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The spatial continuity of the variables we model in geostatistics is dependent on the mod-

elling and reproduction of the variogram. The variogram de�nes the relationship between

variability (or geologic distance) and the lag distance (or Euclidian distance).
As the magnitude of the lag separation vector increases, we typically expect the variogram

to also increase. This is generally observed. The majority of variogram model structures

are monotonic increasing. Nevertheless, non-monotonic structures may have a physical

interpretation, provide valuable information and may be modeled with positive de�nitive

models for more accurate geologic models. Non- monotonic variograms that show cyclic

patterns are called "hole e�ect" variograms.

The theory and application of hole e�ect structures is explored in this report. E�orts

are made to illustrate and provide examples of the hole e�ect structure. The generation

of simulated realizations in presence of hole e�ect structures is investigated, with special

attention paid to the reproduction of the histogram and variogram and their ergodic 
uctu-

ations. Hole e�ect variograms are commonly encountered and may be used in geostatistical
simulation. The variogram structures are reproduced together with the histogram and the

local conditioning data.
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The Origin

Experimental variograms often continuously increase with lag distance; however, the vari-
ogram is not restricted to such monotonic form and decreasing segments or cyclicity can be
observed. Figure!1 shows two examples to illustrate cyclic variograms. The �rst data set is
a sequence of regular lenses, while the second data set is a set of regular horizontal beds.
These con�gurations result in cyclic features in the experimental variograms (see Figure 1).

Non-monotonic variogram structures are identi�ed as \hole e�ect" structures (Journel
and Huijbregts, 1978). These structures may be bounded by a sill or occur without a sill,
be dampened or undampened and be isotropic or anisotropic (see Figure 2). Although hole
e�ect structures are often ignored, their presence provides valuable information concerning
spatial variability. Hole e�ect structures most often indicate a form of cyclicity or periodic-
ity, which is a common and legitimate spatial characteristic in geology. Ignoring these non-
monotonic structures may result in unrealistic heterogeneity models that do not reproduce
the observed patterns of varibility.
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Figure 1: Two example data sets with non-monotonic continuity structures
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Figure 2: Hole e�ect con�gurations: The observed cyclicity may be dampened. In this case
the amplitude is reduced with each subsequent wavelength. The variogram may be bounded
by a sill occur without a sill.
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Interpretations

The form and character of hole e�ect structures is indicative of the spatial setting. Af-
ter observing many spatial con�gurations and their respective variograms, the following
generalizations are reached (see Appendix A for the data sets and variograms):

Regular clustered lenses: (1) the lag distance at the �rst peak is an indication of the
average extent of the lenses in the speci�c lag direction, (2) the lag distance at the
�rst trough is the sum of the average extent of the lenses and the average distance
between lenses in the speci�c lag direction, and (3) the distance from the peak to the
trough is the average lens spacing.

Regular strata: (1) the lag distance of the �rst peak is an indication of the average thick-
ness of the bedding, and (2) the lag distance of the �rst trough is twice the \bed"
thickness.

Nonclustered (randomly located) lenses: (1) the lag distance at the �rst peak (or the
sill if no peak is visible)is an indication of the average extent of the lenses in that
direction, and (2) if the data set is large relative to the lens size, there is no cyclicity
observed on the variogram.

Clustered irregular lenses: similar to clustered regular lenses but the variation in lens
size and lens spacing results in the peaks being attenuated and the cyclicity being
dampened.

Irregular strata: (1) cyclicity is observed if there is a continuously repeating series and
the peaks are attenuated over the distribution of bedding widths in each unit sequence,
and (2) in the absence of a perfectly repeating series, dampening occurs.

These observations are illustrated in Figures 3 and 4 and in the examples provided in
Appendix A.

In the presence of cyclicity the variogram exceeds the sill. The sill represents the global
variance. The link between the variogram and covariance relationship helps our interpreta-
tion of the variogram above the sill.


(h) = C(0)� C(h)
= C(0) � [1� �(h)]

where 
(h) is greater than C(0) or the sill for any rho(h) 2 [�1; 0). When the variogram
exceeds the sill the correlation is negative between locations separated by lag vector h.

Analytical Hole E�ect Variogram Models

To build accurate geostatistical models it is necessary that the signi�cant observed hole
e�ect structures be reproduced. This requires the construction of a legitimate variogram
model that re
ects the observed hole e�ect.


(h) = cn � [1:0 � cos( h
an
�)]
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Figure 3: Hole e�ect interpretations in regular clustered lenses and regular strata based on
indicator data
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The parameters include the variance contribution, cn, and the range, an, which is the
distance to the �rst peak. A dampened model would also require a dampening parameter,
dn. This is generally set as the range at which the relative amplitude is equal to a speci�c
fraction, x, of the original amplitude, x ��. It should be noted that currently the dampened
model is present in the GSLIB code, but it is \commented out". For an illustration of these
parameters, see Figure 5. The following are considerations with respect to derivation of a
hole e�ect variogram model.

Positive De�niteness

The covariance counterpart to the variogram must be positive de�nite. Positive de�nite
models ensure that variance is non-negative, and that the variogram is a legitimate measure
of geologic distance. There are a variety of positive de�nite models available to model the
hole e�ect. These models are positive de�nite in a speci�c spatial dimension.

The sine and cosine functions are natural choices for nested structures, which express
cyclicity. In general the sine model C(h) = sin(h) is positive de�nite in 3d, while the cosine
model C(h) = cos(h) is only positive de�nite in 1d space. The sine model may be used
in one or two dimensional space since positive de�niteness in p-d space guarantees positive
de�niteness in n space (where p � n).

The cosine model must be restricted to one dimension. This can be accomplished by
setting the range parameters (ax, ay, az) to very large values in all directions except for
the direction of the hole e�ect structure (Deutsch and Journel, 1998). As shown below, by
setting the range parameter ax and ay to very large numbers the nested structure, which is
a function of hx, hy and hz is reduced to a function of hz:

h(x;y;z) =

vuut�hx
ax

�2

+

 
hy

ay

!2

+

�
hz

az

�2

as ax; ay
1

�! h(x;y;z) =

s�
hz

az

�2

=
hz

az
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The Variogram Model Must Honor the Correct Sill

Stationary simulation algorithms rely on variograms which are modeled such that the sum
of the contributions of the nested structures is equal to global variance. Most simulation
algorithms are for stationary phenomena.

Isotropic and Anisotropic Models

Hole e�ect structures can occur with isotropic and anisotropic phenomenon. The isotropic
model is limited in its application. It has been stated that the maximum relative amplitude
in an isotropic hole e�ect model is 0.212 (Journel and Huijbregts, 1978); however, this if
for the 3-D model, which is rarely used.

Without Dampening and Dampened Models

The hole e�ect is generally dampened. This is caused by irregularities in feature intervals
and by the superposition of other continuity structures. Dampening is achieved by mul-
tiplying the covariance function by an exponential covaraince, that acts as a dampening
function.


(h) = c � [1:0 � exp(
�3h

d
) � cos(h

a
�)]

In variography, we take advantage of the fact that the positive sum of nested positive de�nite
models results in a positive de�nite composite model. The fact that the product of positive
de�nite covaraince models is positive de�nite is less utilized.

The GSLIB Model

The previously mentioned undampened cosine model is currently utilized in GSLIB. This
model is supported as nested structure number 5 in all the component programs. A complete
illustration of its behavior in variogram and covariance space is shown in Figure 6. The
GLSIB hole e�ect is modeled with the previously mentioned parameters.


(h) = cn � [1:0 � cos( h
an
�)]

The Dampened GSLIB Model

The \commented out" dampened GSLIB hole e�ect model takes the form of the previously
mentioned exponential and cosine combination. The additional parameter, d, is the lag
distance at which 95% of the hole e�ect oscillation is dampened. A complete illustration of
its behavior in variogram and covariance space is shown in Figure 7.


(h) = c � [1:0 � exp(
�3h

d
) � cos(h

a
�)]
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Figure 6: The GSLIB hole e�ect model

9



Dampened GSLIB Model [Spherical]

Gamma (h) [C1 = 0.7]

0

0.5

1

1.5

0 5 10 15

Lag (h)

G
a
m

m
a
(h

)

Dampened GSLIB Model [Spherical]

C(h) [C1=0.7]

-0.5

0

0.5

1

0 5 10 15

Lag (h)

C
(h

)

GSLIB Model [1 - e^(-3h/d)*cos (h/a*pi)]

Gamma (h) [Relative Amplitude = 0.3]

0

0.5

1

1.5

0 5 10 15

Lag (h)

G
a

m
m

a
(h

)

GSLIB Model [Resultant]

Gamma (h)

0

0.5

1

1.5

0 5 10 15

Lag (h)

G
a

m
m

a
(h

)

GSLIB Model [Resultant]

C (h)

-0.5

0

0.5

1

0 5 10 15

Lag (h)

C
(h

)

GSLIB Model [e^(-3h/d)*cos (h/a*pi)]

C(h) [Relative Amplitude = 0.3]

-0.5

0

0.5

1

0 5 10 15

Lag (h)

C
(h

)

Variogram Space Covariance Space

� �
�
�
�

�

	
	



�
�


��

�
���



��

�
���

22

1
46

7.0)(
hzhx

sphh� � �
��

�
�
�

��

�
�
�

�
�
�

�

	
	



�
�


��

�
���



��

�
����

22

1
46

17.0)(
hzhx

sphhC

� �
��

�
�
�

��

�
�
�

�
�
�
�

�

	
	



�
�


��

�
���



��

�
�

�
����

�


��

�
� ��

��
223

2
4

cos13.0)(
hzhx

eh d

h

� �
��

�
�
�

��

�
�
�

�
�
�
�

�

	
	



�
�


��

�
���



��

�
�

�
���

�


��

�
� ��

�
223

2
4

cos3.0)(
hzhx

ehC d

h

� � � �
��

�
�
�

��

�
�
�

�
�
�
�

�

	
	



�
�


��

�
���



��

�
�

�
���

��

�
�
�

��

�
�
�

�
�
�

�

	
	



�
�


��

�
���



��

�
����

�


��

�
� ��

�
22322

4
cos3.0

46
17.0)(

hzhx
e

hzhx
sphhC d

h

r� � � �
�
�

�

�

	
	




�
�

�
�
�

�

	
	



�
�


��

�
���



��

�
�

�
����

�
�
�

�

	
	



�
�


��

�
���



��

�
���

�


��

�
� ��

��
22322

4
cos13.0

46
7.0)(

hzhx
e

hzhx
sphh d

h

r

The Dampenend GSLIB Hole Effect Model

Figure 7: The dampened GSLIB hole e�ect model
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Figure 8: The conventional GSLIB hole e�ect model at angles 0; : : : ; 90 degrees

The Limitations of Hole E�ect Modelling

The variogram modeling, kriging and simulation components of GSLIB only recognize the
undampened cosine hole e�ect model described above. This model is displayed in Figure 8
with angles 0; 10; : : : 90 plotted (although modi�cation of the variogram models is possible
by making straightforward changes to the FORTRAN code). The current GSLIB model
has the following limitations:

� The hole e�ect nested structure may only exist in one direction. The nested structure
is limited to 1-D space. This causes the variogram to be dependent on only one
component of the 3-D lag vector, h. This limitation is not signi�cant, since most
empirical hole e�ect structures are only observed in one direction.

� The absence of dampening is a signi�cant limitation. Dampening, as mentioned, is
almost always observed empirically due to the super- imposition of multiple continu-
ity structures. Dampening is easily added by using the exponential structure as a
multiplicative structure.

� The hole e�ect nested structure forces a zonal anisotropy in all other principle direc-
tions equal to the contribution of the hole e�ect. This may be a signi�cant limitation,
since empirical results are not limited to this very speci�c hole e�ect/zonal anisotropy
con�guration. Any attempt to work around this limitation by adding an additional
structure, which is not present in the hole e�ect direction, leads to artifacts in the o�
diagonal directions. This is developed below.
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Figure 9: The GSLIB hole e�ect models with and without zonal anisotropy

The Inferred Continuity Structure in All Directions

A variogram model is required for all possible lag vectors, h. The GSLIB hole e�ect model
with and without the previously mentioned minimum zonal anisotropy are displayed in
Figure 9 with angles, � = 0; 10; : : : 90 plotted. Where the variogram is modeled as:

0.2 Nugget + 0.6 Isotropic Spherical (Range = 10) + 0.2 Hole E�ect (Range = 30)

For the GSLIB model without zonal anisotropy the addition of a structure, which acts in
all directions except the hole e�ect direction is required. Some observations on the standard
GSLIB model (1) the wavelength of the hole e�ect increases as the lag direction moves from
parallel to perpendicular to the hole e�ect structure. The wavelength is scaled by a factor
of 1

cos(�) , and (2) the amplitude of the hole e�ect remains constant until the lag direction
becomes perpendicular to the hole e�ect structure.

In the GSLIB model without zonal anisotropy the model amplitude increases as � in-
creases. This is caused by the additional contribution from the extra structure required to
remove the zonal anisotropy.

A Synthetic Example

A comparison of the properties of the GSLIB hole e�ect variogram model to a ideal experi-
mental hole e�ect variograms was conducted. A 132 x 132 grid and was constructed with a
repeating string of 22 numbers. The numbers are normally distributed and start at -1.5 and
reach 1.5, and then back to -1.5. This resulted in 6 repeats of the string in each row and
a perfect hole e�ect. The extreme values were scaled to ensure the variance of the whole
data set is equal to one (see Figure 10).

The GSLIB program, (GAMV), was used to calculate the variograms at the angles,
� = 0; 10; : : : ; 90. The characteristics seen in the GSLIB hole e�ect model were reproduced
with respect to constant amplitude and the wavelength scaled by 1

cos(�) .
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Figure 10: The synthetic data set and the resulting experimental variograms

It should be noted that the experimental variograms were calculated with a bandwidth
less than the data spacing. This prevented the averaging of pairs that are not precisely along
the lag vector. If the bandwidth is not restricted, the variograms in directions 10; : : : ; 80
degrees from north express a reduced amplitude due to the impact of these additional o�-lag
pairs.

The hole e�ect model as implemented in GSLIB corresponds to a physically-plausible
case. This is where the zonal anisotropy is equal to the hole e�ect contribution.

Kriging and Hole E�ect Structures

Kriging is a best linear unbiased estimator. The resulting optimized point-wise estimates
minimize estimation variance. Taken globally, kriged maps do not reproduce the one or
two point statistics. The general form of the hole e�ect is reproduced in kriging although
the variogram is distorted by the smoothing e�ect of kriging. These distortions include an
increase in short scale continuity and dampening in the empiracal variograms.

Strong hole e�ect / zonal anisotropy continuity structures contradict the assumption
of global stationarity inherent to the simple kriging (SK) algorithm. These structures are
much more suited to the weaker dependence of local stationarity implicit to ordinary kriging
(OK). Experimentally, it was found that these hole e�ect structures were better reproduced
with the OK algorithm in estimation and simulation. For this reason all subsequent work
utilized the OK algorithm. We note that this will cause some variance in
ation in simulation
due to the higher estimation variance of OK versus SK.
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Simulation and Hole E�ect Structures

Unlike kriging, simulation correctly reproduces the one and two point statistics in expected
value. The reproduction of these statistics in the presence of a hole e�ect was investigated.
Three examples of hole e�ect models and the resulting empirical variograms are shown in
Figure 11.

The global mean and variance, in the presence of the hole e�ect, are reproduced in
expected value.

Experimental variograms were calculated from three simulations and were compared
with the original model variogram (refer to Figure 11). In expected terms the general form
of the hole e�ect is reproduced. As the strength of the hole e�ect increases, so do the
ergodic 
uctuations in the experimental variogram.

The reproduction of the variogram is also a�ected by the search parameters. It is
essential that a suÆcient range and number of original data and previously simulated nodes
are utilized to ensure that the auto-correlation between the simulated nodes reproduces the
hole e�ect. Too small a search radius will \truncate" model structures in the experimental
variograms.

The Sector Search

There are diÆculties in the reproducing the variogram in the presence of hole e�ect. These
diÆculties result from estimates being made with too few data a range of covariances.

The current search methods focus on �nding nearby conditioning data (original data
and previously simulated nodes) with a selection criteria based on maximizing the level
of autocorrelation between the conditioning data and the estimate location. This has the
advantage of ensuring the minimal local uncertainty based on the available conditioning
data and the variogram.

An alternative search method called a sector search routine has been proposed. In this
context, sectors refer to the typical variogram search template. This technique would set a
limit on the number of data sampled from each sector. This would result in the pooled data
for simulating a speci�c location being representative of a variety of ranges and directions.

A sector search routine would not focus solely on minimizing the local uncertainty,
but would focus on building a sample sets of conditioning data, which is representative
of the population of autocorrelation relationships. This may result in an increase in local
uncertainty, but will also result in better variogram reproduction.

Conclusions

The hole e�ect can be modeled and reproduced in simulation. In general, this is important
when the variance contribution of the hole e�ect is more than 20%.

It is essential to validate that the one and two point statistics are adequately reproduced
in expected terms. This may require some iteration of the search parameters.
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Figure 11: Three example variogram models, simulated variogram results, and one realiza-
tion plot
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