
Optimal Determination of Locally Variable Herbicde
Application Rates in Presence of Uncertainty

T. Faechner
Alberta Agriculture (ty.faechner@gov.ab.ca)

K. Norrena
University of Alberta (knorrena@ualberta.ca)

G. Thomas
Agriculture and Agri-Food (thomasag@em.agr.ca)

C. V. Deutsch1

University of Alberta (cdeutsch@civil.ualberta.ca)

Weed competition can be a signi�cant impediment to crop yield and pro�t. Herbicide is applied

to reduce weed populations, minimize crop loss, and maximize pro�t. Complete and deterministic

knowledge of the weed distribution would allow the farm manager to calculate the \correct" appli-

cation rate. This correct rate would be locally variable, that is, more herbicide would be applied in

areas of high weed density and a reduced amount would be used where there are few weeds. This

locally varying treatment is an environmentally and economically sound approach to weed control.

The major problem facing farm managers is the unavoidable uncertainty in the spatial distribution

of weeds in any particular �eld. Deciding on the optimal locally-varying rate of application in this

case is more problematic. We propose a methodology for establishing optimal herbicide application

rates using geostatistical models of uncertainty in weed density combined with principles from decision

making.

A case study with data from a �eld near Saskatoon, Saskatchewan, Canada illustrates this method-

ology. Weed control is achieved with a signi�cant reduction in herbicide. Herbicide requirements may

not always go down; however, we can be sure that the herbicide is being applied at the right locations

rather than uniformly over the entire �eld.

Introduction

If left uncontrolled, weeds reduce crop yield and signi�cantly a�ect pro�ts. Weed control is expensive
and also a�ects pro�tability [16]. Herbicides are applied to more than 60% of the cropped acres
in western Canada representing about 30% of the total cost of crop production. In addition to
a�ecting pro�tability, Herbicides have a signi�cant e�ect on the environment. Optimizing herbicide
application rates would reduce environmental impact of unneeded herbicide while maximizing crop
yield and pro�t.

Intense competition in the farming industry has sparked interest in precision farming techniques
to manage costs and increase pro�ts. Advances in technology such as global positioning systems have
allowed the agricultural industry an opportunity to implement site speci�c herbicide application on
farm equipment. Consequently, technology is available to assist farm managers in managing the
spatial variability of weeds. Quantifying risk associated with weed distributions would provide an
opportunity to implement locally variable optimal herbicide rates.

Therefore, the objective of this study is to propose a methodology for deriving \locally varying
herbicide application rates" (LVHAR).
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Figure 1: A conceptual �gure of increasing weed density to decreasing crop yield.
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Figure 2: A conceptual map of herbicide application rate compared to % weed control.

Problem Setting

Weeds are a problem because they compete with crops for light, nutrients, and moisture [4]. Conse-
quently, crop growth is a�ected and lower yields are realized. The crop loss is proportional to weed
density [1], see Figure 1.

Weeds are rarely homogenous in their distribution. The spatial distribution of weeds in �elds
has been studied and found to be \patchy" [2, 3, 6, 12, 13]. It makes good sense to consider locally-
variable herbicide rates that target these patches to minimize o�-target application and reduce the
total amount of herbicide applied.

Herbicides have long been used to optimize crop yield and mitigate economic loss [15]. Herbicides
improve crop yield and have positive economic results. Traditionally, farm managers apply a uniform
herbicide application rate. There are a number of reasons for this traditional approach (1) spraying
is done early in the morning or late at night when the wind has died down, (2) the tractor speed is
quite fast making it diÆcult to visually identify weed populations and dynamically adjust the rate,
and (3) there has been no procedure to balance the risks associated with under- and over- spraying.

When herbicides are applied to crops at recommended label rates, they are legally required to
control 85% of a weed population in Canada. Rates below the recommended label rate can decrease
economic costs but may result in undesirable consequences such as poor herbicide performance and
ine�ective weed control [17, 9, 6]. Figure 2 illustrates the idea that below 100% of the recommended
application rate, the expected eÆcacy decreases. Of course, not all locations in a �eld require full
weed control, motivating the need for LVHAR.

LVHAR may be included in an integrated weed management program due to environmental
considerations [14]. We all recognize that unnecessary loading of herbicide in the environment could
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have severe long-term consequences including contamination of water supplies.
A key to LVHAR will be to identify the locations of high and low weed density. Weed sampling

can be conducted to characterize the spatial and temporal variability. Our idea is to perform \some"
sampling to determine the weed density and to supplement this limited sampling with geostatistical
models of uncertainty. It would not be practical to sample everywhere in the �eld - it would be too
laborious and expensive. The subject of optimal sampling density and procedures is important and
not addressed in this paper.

There is a single true distribution of weeds for each �eld which is a result of complex environmen-
tal and biological processes. Unfortunately, it impossible to establish that unique true distribution
without exhaustive sampling. Therefore, numerical models which describe some of the signi�cant
physical and biological features for a weed are created to address the limitations of sparse sampling.

Uncertainty exists because of our lack of knowledge about the true distribution of weeds; major
decisions have to be made in the presence of this uncertainty about the weed distribution's extent,
its density and what herbicide to apply. The goal of many farm managers is to make decisions in
such a fashion that strikes a optimal balance between input costs and expected pro�t.

LVHAR, given uncertainty, can be de�ned as those herbicide rates that maximize expected pro�t
per hectare. To determine LVHAR, requires a numerical model representing a weed distribution. A
quantitative measure of pro�t depends on the revenue from the crop minus the costs of herbicide
and its application. Thus, LVHAR are those rates that minimize crop yield loss while at the same
time maximizing weed control for maximize pro�t at a particular location.

Methodology

The subject area of geostatistics provides the tools to numerically model phenomena correlated
in space and time [5, 7, 10, 11]. Spatial correlations of weed distributions can be quanti�ed and
inferences drawn about weeds at other unsampled locations. Geostatistical tools can be used to
model weed distributions, integrate di�erent types of weed data measured at di�erent scales, and
assess and quantify uncertainty in a spatial context.

A case study using weed density data from a 35 ha �eld near Saskatoon, Saskatchewan, Canada
was analyzed using geostatistical tools. All weed species were identi�ed and counted at the 3-4 leaf
stage in 1/4 m�2 quadrats 50 m apart in a grid for 1995. Wheat (Triticum aestivum) was grown.
All weeds were counted and identi�ed in 1996 on two 1 m grids which was used to account for
the small scale variation in the 1995 data set. For this case study, weed species were grouped into
broadleaf and grass categories since correlations between di�erent species of weeds was almost zero
(�=0.02). Finally, declustering revealed no appreciable di�erences and this data set was assumed to
be representative of the entire study area.

The location and density of broadleaf weeds for 1995 is described in Figure 3 and illustrates
signi�cant variability throughout the �eld. Weed density is indicated by the same graph used in
Figure 1 for all other graphs. A histogram of weed density for the 137 sample locations indicated a
range of 1 to 408 broadleaf weeds per m�2 with a mean of 70.8, in Figure 4. The broadleaf weed
distribution was highly skewed due to the absence or low frequency of weeds at 30% of the sample
locations.

Modeling spatial distribution of weeds requires a quantitative measure of spatial variability; the
most commonly used tool is the semivariogram [5, 7, 10, 11]. The spatial variability of weed density
from the example data is illustrated in the variogram of Figure 5.

Broadleaf weeds are modelled as a continuous variable throughout the �eld. The short scale
variability was quanti�ed with a small grid of samples collected in 1996. This shows a low nugget
e�ect of 0.05, that is, the weed density is very continuous over short scales. The direction of maximum
continuity for 1995 is in the N90oE direction. A water way that transverses the southeast corner of
the �eld may have in
uenced broadleaf weed distribution in 1995 accounting for the anisotropy.
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Figure 3: A map showing the total number of weeds at each of 137 sample locations.
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Figure 4: A histogram for weed density from a �eld near Saskatoon, Saskatchewan, Canada.
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Figure 5: A semivariogram for weed density from a �eld near Saskatoon, Saskatchewan, Canada.
The dashed line in the �gure represents the experimental variogram while the solid lines represent
the variogram model.
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Figure 6: A kriged map of weed density for the �eld of interest near Saskatoon, Saskatchewan,
Canada. The weed density is described in Figure 1.

A variogram provides critical input for modeling spatial uncertainty. This model of spatial
correlation in Figure 5 was used for modeling at a 1 m�2 scale. The results were scaled up to a 10
m�2 block size for decision-making.

The true distribution of a weed species is unavailable given sparse sampling. Various geostatistical
procedures have been devised to estimate the weed density at unsampled locations [5, 7, 10, 11].
Kriging was used to model weed density and this output served as a �rst input for a LVHAR program.
The output of LVHAR is represented in Figure 6. Note that kriging is an interpolation technique
that is not used for risk analysis and optimal decision making due to its smoothing feature [8, 11].
For this reason, the geostatistical method of simulation is used.

Simulation creates maps that honor the variogram and histogram [5, 7, 11]. Two realizations in
Figure 7 di�er from each other at any given location that was not sampled, but the overall histogram
and variogram is the same. Thus, a simulated weed density map o�ers the advantage of characterizing
variability at unsampled locations. One hundred realizations of the weed density were created and
used for decision making. The �rst three realizations of 101 are shown in Figure 7. Small-scale
variability of those realizations may conceal large-scale trends but the objective of simulation is to
accurately re
ect our state of incomplete knowledge in models for LVHAR. These models are used
to perform risk-quanti�ed decision-making.

An average of 101 realizations is shown in Figure 7, which is very similar to the kriged map in
Figure 6.

Figure 8 illustrates a probability distribution of the weed density at one location on the map.
Our determination of the LVHAR considers the uncertainty at each location. Although there is
uncertainty at each location we must arrive at a single optimal application rate that can be mapped
and applied in practice.

Herbicide application rate is determined by the weed density. The purple line in Figure 9 indicates
the \cost" of herbicide application. The cost of herbicide product and application charge is described
by the green line in Figure 9. Minimizing the crop yield loss in combination with the lowest herbicide
rate to control a particular weed density will result in a minimal loss function. The minimum of this
loss function becomes the optimal herbicide rate for that location in a �eld.

The \cost of yield reduction" function illustrated by the purple line in Figure 9 is displayed in
Figure 10. In Figure 10, we see that larger weed density requires more herbicide that also costs
more. This indicates that for a given weed density, herbicide rates can be optimized on a local basis.

The recommended herbicide rate is the optimal rate averaged over the uncertainty at a location
in the �eld. There are several application rates illustrated in the diagram above the histogram in
Figure 11. All these application rates are averaged from a distribution which becomes the mean of
the LVHAR. This is represented by the black line in the histogram.

The algorithm is sensitive to the mathematical models used to quantify crop yield loss as a
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Figure 7: A simulated map of weed density for the �eld of interest near Saskatoon, Saskatchewan,
Canada. The �rst three simulations are shown as well as an average of 101 simulations. The density
is described in Figure 1.

Weed Density

Figure 8: A map of weed density that can be used to create a probability distribution in a location
in the �eld of interest.
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Figure 9: Application rate of herbicide compared to the crop yield loss. Also included is the cost of
yield loss and cost of herbicide.
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Figure 10: Varying herbicide application rates in response to di�erent weed densities.
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Figure 11: A map showing that as weed density varies, herbicide application rate will vary. The
solid black line in the histogram represents a mean of the LVHAR.

function of weed density. The following model satisfactorily characterizes crop yield loss as a function
of herbicide application rate:

W (l) = 1� exp(
3h

a
)

Y (l) = ywf (1 + adb)

where ywf is weed free crop yield, d is weed density, a is recommended application rate, h is maximum
application rate and b is an arbitrary parameter, Yl is % yield loss, Wl is weed loss and l is the
number of realizations. Other models were evaluated and found to be less robust in describing this
relationship especially at high weed densities.

Thus, LVHAR are derived by simulating weed density, combining crop yield loss for those weed
densities with herbicide costs to arrive at optimal application rates. Maps of weed density based
on their associated uncertainty and the resulting optimal herbicide rates can be used to make risk-
quali�ed decisions about what areas to spray in a �eld. This is illustrated in Figure 12 where the
recommended rate of herbicide is represented by 100%. Variations in herbicide rate are described
by a gray-scale where white represents no herbicide or a low rate while black indicates the highest
rate of herbicide.

To determine LVHAR, assumptions are made for average crop yield, selling price and herbicide
costs for this study. Crop yield was 3.0 t/ha selling for $90/t which would gross $300/ha. Herbicide
costs are assumed to be $50/ha which includes herbicide product at $40/ha and $10/ha for applica-
tion cost. Maximum crop yield loss is assumed to be 40% while recommended herbicide application
rate is 100% and maximum application rate is 200%.
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Figure 12: A map showing LVHAR with 100% as the recommended rate for this weed.

Results

To quantify the economics of optimal herbicide rates requires a suite of weed density realizations.
These realizations can be used in a mathematical function which predicts application rate based on
expected yield loss and herbicide costs at di�erent locations. The mathematical function that will
minimize the combined cost (C) of herbicide and crop loss for di�erent rates at all locations u over
all realizations is:

Ci(a = a0) =
1

L

LX

l=1

C(a0; w(l); wyl; yl)

where a0 is a recommended herbicide application rate, w(l) is the weed density for realization l, wyl

is the weed density causing yield loss, and yl is crop yield loss.

C(a0; w(l); wyl) = %Y L �EfY g �EfRg

with %Y L being the % yield loss, EfY g is the expected crop yield which is a constant, and EfRg
is the expected gross crop revenue of the crop which is a constant.

Assessing risk combines uncertainty and cost by considering i costs at location u for (ai) herbicide
application rates of w weed densities over many realizations, C(u; ai; w). To determine the optimal
herbicide rate for each realization at location u, select the average rate of all L herbicide application
rates:

aave(u) = fEfai j minfC(ai; w
(l)(u)ggg

Expected weed density from simulated distributions averaged 75.9 weeds/m�2 with a range of 3 to
356 weeds/m�2. This histogram was more symmetrical compared to the original data in Figure 4.

A herbicide application map was created in Figure 13 using the expected weed density for the
�eld of interest. Approximately 1% of the area is expected to be sprayed at above the recommended
label rate of 100% while 48% of the area will receive 50% or less of the recommended herbicide rate.

The histogram in Figure 14 for this application map indicates a mean application rate of 50.4%
with a range of 0 to 116%. Where weed density was high, higher rates of herbicide are applied
compared to low weed density areas.

The cost of herbicide for this optimal application rate is $793 for the �eld compared to $1575
when the recommended rate is uniformly applied. Thus, herbicide treatment maps with a continuum
of herbicide rates are optimized for cost and weed density resulting in an economic saving to farm
manager. It is also expected that less o�-target contamination will occur.

A global application rate of 50% herbicide resulted in 5% more expected economic loss compared
to the optimal herbicide application methodology. The maps comparing these two results are shown
in Figure 15 and indicate higher losses in the areas of high weed density for the global rate of 50%.
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Figure 13: A LVHAR map.
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Figure 14: A histogram of herbicide application rates for the �eld of interest where 100% is the
recommended rate.
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Figure 15: The optimized expected crop yield loss compared to the expected yield loss at 50% of
recommended rate.

Discussion

The optimal sample spacing that balances time and labour costs with improved accuracy needs
further study. Data from di�erent sources needs to be considered for validating this methodology.
Only one technique of weed control was examined while farmer managers usually have several options.

Variable rate information is limited, however weed response to herbicide rate was extrapolated
from studies published in the literature. Consequently, we assumed knowledge of how weeds respond
to varying herbicide rates. This requires veri�cation under di�erent environmental and cropping
conditions.

Spatial statistics are useful to characterize the heterogeneity of weed distributions as well as
quantify the uncertainty due to incomplete data. The LVHAR methodology attempts to incorporate
risk along with the spatial distribution of weeds into a model for optimal herbicide rate application.
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