (�; �) = (0; 12) or (

1
2 ; 1) originated the so called tests of runs above and below

the mean (or the median).
The following example shows how to calculate the runs for a sequence of uniform random

numbers between 0 and 1. Consider the median as a threshold with the following sequence:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51, ...

This sequence generates the following sequence of a's and b's:

b, a, b, b, a, a, a, b, a, a, ...

The sequence of lengths of runs above/below the median would be:

1, 1, 2, 3, 1, 2,...

The same procedure can be applied for thresholds other than the median. If we consider
that there are n1 a's and n2 b's (and we de�ne n = n1 + n2) then the proportions p = n1

n

and q = n2
n

of values above and below the threshold can be calculated. The total number
of runs above and below t should follow a normal distribution with the following mean and
variance [16]:

E[r] = 2 � n � p � q

�2r = 4 � n � p � q � (1� 3 � p � q)

When the threshold is the median (or the mean) of a uniform distribution then, the param-
eters are simply:

E[r] = n
2 �2r =

n
4

The number of runs above t of length i can be calculated as:

E(r1i) =
(n2 + 1)(2)n

(i)
1

n(i+1)

where the factorial x(a) corresponds to x(a) = x � (x�1) � (x�2) � ::: � (x�a+1). The number
of runs above t of length greater or equal to k, s1i, can also be calculated:

E(s1i) =
(n2 + 1)n

(k)
1

n(k)
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Most of the moments of the distribution of runs for a random uniform case can be predicted.
Analytical or approximate expressions for correlated sequences have to be found, whi (of
particular interest is the multigaussian distribution.

Indicator Formalism

The non-parametric formalism of indicators was introduced in 1983 by A. G. Journel [11].
Many authors have presented this approach in great detail (e.g. see [4, 8]). This method
avoids the need of a multigaussian assumption at the bivariate level and therefore the
problem of maximum entropy implicit in that assumption. Nonetheless, notice that higher
statistics (trivariate and higher level) are subject to the Central Limit Theorem, and there-
fore Gaussianity is implicit. Indicators characterize the random variable di�erently for high
and low values. The Gaussian formalism assumes the behavior is symmetric with respect
to the median.

The basic idea is to use a probability coding which takes into account the rank ordering
of the data. For each threshold zk, the data are coded using the following indicator function:

i(u�; zk) =

(
1; if z(u�) � zk
0; otherwise

k = 1; :::;K

where z(u�) is the value at the data location u�. There are now n �K indicator values with
n data. This can be interpreted as a probability:

i(u�; zk) = Probfz(u�) � zkg = Fu�(zk)

Notice that the constraint intervals and soft data can also be coded as indicators [4, 8]. We
are mainly interested in the coding of hard data at this time.

The distribution of uncertainty of the regionalized variable can be inferred by kriging
the indicator function at every threshold. Each one of the K sets of n indicator data can
be used to estimate the value of the indicator at an unsampled location, i.e. the probability
of having z(u) � zk. The indicators at di�erent thresholds could be used as secondary
variables for cokriging [4, 7, 8], but that is not commonly done because of the additional
CPU and inference requirements.

Indicator simulation uses the conditional cumulative distribution function obtained
through kriging for Monte Carlo simulation. It is important to emphasize that the con-
ditional information considers both actual data and previously simulated values. In this
way, the model covariance between all locations is reproduced.

Generalized Indicator Algorithm

As mentioned before, the kriging algorithm gives the best linear unbiased estimator; however
there are non-linear components that are dropped, which degrades the result due to the
reduction of the information space. A generalization of the indicator algorithm is presented
to clarify where the present implementation of indicator kriging comes from and where it
could be improved.
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Consider N dependent events Aj ; j = 1; :::; N . They can be sequentially simulated using
the following expression, that comes from a repeated application of Bayes postulate:

P (Aj ; j = 1; :::; N) = P (AN jAj ; j = 1; :::; N � 1) � P (AN�1jAj ; j = 1; :::; N � 2)�
P (AN�2jAj ; j = 1; :::; N � 3) � ::: � P (A2jA1) � P (A1)

This relation is general and exact [11]. Two problems arise to implement this technique:

� Inference of the (N�1) conditional probabilities P (AijAj ; j = 1; :::; i�1); i = 2; :::; N ,
and

� The size of the conditioning information increases from n to n+N�1, i.e. the kriging
system or normal equations to be solved becomes very large.

Due to the diÆcult inference of those conditional probabilities, some approximations are
often made to facilitate implementation of sequential indicator simulation.

The conditional probability F (u; zkj(n)) is the conditional expectation of an indicator
random variable I(u; zk) given the (n) data:

F (u; zkj(n)) = P (Z(u) � zj(n)) = EfI(u; zk)j(n)g

PfZ(u) � zk0 jZ(u�) = z�; � 2 (n)g =

EfI(u; zk0)jI(u�; zk) = i(u�; zk); k = 1; :::;K;� 2 (n)g

where zk0 is one of the k thresholds considered. The conditional probability F (u; zkj(n))
should be obtained by cokriging the unknown indicator using the n �K indicators; however,
it is often assumed that the indicators for the same threshold zk0 are more correlated with
the indicator that is being estimated than the indicators for other thresholds, which is
true in most cases since the calculation of cross-correlations is too demanding. Thus the
probability is approximated by:

PfZ(u) � zk0 jZ(u�) = z�; � 2 (n)g =

EfI(u; zk0)jI(u�; zk0) = i(u�; zk0); � 2 (n)g

All cross-correlation between indicators at di�erent thresholds and multiple point indicators
are then ignored. This �rst approximation is done not because the inference of the cross-
correlations is diÆcult, but because, in general, the improvement in the resulting simulation
does not justify the increased work.

The conditional expectation can be written as a function of the conditioning information
in the following manner:

EfI(u; zk0 )jI(u�; zk0) = i(u�; zk0); � 2 (n)g = �fi(u�; zk0); � 2 (n)g

= a0 +
X
�2(n)

a1(�) � i(u�; zk0)

+
X
�2(n)

X
�02(n);�6=�0

a2(�; �
0) � i(u�; zk0) � i(u�0 ; zk0) + :::

+an �
Y

�2(n)

i(u�; zk0)
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The classical application of indicators considers only the use of univariate and bivariate
statistics; the reliable inference and positive de�nite modeling of higher order covariances is
diÆcult. The �rst (n+ 1) terms of the previous expansion are retained. The use of higher
order statistics is possible through the use of extended normal equations [10]. This approach
was originally based on multiple-point statistics inferred from training images. The use of
runs to estimate high order covariances avoids the need for training images by inferring the
multiple-point covariances directly.

Extended Normal Equations

The 2n coeÆcients a0, a1(�), a2(�; �
0), ..., an in the last expression correspond to the

full indicator kriging weights and can be determined by an extended system of 2n normal
equations, which imposes the orthogonality of the error vector to the 2n combination of
data events de�ned by the indicator functions [10, 15]. The applications reviewed are
based on multiple-point statistics extracted from training images. This ensures the positive
de�niteness of the multiple-point covariances. One of the problems that will have to be
solved in this research is the positive de�niteness of the high order statistics based on runs.

Proposed Methodology

A number of steps are required. Exploratory examples will help understand the statistical
basis of runs, as well as the details of the indicator simulation methods currently used. A
multiple-point tool equivalent to the variogram or covariance for two-point statistics must
be proposed that is understandable, easy to calculate and intuitive. This tool must possess
some properties: positive de�niteness must be ensured if we want to apply it in a kriging-
type framework. With that multiple-point measure of correlation, the implementation of
the algorithm to simulate regionalized variables including high order correlation must be
developed. Several approaches are proposed. Practical applications should be presented to
compare the results of the enhanced algorithm to current application. The cases when it is
worth to apply the proposed methodology should be explored.

Exploratory examples

Some exploratory examples must be developed to have a deeper understanding of each topic
discussed in the Literature Review.

� Current application of indicator techniques must be reviewed to explain and under-
stand their limitations and possible areas of improvement.

� Examples of runs and a better understanding of their behavior with correlated se-
quences are required to judge their possible application as well as their limitations.
Calculations of the frequency of runs of di�erent lengths for di�erent thresholds using
sequences of random and correlated values are presented.
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Parametrization or analytical expression of the distribution of runs

An approximate or analytical expression for the frequency of runs of a given length should
be developed. A measure of departure from Gaussianity could be found that may be useful
to quantify the improvement with respect to a multigaussian simulation technique.

A de�nition of a \cumulative run" may be required, since the sole use of runs when the
number of data is limited may not be robust enough for inference. A cumulative run would
consider that a run of length l is also 2 runs of length l � 1, 3 runs of length l � 2, and so
on. In general, a run of length l corresponds also to c cumulative runs of length l � c+ 1,
with c = 1; :::; l, as shown in Figure 2.

The cumulative runs should be robust and a parametrization (or in some cases an ana-
lytical expression) could be used as data reduction, so that with a few statistics (parameters
of the distributions) we can characterize the complete high order correlation behavior of
the variable under study.

Implementation of an enhanced indicator simulation algorithm

An enhanced indicator simulation algorithm that accounts for multiple- point statistics
generated using the runs is required for practical applications. As mentioned before, well
data is an obvious source of data on runs since wells provide strings of equidistant samples.
The extension to three dimensions should be straightforward once the one dimensional high
order correlation is well understood. Several issues must be addressed here:

� Positive de�niteness of the multiple-point statistic used is required if a kriging-like
procedure is applied.

� The simulated values should be drawn via Monte Carlo simulation from a conditional
probability. This probability will have two di�erent components: �rstly, a usual two-
point statistic (variogram or covariance) has to be used to impose the correlation
between the sample data and the location being simulated; secondly, the correlation
between multiple-point events and a single point (the location being simulated) has
to be considered to inject the right connectivity or non linear characteristic to the
simulated model.

� Order relations could be avoided by simulating the thresholds hierarchically. The
lowest threshold would be simulated �rst, starting with a grid �lled with zeros, that
is, all values are initially set to be greater than the lowest threshold. Then, the nodes
less than the highest threshold are simulated. The second highest threshold will have
a restricted �eld; only the values that are less than the highest threshold will be
visited during the simulation. It will continue in this fashion until the last threshold
is simulated.

Exploratory Examples

In this section, the number of runs above and below thresholds are calculated for di�erent
correlated series. The results are compared with the theoretical distribution for uncorre-
lated sequences. Then, the frequencies of lengths of runs above thresholds are plotted in
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… …
1 run of length 6

2 cumulative runs of length 5

3 cumulative runs of length 4

5 cumulative runs of length 2

6 cumulative runs of length 1

Figure 2: Example to illustrate the concept of \cumulative runs". One single run of length
6 corresponds to 2 cumulative runs of length 5, 3 cumulative runs of length 4,..., and 6
cumulative runs of length 1.
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1,000 Sequences of 10,000 Random Numbers - mcorn
Threshold Theoretical Theoretical Observed Observed

Mean Std. Dev. Mean Std. Dev.
0.2 3200 57.69 3199 59.20
0.4 4800 51.85 4800 51.65
0.6 4800 51.85 4799 51.97
0.8 3200 57.69 3200 58.32

Table 1: Theoretical and Observed results - mcorn

a map, along with the curve of average length for a given threshold. Again, di�erent two-
point variogram functions are used in order to see the di�erences with the random case.
Thresholds have been chosen as regularly spaced quantiles.

Finally, maps of di�erences between the observed frequencies of lengths of runs in cor-
related sequences and the expected frequencies for the random case were plotted, showing
again di�erent responses given di�erent two-point variogram functions.

Distribution of Total Number of Runs Above and Below Thresholds

Using the pseudo-random number generator mcorn, 1,000 sequences of 10,000 uniform
pseudo-random numbers were generated. The number of runs above and below 4 thresholds
were counted and compared with the theoretical limit distribution.

Histograms showing the distribution of total number of runs above and below the corre-
sponding thresholds are shown in Figure 3. The theoretical parameters of the distribution
are summarized in Table 1 and compared with the observed ones. Both the mean and the
standard deviation are close to their theoretical values.

Comparison of Di�erent Variogram Functions

Recall that the distribution of runs of elements above and below a threshold (i.e. assumed
independently drawn from a Bernoulli distribution with probabilities p and q = 1 � p,
respectively) are asymptotically normally distributed with the following parameters:

� = 2 � n � p � q

�2 = 4 � n � p � q � (1� 3 � p � q)

Two di�erent random number generators were compared with the expected number of
runs (for uncorrelated values). mcorn and acorni showed a very good reproduction of
the theoretical mean, as presented in Figure 4. The standard deviation is not as smooth
as the mean, but notice the good reproduction at extremes; this is common to all cases
presented. The mean and standard deviation of the total number of runs above and below
each threshold was calculated as an average over 100 sequences of 1000 values each.

Series of correlated data were generated using moving average simulation and simulated
annealing. The �rst example considers a triangular variogram function (this variogram
model is valid in one dimension only):


(h) =

(
h; if h � a

a; if h > a
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Figure 3: Histograms of total number of runs for di�erent thresholds - 1,000 sequences
generated with mcorn.
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Figure 4: Mean and standard deviation of total number of runs above and below thresholds
(quantiles) for mcorn and acorni, compared with the theoretical expected values.
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Figure 5: Mean and standard deviation of total number of runs above and below thresh-
olds (quantiles) for sequences with a triangular variogram function generated using moving
average, compared with the theoretical expected values for uncorrelated series.
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Figure 6: Mean and standard deviation of total number of runs above and below thresholds
(quantiles) for sequences with a triangular variogram function generated using simulated
annealing, compared with the theoretical expected values for uncorrelated series.
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A variety of ranges were evaluated using sequences generated by moving average (Figure
5). The curves of mean and standard deviation of the total number of runs depart pre-
dictably from the uncorrelated case. When correlation increases, runs tend to be longer,
so there are less than in the random case. For some ranges (5, 10, 15, 20, and 25 units)
simulated annealing was used to generate correlated series. Figure 6 gives the result for a
triangular variogram function. Some di�erent variogram models were explored with similar
results: in all the cases, the mean number of runs decreases when the sequence has a greater
correlation range.

Three di�erent seed numbers were used with a �xed range (equal to 5 units). The
results showed that there is no signi�cant di�erences between the sequences generated with
di�erent seed numbers. Notice that for every sequence in those examples a di�erent seed
number was used.

In general, the curve of mean total number of runs is quite smooth and well behaved,
however, the standard deviation is not as stable as the mean. Di�erences between mov-
ing average and simulated annealing is likely due to the random function implicit in each
method. In the �rst case, gaussianity is derived from the averages and the Central Limit
Theorem. In the case of simulated annealing, the random function is unknown. In order
to visualize the di�erences between di�erent variogram models and between the methods
used to generate the sequences, Figure 7 is presented comparing the result for a correlation
range of 5 units. The theoretical result for uncorrelated sequences is plotted as a reference.
The same comparison was done for other ranges. An interesting and consistent di�erence
between the results given by moving average and simulated annealing is demonstrated here.
In all the cases the moving average method (Gaussian) generates standard deviations closer
to the random case than the simulated annealing technique. This situation can be explained
by the maximum entropy property of the Gaussian model. Di�erences between the trian-
gular, spherical and exponential variogram are due to the di�erent correlation for a given
distance, as presented in Figure 8.

Maps of Frequencies of Lengths Above each Threshold

In order to obtain a plot easily understandable and that clearly re
ects changes in the
high order behavior of the variable, a map of frequencies of lengths of runs above each
threshold along with a curve showing the average length of runs above each threshold has
been implemented.

Using sequences with ranges of 2, 5, 10, 15, 20, and 25 units, the number of runs above
each threshold were calculated. The decision of using only the runs above (instead of runs
above and below) was taken to avoid hiding di�erences in the continuity of high and low
values.

Figure 9 shows the maps for random sequences generated with acorni and mcorn.
Figure 10 shows the maps for sequences generated using moving average with a triangular
variogram model. In Figure 11 sequences with the same variogram model were generated
using simulated annealing.

In all the cases, when the range increases, the cloud of non zero frequencies grows to the
right and up, because when the range of correlation is greater, long runs are more likely to
be found.
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Figure 7: Mean and standard deviation of total number of runs above and below thresholds
(quantiles) for sequences with a range of 5 and di�erent variogram function (sasim and
movavg have a triangular variogram).
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Figure 11: Map of frequency of lengths of runs above quantiles for sequences generated by
simulated annealing (triangular variogram model). The solid line shows the average length
as a function of the quantile.
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Figure 12: Map of di�erences of frequencies of lengths of runs above quantiles for sequences
generated with acorni and mcorn.

When di�erent models of correlation are used, slight di�erences in the cloud of frequen-
cies can be seen. The curve of average lengths also changes when di�erent variogram models
are used.

The next section presents another way to look at high order correlation. Subtracting
the expected frequencies of lengths of runs for the random case to the observed frequencies,
maps of di�erences were generated.

Maps of Di�erences in Frequencies of Lengths of Runs

The expected number of runs above a threshold of a given length i for a random sequence,
r1i, can be expressed as [16]:

E(r1i) =
(n2 + 1)(2) � n

(i)
1

n(i+1)

where n1 = n � p1, n2 = n � p2, and x(a) = x � (x� 1) � : : : � (x� a+ 1)
The di�erence between frequencies observed from correlated sequences and the expected

for the random case were calculated. Figure 12 shows the maps of di�erences using
the pseudo-random sequences generated by acorni and mcorn. This just shows that the
pseudo-random number generators do not depart signi�cantly from the theoretical values.
Figure 13 shows the maps of di�erences for sequences generated using moving average
with a triangular variogram model. The di�erences for the same variogram model, but for
sequences generated with simulated annealing are presented in Figure 14. Again, di�erent
correlation functions were used with similar results and are not shown in this paper. A
characteristic zone where the observed frequencies are lower than the expected ones is
repeatedly seen for all ranges and variogram models; there are fewer short runs. Then,
there is a zone where the observed frequencies are higher than the expected for the random
case: there are more longer runs. In other words, when correlated sequences are used, there
are less short runs and more long ones than in the random case.
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Figure 13: Map of di�erences of frequencies of lengths of runs above quantiles for sequences
generated by moving average (triangular variogram model).
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Figure 14: Map of di�erences of frequencies of lengths of runs above quantiles for sequences
generated by simulated annealing (triangular variogram model).
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Further Work

Additional bibliographic research will be done related to methods to quantify spatial vari-
ability, the indicator approach, and multiple-point statistics. The extended kriging equa-
tions and the deduction of the best non linear unbiased estimator have to be presented.
An analytical expression for the expected distribution when the data are correlated must
be deduced if possible. A parametrization of the distributions of lengths of runs could be
performed.

A hierarchical sequential indicator simulation program is under development that has
the promise to integrate runs data in addition to classical variogram information. Early
results will be presented at the CCG meeting in March 2001.
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