
Note on Constrained Optimization and

Available Packages

Z. A. Reza (zreza@ualberta.ca)
Department of Civil & Environmental Engineering, University of Alberta

C. V. Deutsch (CDeutsch@civil.ualberta.ca)
Department of Civil & Environmental Engineering, University of Alberta

Abstract

This note briefs on theory of constrained optimization techniques and avialable softwares.
The list of algorithms and the packages mentioned is not exhaustive. Many of our engineering
problems need to solve constrained optimization subproblems. It was thus felt useful to compile
some of these techniques to the group's attention. However, it should be noted that none of the
remarks mentioned are authoritative in nature. These algorithms mainly search for locally opti-
mal solutions. Global optimization, stochastic optimization or techniques involving evolutionary
computing have not been included.

1 Introduction

The basic idea of an optimization problem is to maximize or minimize an objective function.
These subproblems arise in almost every aspect of life and engineering starting from resource
allocation to dispatching systems to even parameter estimation problems. Some of these prob-
lems impose inherent constraints that limit the solution space further. These problems with
constraints are what one knows as constrained optimization problems. Here in a slightly es-
oteric language the theory behind these problems are laid out along with some discussion on
available implementations of the theories.

Discussion starts from generalized problems (most di�cult) to specialized problems following
some assumptions. Not all the possible techniques have been discoursed. Only those considered
to be useful with our own problems have been expatiated. Thus, the ensuing sections talk about

1. Nonlinearly Constrained Programming

2. Bound Constrained Programming

3. Nonlinear Least Squares Problems with Constraints

There are numerous literature available on constrained optimization theory [2, 5, 6, 10, 12, 14].

2 Nonlinearly Constrained Programming

The general constrained optimization problem is to minimize a nonlinear function subject to
nonlinear constraints. Two equivalent formulations of this problem are useful for describing
algorithms. They are

minff(x) : ci(x) � 0; i 2 I; ci(x) = 0; i 2 Eg; (1)

where each ci is a mapping from R
n to R, and I and E are index sets for inequality and equality

constraints, respectively; and

minff(x) : c(x) = 0; l � x � ug; (2)

where c maps Rn to R, and the lower- and upper-bound vectors, l and u, may contain some
in�nite components.

The main techniques used for solving constrained optimization problems are reduced-gradient
methods, sequential linear and quadratic programming methods, and methods based on aug-
mented Lagrangians and exact penalty functions. Fundamental to the understanding of these
algorithms is the Lagrangian function, which for formulation 1 is de�ned as

L(x; �) = f(x) +
X
i2I[E

�ici(x):

1



The Lagrangian is used to express �rst-order and second-order conditions for a local mini-
mizer. To simplify matters just �rst-order necessary and second-order su�ciency conditions are
stated here without trying to make the weakest possible assumptions.

The �rst-order necessary conditions for the existence of a local minimizer x� of the con-
strained optimization problem 1 require the existence of Lagrange multipliers ��i , such that

�xL(x
�; ��) = �f(x�) +

X
i2A�

��i�ci(x
�) = 0;

where
A� = fi 2 I : ci(x

�) = 0g [ E

is the active set at x�, and ��i � 0 if i 2 A� \ I. This result requires a constraint quali�cation
to ensure that the geometry of the feasible set is adequately captured by a linearization of
the constraints about x�. A standard constraint quali�cation requires the constraint normals,
�ci(x

�) for i 2 A�, to be linearly independent.
The second-order su�ciency condition requires that (x�; ��) satis�es the �rst-order condition

and that the Hessian of the Lagrangian

�2
xxL(x

�; ��) = �2f(x�) +
X
i2A�

��i�
2ci(x

�)

satis�es the condition
!T�2

xxL(x
�; ��)! > 0

for all nonzero ! in the setn
! 2 Rn : �ci(x

�)T! = 0; i 2 I�+ [ E ;�ci(x
�)T! � 0; i 2 I�0

o
;

where
I�+ = fi 2 A� \ I : ��I > 0g; I�0 = fi 2 A

� \ I : ��I = 0g:

The previous condition guarantees that the optimization problem is well behaved near x�;
in particular, if the second-order su�ciency condition holds, then x� is a strict local minimizer
of the constrained problem 1. An important ingredient in the convergence analysis of a con-
strained algorithm is its behavior in the vicinity of a point (x�; ��) that satis�es the second-order
su�ciency condition.

The following sections discusses brie
y

� sequential quadratic programming

� reduced-gradient methods

� methods based on augmented Lagrangians

� feasible sequential quadratic programming

2.1 Sequential Quadratic Programming

The sequential quadratic programming (sequential QP) algorithm is a generalization of Newton's
method for unconstrained optimization in that it �nds a step away from the current point by
minimizing a quadratic model of the problem. In its purest form, the sequential QP algorithm
replaces the objective function with the quadratic approximation

qk(d) = �f(xk)
Td+

1

2
dT�2

xxL(xk; �k)d

and replaces the constraint functions by linear approximations. For the formulation 1, the step
dk is calculated by solving the quadratic subprogram

min
n
qk(d) : ci(xk) + �ci(xk)

Td � 0; i 2 I ci(xk) + �ci(xk)
T d = 0; i 2 E

o
: (3)

The local convergence properties of the sequential QP approach are well understood when
(x�; ��) satis�es the second-order su�ciency conditions. If the starting point x0 is su�ciently
close to x�, and the Lagrange multiplier estimates f�kg remain su�ciently close to ��, then the
sequence generated by setting xk+1 = xk + dk converges to x� at a second-order rate. These
assurances cannot be made in other cases. Indeed, codes based on this approach must modify
the subproblem 3 when the quadratic qk is unbounded below on the feasible set or when the
feasible region is empty.

2



The Lagrange multiplier estimates required to set up the second-order term in qk can be
obtained by solving an auxiliary problem or by simply using the optimal multipliers for the
quadratic subproblem at the previous iteration. Although the �rst approach can lead to more
accurate estimates, most codes use the second approach.

The strategy based on subproblem 3 makes the decision about which of the inequality con-
straints appear to be active at the solution internally during the solution of the quadratic
program. A somewhat di�erent algorithm is obtained by making this decision prior to formu-
lating the quadratic program. This variant explicitly maintains a working set 
k of apparently
active indices and solves the quadratic programming problem

min
n
qk(d) : ci(xk) +�ci(xk)

T d = 0; i 2 
k
o

(4)

to �nd the step dk. The contents of 
k are updated at each iteration by examining the Lagrange
multipliers for the subproblem 4 and by examining the values of ci(xk+1) at the new iterate xk+1
for i =2 
k. This approach is usually called the EQP (equality-based QP) variant of sequential
QP, to distinguish it from the IQP (inequality-based QP) variant described above.

The sequential QP approach outlined above requires the computation of �2
xxL(xk; �k). Most

codes replace this matrix with the BFGS approximation Bk, which is updated at each iteration.
An obvious update strategy (consistent with the BFGS update for unconstrained optimization)
would be to de�ne

sk = xk+1 � xk; yk = �xL(xk+1; �k)��xL(xk; �k)

and update the matrix Bk by using the BFGS formula

Bk+1 = Bk �
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
:

However, one of the properties that make Broyden-class methods appealing for unconstrained
problems - its maintenance of positive de�niteness in Bk-is no longer assured, since �

2
xxL(x

�; ��)
is usually positive de�nite only in a subspace. This di�culty may be overcome by modifying
yk. Whenever yTk sk is not su�ciently positive, yk is reset to

yk  �kyk + (1� �k)Bksk;

where �k 2 [0; 1) is the number closest to 1 such that yTk sk � �s
T
KBksk for some � 2 (0; 1).

The convergence properties of the basic sequential QP algorithm can be improved by using
a line search. The choice of distance to move along the direction generated by the subproblem
is not as clear as in the unconstrained case, where we simply choose a step length that approx-
imately minimizes f along the search direction. For constrained problems we would like the
next iterate not only to decrease f but also to come closer to satisfying the constraints. Often
these two aims con
ict, so it is necessary to weigh their relative importance and de�ne a merit
or penalty function, which we can use as a criterion for determining whether or not one point is
better than another. The `1 merit function

P1(x; �) = f(x) +
X
i2E

�i j ci(x) j +
X
i2I

�imax(ci(x); 0); (5)

where �i > 0 are penalty parameters, is used in some codes, while the augmented Lagrangian
merit function

LA(x; �; �) = f(x) +
X
i2E

�ici(x) +
1

2

X
i2E

�ic
2
i (x) +

1

2

X
i2I

 i(x; �; �);

where

 i(x; �; �) =
1

�i

�
maxf0; �i + �ici(x)g

2 � �2i
	
;

is used in others. Alternatively, some codes for equality-constrained problems (for which I = ;)
use the merit function

f(x) +
X
i2E

�ici(x) +

 X
i2E

�ic
2
i (x)

!1=2
;

which combines features of P1 and LA.
An important property of the `1 merit function is that if (x�; ��) satis�es the second-order

su�ciency condition, then x� is a local minimizer of P1, provided the penalty parameters are

3



chosen so that �i >j �
�
i j. Although this is an attractive property, the use of P1 requires care.

The main di�culty is that P1 is not di�erentiable at any x with ci(x) = 0. Another di�culty is
that although x� is a local minimizer of P1, it is still possible for the function to be unbounded
below. Thus, minimizing P1 does not always lead to a solution of the constrained problem.

The merit function LA has similar properties. If (x�; ��) satis�es the second-order su�ciency
condition and � = ��, then x� is a local minimizer of P1, provided the penalty parameters �i
are su�ciently large. If � 6= ��, then we can say only that LA has a minimizer x(�) near x� and
that x(�) approaches x� as � converges to ��. Note that in contrast to P1, the merit function
LA is di�erentiable. The Hessian matrix of LA is discontinuous at any x with �i + �ici(x) = 0
for i 2 I, but, at least in the case I�0 = ;, these points tend to occur far from the solution.

Given an iterate xk and the search direction dk, some algorithm xk+1 = xk+�kdk, where the
step length �k approximately minimizes P1(xk + �dk; �). If the merit function LA is selected,
the step length �k is chosen to approximately minimize LA(xk + �dk; �k + �(�k+1 � �k); �)
where dk is a solution of the quadratic programming subproblem 3 and �k+1 is the associated
Lagrange multiplier.

Fletcher's book [10] contains discussions of constrained optimization theory and sequential
quadratic programming.

2.2 Augmented Lagrangian Methods

Augmented Lagrangian algorithms are based on successive minimization of the augmented La-
grangian LA with respect to x, with updates of � and possibly � occurring between iterations.
An augmented Lagrangian algorithm for the constrained optimization problem computes xk+1
as an approximate minimizer of the subproblem

minfLA(x; �k; �k) : l � x � ug;

where

LA(x; �; �) = f(x) +
X
i2E

�ici(x) +
1

2

X
i2E

�ic
2
i (x)

includes only the equality constraints. Updating of the multipliers usually takes the form

�i  �i + �ici(xk):

This approach is relatively easy to implement because the main computational operation at
each iteration is minimization of the smooth function LA with respect to x, subject only to bound
constraints. Bertsekas [2] has an excellent treatment of augmented Lagrangian algorithms.

2.3 Reduced-Gradient Method

Reduced-gradient algorithms avoid the use of penalty parameters by searching along curves that
stay near the feasible set. Essentially, these methods take Subproblem 2 and use the equality
constraints to eliminate a subset of the variables, thereby reducing the original problem to
a bound-constrained problem in the space of the remaining variables. If xB is the vector of
eliminated or basic variables, and xN is the vector of nonbasic variables, then

xB = h(xN);

where the mapping h is de�ned implicitly by the equation

c[h(xN ); xN ] = 0:

In practice,
xB = h(xN)

can be recalculated using Newton's method whenever xN changes. Each Newton iteration has
the form

xB  xB � @Bc(xB; xN )
�1c(xB; xN);

where @Bc is the Jacobian matrix of c with respect to the basic variables. The original con-
strained problem is now transformed into the bound-constrained problem

minff(h(xN ); xN) : lN � xN � uNg:

Algorithms for this reduced subproblem subdivide the nonbasic variables into two categories.
These are the �xed variables xF , which usually include most of the variables that are at either

4



their upper or lower bounds and that are to be held constant on the current iteration, and
the superbasic variables xS, which are free to move on this iteration. The standard reduced-
gradient algorithm searches along the steepest-descent direction in the superbasic variables. The
generalized reduced-gradient codes use more sophisticated approaches. They either maintain
a dense BFGS approximation of the Hessian of f with respect to xS or use limited-memory
conjugate gradient techniques. Some codes do not apply the reduced-gradient algorithm directly
to problem 1, but rather uses it to solve a linearly constrained subproblem to �nd the next step.
The overall technique is known as a projected augmented Lagrangian algorithm.

Operations involving the inverse of @Bc(xB; xN ) are frequently required in reduced-gradient
algorithms. These operations are facilitated by an LU factorization of the matrix. Some codes
perform a dense factorization, while others use sparse factorization techniques, making them
more suitable for large-scale problems.

When some of the components of the constraint functions are linear, most algorithms aim
to retain feasibility of all iterates with respect to these constraints. The optimization problem
becomes easier in the sense that there is no curvature term corresponding to these constraints
that must be accounted for and, because of feasibility, these constraints make no contribution
to the merit function. Numerous codes are able to take advantage of linearity in the constraint
set. Other codes are speci�cally designed for linearly constrained problems. Codes based on a
sequential quadratic programming algorithm combines features of the EQP and IQP variants.
At each iteration, this algorithm determines a set Nk of near-active indices de�ned by

Nk = fi 2 I : ci(xk) � ��ig;

where the tolerances �i tend to decrease on later iterations. The step dk is obtained by solving
the subproblem

min fqk(d) : ci(xk + dk) = 0; i 2 E ; ci(xk + dk) � ci(xk); i 2 Nkg ;

where

qk(d) = �f(xk)
T d+

1

2
dTBkd;

and Bk is a BFGS approximation to �2f(xk). This algorithm is designed to avoid the short
steps that EQP methods sometimes produce, without taking many unnecessary constraints into
account, as IQP methods do. The book by Gill, Murray, and Wright [12] discusses reduced-
gradient methods.

2.4 Feasible Sequential Quadratic Programming

Finally, we mention feasible sequential quadratic programming algorithms, which, as their name
suggests, constrain all iterates to be feasible. They are more expensive than standard sequential
QP algorithms, but they are useful when the objective function f is di�cult or impossible to
calculate outside the feasible set, or when termination of the algorithm at an infeasible point
(which may happen with most algorithms) is undesirable. The code FSQP solves problems of
the form

minff(x) : c(x) � 0; Ax = bg:

In this algorithm, the step is de�ned as a combination of the sequential QP direction, a
strictly feasible direction (which points into the interior of the feasible set) and, possibly, a
second-order correction direction. This mix of directions is adjusted to ensure feasibility while
retaining fast local convergence properties. Feasible algorithms have the additional advantage
that the objective function f can be used as a merit function, since, by de�nition, the constraints
are always satis�ed. FSQP also solves problems in which f is not itself smooth, but is rather
the maximum of a �nite set of smooth functions

fi : R
n ! R:

3 Bound Constrained Optimization

Bound-constrained optimization problems play an important role in the development of software
for the general constrained problem because many constrained codes reduce the solution of the
general problem to the solution of a sequence of bound-constrained problems. The development
of software for this problem, which we state as

minff(x) : l � x � ug;

5



is also important in applications because parameters that describe physical quantities are often
constrained to lie in a given range.

Algorithms for the solution of bound-constrained problems seek a local minimizer x� of f .
The standard �rst-order necessary condition for a local minimizer x� can be expressed in terms
of the binding set

B(x�) = fi : x�i = li; @if(x
�) � 0g [ fi : x�i = ui; @f(x

�) � 0g

at x� by requiring that
@if(x

�) = 0; i =2 B(x�):

There are other ways to express this condition, but this form brings out the importance of
the binding constraints. A second-order su�cient condition for x� to be a local minimizer of
the bound-constrained problem is that the �rst-order condition hold and that

!T�2f(x�)! > 0

for all vectors ! with ! 6= 0; !i = 0; i 2 Bs(x�), where

Bs(x
�) = B(x�) \ fi : @if(x

�) 6= 0g

is the strictly binding set at x�.
Given any set of free variables F , we can de�ne the reduced gradient and the reduced Hessian

matrix, respectively, as the gradient of f and the Hessian matrix of f with respect to the free
variables. In this terminology, the second-order condition requires that the reduced gradient be
zero and that the reduced Hessian matrix be positive de�nite when the set F of free variables
consists of all the variables that are not strictly binding at x�. As we shall see, algorithms for the
solution of bound-constrained problems use unconstrained minimization techniques to explore
the reduced problem de�ned by a set Fk of free variables. Once this exploration is complete, a
new set of free variables is chosen with the aim of driving the reduced gradient to zero.

The following sections discusses brie
y

� Newton Methods

� Gradient-Projection Methods

Fletcher's book [10] gives a good explanation of Newton and quasi-Newton Methods.

3.1 Newton Methods

Most codes implement line-search and trust-region versions of unconstrained minimization al-
gorithms. Thus, only the di�erences between the unconstrained and bound-constrained cases is
discussed here.

A line-search method for bound-constrained problems generates a sequence of iterates by
setting

xk+1 = xk + �kdk;

where xk is a feasible approximation to the solution, dk is a search direction, and �k > 0 is the
step. The direction dk is obtained as an approximate minimizer of the subproblem

min

�
�f(xk)

Td+
1

2
dTBkd : di = 0; i 2 
k

�
; (6)

where 
k is the working set and Bk is an approximation to the Hessian matrix of f at xk. All
variables in the working set 
k are �xed during this iteration, while all other variables are in
the free set Fk. We can express this subproblem in terms of the free variables by noting that it
is equivalent to the unconstrained problem

min

�
gTk ! +

1

2
!TAk! : ! 2 Rmk

�
;

where mk is the number of free variables, Ak is the matrix obtained from Bk by taking those
rows and columns whose indices correspond to the free variables, and gk is obtained from �f(xk)
by taking the components whose indices correspond to the free variables,

The main requirement on 
k is that dk be a feasible direction, that is, xk+�dk satis�es the
constraints for all � > 0 su�ciently small. This is certainly the case if 
k = A(xk), where

A(x) = fi : xi = lig [ fi : xi = uig

6



is the set of active constraints at x. As long as progress is being made with the current 
k,
the next working set 
k+1 is obtained by merging A(xk+1) with 
k. This updating process is
continued until the function cannot be reduced much further with the current working set. At
this point, the classical strategy is to drop a constraint in 
k for which @if(xk) has the wrong
sign, that is, i 2 
k but i =2 B(xk), where the binding set

B(x) = fi : xi = li; @if(x) � 0g [ fi : xi = ui; @if(x) � 0g

is de�ned as before. In general it is advantageous to drop more than one constraint, in the hope
that the algorithm will make more rapid progress towards the optimal binding set. However, all
dropping strategies are constrained by the requirement that the solution dk of the subproblem
be a feasible direction.

An implementation of a line-search method based on subproblem 6 must cater to the situation
in which the reduced Hessian matrix Ak is inde�nite, because in this case the subproblem does
not have a solution. This situation may arise, for example, if Bk is the Hessian matrix or an
approximation obtained by di�erences of the gradient. Here, it is necessary to specify dk by
other means. For example, we can use the modi�ed Cholesky factorization.

Quasi-Newton methods for bound-constrained problems update an approximation to the
reduced Hessian matrix since, as already noted, only the reduced Hessian matrix is likely to be
positive de�nite. The updating process is not entirely satisfactory because there are situations
in which a positive de�nite update that satis�es the quasi-Newton condition does not exist.
Moreover, complications arise because the dimension of the reduced matrix changes when the
working set 
k changes. Quasi-Newton methods are usually bene�cial when the working set
remains �xed during consecutive iterations.

The choice of line-search parameter �k is quite similar to the unconstrained case. If sub-
problem 6 has a solution dk and xk + dk violates one of the constraints, then we compute the
largest �k 2 (0; 1) such that

xk�kdk

is feasible. A standard strategy for choosing �k is to seek an �k 2 (0; �k] that satis�es the
su�cient decrease and curvature conditions. We are guaranteed the existence of such an �k
unless �k satis�es the su�cient decrease condition and

�f(xk + �kdk)
T dk < 0:

This situation is likely to happen if, for example, f is strictly decreasing on the line segment
[xk; xk + �kdk]. In this case it is safe to set �k = �k.

3.2 Gradient-Projection Methods

Active set methods have been criticized because the working set changes slowly; at each iteration
at most one constraint is added to or dropped from the working set. If there are k0 constraints
active at the initial 
0, but k� constraints active at the solution, then at least

�� k� � k0
��

iterations are required for convergence. This property can be a serious disadvantage in large
problems if the working set at the starting point is vastly di�erent from the active set at the
solution. Consequently, recent investigations have led to algorithms that allow the working
set to undergo radical changes at each iteration and to interior-point algorithms that do not
explicitly maintain a working set.

The gradient-projection algorithm is the prototypical method that allows large changes in
the working set at each iteration. Given xk, this algorithm searches along the piecewise linear
path

P [xk � ��f(xk)]; � � 0;

where P is the projection onto the feasible set. A new point

xk+1 = P [xk � �k�f(xk)]

is obtained when a suitable �k > 0 is found. For bound-constrained problems, the projection
can be easily computed by setting

[P (x)]i =j fxi; li; uig j;

where j f�g j is the middle (median) element of a set. The search for �k has to be done carefully
since the function

�(�) = f (P [xk � ��f(xk)])

7



is only piecewise di�erentiable.
If properly implemented, the gradient-projection method is guaranteed to identify the active

set at a solution in a �nite number of iterations. After it has identi�ed the correct active set,
the gradient-projection algorithm reduces to the steepest-descent algorithm on the subspace of
free variables. As a result, this method is invariably used in conjunction with other methods
with faster rates of convergence.

Trust-region algorithms can be extended to bound-constrained problems. The main di�er-
ence between the unconstrained and the bound-constrained version is that we now require the
step sk to be an approximate solution of the subproblem

minfqk(s) :k Dks k� �k; l � xk + s � ug;

where

qk(s) = �f(xk)
T s+

1

2
sTBks:

An accurate solution to this subproblem is not necessary, at least on early iterations. Instead,
we use the gradient-projection algorithm to predict a step sCk (the Cauchy step) and then
require merely that our step, sk, satis�es the constraints in the trust-region subproblem with
qk(sk) � qk(s

C
k ). In some bound-constrained code, the trust region is de�ned by the L1-norm

and Dk = T , yielding the equivalent subproblem

minfqk(s) : max(l� xk;�ke) � s � min(u� xk;�ke)g;

where e is the vector of all ones.
The advantage of strategies that combine the gradient-projection method with trust-region

methods is that the working set is allowed to change rapidly, and yet eventually settle into the
working set for the solution. Using this approach, together with special data structures that
exploit the partially separable structure of f , large bound-constrained problems can be solved.

4 Nonlinear Least Squares Problems with Constraints

The nonlinear least squares problem with constraints has the form

minfr(x) : x 2 Rng;

subject to l � x � u

where r is the function de�ned by r(x) = 1

2
k f(x) k22 for some vector-valued function f that

maps Rn to Rm , and l and u are the lower and upper bounds on the vector x, respectively.
Consider some physical process modeled by a nonlinear function that depends on a parameter

vector x and time t. If bi is the actual output of the system at time ti, then the residual

�(x; ti)� bi

measures the discrepancy between the predicted and observed outputs of the system at time ti.
A reasonable estimate for the parameter x may be obtained by de�ning the ith component of f
by

fi(x) = �(x; ti)� bi;

and solving the least squares problem with this de�nition of f .
From an algorithmic point of view, the feature that distinguishes least squares problems

(without constraints) from the general unconstrained optimization problem is the structure of
the Hessian matrix of r. The Jacobian matrix of f , f 0(x) = (@1f(x); : : : ; @nf(x)), can be used
to express the gradient of r since �r(x) = f 0(x)T f(x). Similarly, f 0(x) is part of the Hessian
matrix �2r(x) since �2r(x) = f 0(x)T f 0(x) +

Pm
i=1 fi(x)�

2fi(x): To calculate the gradient of
r, we need to calculate the Jacobian matrix f 0(x). Having done so, we know the �rst term
in the Hessian matrix �2r(x) without doing any further evaluations. Nonlinear least squares
algorithms exploit this structure.

In many practical circumstances, the �rst term f 0(x)T f 0(x) in �2r(x) is more important than
the second term, most notably when the residuals fi(x) are small at the solution. Speci�cally,
we say that a problem has small residuals if, for all x near a solution, the quantities

j fi(x) j k �
2fi(x) k; i = 1; : : : ; n

are small relative to the smallest eigenvalue of f 0(x)T f 0(x).

8



Constrained least squares problems can be solved with the methods for bound constrained
problems, possibly modi�ed to take advantage of the special Hessian approximations that are
available for nonlinear least squares problems. Active set methods for handling the bounds form
part of the capability of some of these codes. An approach based on the gradient-projection
method, which is more suitable for large-scale applications, is used by others. Yet other algo-
rithms use active set versions of the Levenberg-Marquardt algorithm, as well as of the hybrid
strategy that combines the Gauss-Newton and BFGS quasi-Newton algorithms.

Some implementations use the same sequential quadratic programming strategy as the gen-
eral nonlinear programming, but also make use of the Jacobian matrix f 0(x) to compute a
starting approximation to the Hessian of the Lagrangian for the constrained problem and to
calculate the gradient �r. Use of sequential quadratic programming techniques while exploiting
the structure of r in its choice of approximate Hessian is also possible.

5 Some Important Constrained Optimization

Packages

5.1 LBFGS-B

L-BFGS-B is a limited memory algorithm for solving large nonlinear optimization problems
subject to simple bounds on the variables. It is intended for problems in which information on
the Hessian matrix is di�cult to obtain, or for large dense problems. L-BFGS-B can also be
used for unconstrained problems [28].

Authors: Ciyou Zhu, Richard H. Byrd, Peihuang Lu and Jorge Nocedal; Language: FORTRAN

5.2 TRON

TRON is a trust region Newton method for the solution of large bound-constrained optimization
problems. TRON uses a gradient projection method to generate a Cauchy step, a preconditioned
conjugate gradient method with an incomplete Cholesky factorization to generate a direction,
and a projected search to compute the step. The use of projected searches, in particular, allows
TRON to examine faces of the feasible set by generating a small number of minor iterates, even
for problems with a large number of variables. As a result TRON is remarkably e�cient at
solving large bound-constrained optimization problems [15].

TRON has the advantages of (1) no assumptions of strict complementarity, (2) global conver-
gence; fast local convergence, (3) identi�cation of optimal face in a �nite number of iterations,
and (4) an incomplete Cholesky factorization with predictable storage requirements.

Authors: C. Lin and J. More; Language: FORTRAN

5.3 TOLMIN

TOLMIN is dedicated for minimization of a di�erentiable function of several variables, subject
to linear constraints (equality and/or inequality) and simple bounds on variables. It is based on
successive quadratic programming algorithm. Each search direction is calculated so that it does
not intersect the boundary of any inequality constraint that is satis�ed and that has a \small"
residual at the beginning of the line search. The meaning of \small" depends on a parameter
called TOL which is automatically adjusted, and which gives the name of the software [19].

Author: M.J.D. Powell; Language: FORTRAN

5.4 OPTPACK

The package [13] has three main subroutines: (1) min - to minimize a function subject to
nonlinear constraints, (2) bmin - to minimize a function subject to simple bounds on variables,
and (3) lmin - to minimize a function subject to linear constraints. Unconstrained optimization
is performed using the conjugate gradient algorithm. Constrained optimization is performed
using a new scheme that combines multiplier methods with preconditioning and linearization
techniques to accelerate convergence.

Author: William W. Hager (hager@math.u
.edu); Language: FORTRAN

9



5.5 NITRO

A barrier approach is used that employs sequential quadratic programming and trust regions
(interior point trust region) to solve the subproblems occurring in the iteration. Both primal
and primal-dual versions of the algorithm are developed [4].

Authors: Richard H. Byrd (richard@cs.colorado.edu), Mary E. Hribar, and Jorge Nocedal (no-
cedal@ece.nwu.edu); Language: FORTRAN

5.6 NLPQL

NLPQL [20] has the features of having: (1) upper and lower bounds on the variables handled
separately, (2) reverse communication (evaluation of function values in main program), (3)
scaling of function values, (4) initial multiplier and Hessian approximation, (5) bounds and
linear constraints remain satis�ed. The internal algorithm is a sequential quadratic programming
(SQP) method. Proceeding from a quadratic approximation of the Lagrangian function and a
linearization of the constraints, a quadratic subproblem is formulated and solved by the dual
code QL. Subsequently a line search is performed with respect to two alternative merit functions
and the Hessian approximation is updated by the modi�ed BFGS-formula.

Author: K. Schittkowski (klaus.schittkowski@uni-bayreuth.de); Language: FORTRAN

5.7 NLPQLB

NLPQLB is an extension of the nonlinear programming code NLPQL with the intention to solve
also problems with very many constraints, where the derivative matrix of the constraints does
not possess any special sparsity structure that can be exploited numerically [21].

Author: K. Schittkowski (klaus.schittkowski@uni-bayreuth.de); Language: FORTRAN

5.8 NLPSPR

The package is dedicated to solve nonlinear programming problems with a large number of
variables and constraints where the Jacobian and Hessian matrices are sparse. Sparse linear
systems are solved e�ciently using a multifrontal algorithm that implements a modi�ed Cholesky
decomposition for symmetric inde�nite systems. Employs sequential QP algorithm that uses
an augmented Lagrangian merit function and a sparse quadratic programming algorithm. The
user must supply the sparse Jacobian and Hessian matrices, although this information can be
computed e�ciently using sparse �nite di�erences which are implemented in a utility package
that is also available. The software incorporates a reverse communication structure and is
especially well suited for applications derived from discretized optimal control problems [3].

Authors: John T. Betts and Paul D. Frank; Language: FORTRAN

5.9 MINOS

MINOS (Modular Incore Nonlinear Optimization System) is a software package for solving
large-scale optimization problems (linear and nonlinear programs). MINOS solves a sequence
of subproblems in which the constraints are linearized and the objective is an augmented La-
grangian. It is especially e�ective for problems with a smooth nonlinear objective function and
sparse linear constraints (e.g., quadratic programs). MINOS can also process large numbers
of smooth nonlinear constraints. The functions need not be convex. Numerically stable algo-
rithms. Needs only �rst derivatives. Has warm start capability. MINOS is highly e�ective for
problems with a nonlinear objective function and large numbers of sparse linear constraints (as
well as bounds on the variables) [16].

Authors: Bruce A. Murtagh and Michael Saunders (Mike@SOL-Michael.Stanford.edu); Lan-
guage: FORTRAN

5.10 LSSOL

LSSOL is a software package for solving constrained linear least-squares problems and convex
quadratic programs (de�nite or semide�nite), including linear programs. Dense matrices are
assumed throughout. LSSOL is recommended for QP problems whose objective includes a term
of the form xTATAx for some matrix A (which may be rectangular, square or triangular).

10



Linear constraints and bounds on the variables are treated separately by an active-set method.
If the problem has no feasible solution, LSSOL minimizes the sum of the constraint and bound
violations. LSSOL is used as a subroutine inside NPSOL to solve a sequence of related quadratic
programs, using warm starts. Numerically stable algorithms. Warm start capability. Elastic
bounds on variables and constraints (for infeasible problems). General-purpose dense linear
programming and quadratic programming [11].

Authors: Philip Gill (pgill@ucsd.edu), Walter Murray (Walter@SOL-Walter.Stanford.edu), Michael
Saunders (Mike@SOL-Michael.Stanford.edu) and Margaret H. Wright; Language: FORTRAN

5.11 LANCELOT

The LANCELOT package uses an augmented Lagrangian approach to handle all constraints
other than simple bounds. The bounds are dealt with explicitly at the level of an outer-iteration
subproblem, where a bound-constrained nonlinear optimization problem is approximately solved
at each iteration. The algorithm for solving the bounded problem combines a trust region
approach adapted to handle the bound constraints, projected gradient techniques, and special
data structures to exploit the (group partially separable) structure of the underlying problem
[7].

Authors: Andy Conn (arconn@watson.ibm.com), Nick Gould (nimg@ib.rl.ac.uk), and Philippe
Toint (pht@math.fundp.ac.be); Language: FORTRAN

5.12 CONOPT

The algorithm in CONOPT is based on the generalized reduced gradient (GRG) algorithm. All
matrix operations are implemented by using sparse matrix techniques to allow very large models.
Without compromising the reliability of the GRG approach, the overhead of the GRG algorithm
is minimized by, for example, using dynamic feasibility tolerances, reusing Jacobians whenever
possible, and using an e�cient reinversion routine. The algorithm uses many dynamically set
tolerances and therefore runs, in most cases, with default parameters.

The system is continuously being updated, mainly to improve reliability and e�ciency on
large models. The latest additions are options for SLP and steepest edge [8, 9].

Author: Arne Stolbjerg Drud (adrud@arki.dk); Language: FORTRAN

5.13 COPL LC

The approach is a primal-dual homogeneous algorithm (interior-point homogeneous algorithm).
The algorithm generates a solution pair if the problem is solvable, or detects infeasibility or
unboundedness. The objective need not be di�erentiable at an optimal solution of a given
consistent program. The package implements advanced sparse matrix factorization techniques
to take advantage of the structure of the Hessian of the objective function [1].

Author: Yinyu Ye (yinyu-ye@uiowa.edu); Language: FORTRAN

5.14 DONLP2

DONLP2 is a FORTRAN package designed to solve the nonlinear programming problem: the
minimization of a smooth nonlinear function subject to a set of constraints on the variables.
Employs sequential quadratic programming method incorporating the exact l1- merit function
and a special BFGS quasi-Newton approximation to the Hessian. Lower and Upper bounds on
the variables are identi�ed by a special indicator array. DONLP2 treats all matrices as dense
[23, 24].

Author: Peter Spellucci (spellucci@mathematik.tu-darmstadt.de); Language: FORTRAN

5.15 FSQP

Feasible Sequential Quadratic Programming (FSQP) algorithm is a superlinearly convergent al-
gorithm for directly tackling optimization problems with: (1) multiple competing linear/nonlinear
objective functions (minimax), (2) linear/nonlinear inequality constraints, and (3) linear/nonlinear
equality constraints. The basic problem solved is (where the variable x is n-dimensional) In phase
1 - iterate is generated satisfying all linear constraints and nonlinear inequality constraints. In
Phase 2 - maximum of objectives is minimized. Iterates satisfy all constraints except nonlinear

11



equality constraints (which are asymptotically satis�ed). The algorithm contains special provi-
sions for maintaining \semi-feasibility" of each iterate. E�ciently handling problems with many
\sequentially related" objectives and/or constraints [27].

Authors: Dr. Eliane R. Panier, Prof. Andre Tits, Jian Zhou, and Craig Lawrence; Language:
FORTRAN, C

5.16 OPTIMA Library

Library contains these modules among others [18]: OPVMB - Optimization subject to simple
bounds, OPRQP - Sequential quadratic programming, but superseded by the OPXRQP rou-
tine, OPXRQP - A more e�cient implementation of sequential quadratic programming; uses
the EQP variant, OPSQP - Another implementation of sequential quadratic programming, but
uses the IQP variant, which gives rise to inequality-constrained subproblems, OPALQP - Sim-
ilar to OPSQP, but uses an augmented Lagrangian line search function, OPIPF - Sequential
minimization of a sequence of augmented Lagrangians.

Author: M. C. Bartholomew-Biggs; Language: FORTRAN

5.17 LOQO

A primal-dual interior-point method is used. For convex problems a globally optimal solution
is obtained. For nonconvex ones a locally optimal solution near a given initial solution is found.
LOQO is designed to handle thousands of constraints and variables [26].

Author: Robert J. Vanderbei; Language: C, C++, MatLab

5.18 VE08

VE08 is a line search method with a search direction obtained by a truncated conjugate gradient
technique. The bounds are handled by bending the search direction on the boundary of the
feasible domain. VE08 also contains provision for estimating gradients by �nite di�erence, if
they are unavailable, or to check the analytic gradients otherwise. It features both Newton and
quasi-Newton algorithms. VE08 exploits the partially separable structure of many large-scale
problems to obtain good e�ciency. In particular, it uses the partitioned updating technique
when a quasi-Newton method is chosen [25].

Author: Ph Toint (pht@math.fundp.ac.be); Language: FORTRAN

5.19 TN TNBC

TN uses a truncated-Newton method based on a line search. Truncated-Newton methods com-
pute an approximation to the Newton direction by approximately solving the Newton equations
using an iterative method. In this software, the conjugate gradient method is used as the
iterative solver [17].

Author: Stephen G. Nash (snash@gmu.edu); Language: FORTRAN

5.20 LSGRG2

LSGRG2 uses an implementation of the generalized reduced gradient (GRG) algorithm similar
to that used in GRG2. However, it uses a sparse data structure to store and manipulate
the constraint Jacobian matrix, and a sparse inversion procedure to factor the basis. It can
therefore solve large, sparse nonlinear programs: problems with over 500 constraints have been
solved successfully [22].

Author: S. Smith and Leon Lasdon; Language: FORTRAN

5.21 SNOPT

SNOPT is suitable for general large-scale QP problems. It is more e�cient if only some of the
variables appear quadratically in the objective, or if many constraints are active at a solution.
If the quadratic is inde�nite (not positive de�nite or semide�nite), the solution obtained may
be a local optimum. The SQP algorithm used by SNOPT is highly e�ective for problems with
a nonlinear objective function and large numbers of sparse linear constraints. E�ciency is best
if only some of the variables enter nonlinearly, or if the number of active constraints (including

12



simple bounds) is nearly as large as the number of variables. SNOPT performs best if both
function and gradient values can be provided. It uses an SQP algorithm (Sequential Quadratic
Programming) in which a sequence of subproblems in which the constraints are linearized, and
the objective is a quadratic approximation of a Lagrangian. (Hence, no function or gradient
values are needed during the solution of each QP.)

Authors: Philip Gill (pgill@ucsd.edu), Walter Murray (Walter@SOL-Walter.Stanford.edu), Michael
Saunders (Mike@SOL-Michael.Stanford.edu); Language: FORTRAN

References

[1] E. D. Andersen and Y. Ye. On a homogeneous algorithm for a monotone complementarity
problem with nonlinear equality constraints. In M. C. Ferris and J.-S. Pang, editors,
Complementarity and variational Problems: State of the art, pages 1{11. SIAM, 1997.

[2] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York, 1982.

[3] J. T. Betts and P. D. Frank. A sparse nonlinear optimization algorithm. Technical Re-
port AMS-TR-173, Applied Mathematics and Statistics Group, Boeing Computer Services,
1991.

[4] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. Technical Report OTC 97/05, Optimization Technology Center,
Argonne National Laboratory, 1997.

[5] T. F. Coleman. Large scale numerical optimization: Introduction and overview. In
J. Williams and A. Kent, editors, Encyclopedia of Computer Science and Technology, pages
167{195. Marcel Dekker, New York, 1993.

[6] A. R. Conn, N. I. M. Gould, , and P. L. Toint. Large-scale nonlinear constrained opti-
mization. In R. E. O'Malley, editor, Proceedings of the Second International Conference on
Industrial and Applied Mathematics, pages 51{70. SIAM, 1992.

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: a FORTRAN Package for Large-
Scale Nonlinear Optimization (Release A), volume 17 of Springer Series in Computational
Mathematics. Springer Verlag, New York, 1992.

[8] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization prob-
lems. Mathematical Programming, 31:153{191, 1985.

[9] A. Drud. CONOPT { a large scale grg code. ORSA Journal on Computing, 6:207{216,
1994.

[10] R. Fletcher. Practical Methods of Optimization, 2nd ed. John Wiley & Sons, Inc, New
York, 1987.

[11] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright. User's guide
for LSSOL (version 1.0): A fortran package for constrained linear least-squares and convex
quadratic programming. Technical Report SOL 86-1, Systems Optimization Laboratory,
Stanford University, 1986.

[12] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, New
York, 1981.

[13] W. W. Hager. Analysis and implementation of a dual algorithm for constrained optimiza-
tion. Technical report, Department of Mathematics, University of Florida, Gainesville,
Florida, 1990.

[14] W. W. Hager, R. Horst, , and P. M. Pardalos. Mathematical programming-a computational
perspective. In C. R. Rao, editor, Handbook of Statistics, pages 201{278. Elsevier, New
York, 1993.

[15] C.-J. Lin and J. Mor�e. Newton's method for large bound-constrained optimization prob-
lems. SIAM J. of Optimization, 9(4):1100{1127, 1999.

[16] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Math-
ematical Programming, 14:41{72, 1978.

[17] S. G. Nash. User's guide for TN/TNBC. Technical Report 397, Department of Mathemat-
ical Sciences, The Johns Hopkins University, Baltimore, 1984.

[18] Numerical Optimisation Center, University of Hertfordshire, UK. OPTIMA Manual, 1989.

13



[19] M. J. D. Powell. TOLMIN: A fortran package for linearly constrained optimization calcu-
lation. Technical Report 1989/NA2, DAMTP, 1989.

[20] K. Schittkowski. NLPQL: A fortran subroutine for solving constrained nonlinear program-
ming problems. Annals of Operations Research, 5:485{500, 1985.

[21] K. Schittkowski. Solving nonlinear programming problems with very many constraints.
Optimization, 25:179{196, 1992.

[22] S. Smith and L. Lasdon. Solving large sparse nonlinear programs using grg. ORSA J.
Comput., 4:1{15, 1992.

[23] P. Spellucci. Sequential quadratic programming: Theory, implementation, problems. In
M. J. Beckmann, K. W. Gaede, K. Ritter, and Schneeweiss, editors, Methods of Operations
Research, volume 53, pages 183{213. 1985.

[24] P. Spellucci. An sqp method for general nonlinear programs using only equality constrained
subproblems. Mathematical Programming, 82(3):413{448, 1998.

[25] P. L. Toint. User's guide to the routine ve08 for solving partially separable bounded
optimization problems. Technical Report 83/1, FUNDP, Namur, Belgium, 1983.

[26] R. J. Vanderbei. LOQO: An interior point code for quadratic programming. Technical
Report SOR 94-15, Princeton University, 1994.

[27] J. L. Zhou, A. L. Tits, and C. T. Lawrence. User's guide for FFSQP version 3.7 : A
fortran code for solving optimization programs, possibly minimax, with general inequality
constraints and linear equality constraints, generating feasible iterates. Technical Report
SRC-TR-92-107r5, Institute for Systems Research, University of Maryland, 1997.

[28] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. L-BFGS-B: Fortran subroutines for large-scale
bound constrained optimization. ACM Trans. Math. Software, 23(4):550{560, 1997.

Notations

A�: active sets at optimal solution x�

Bk: BFGS approximation matrix of L2xx(xk; �k)
c(x): constraints on x that maps Rn ! R

�: derivative operative
�x: �rst partial derivative w.r.t. x
�2
xx: second partial derivative w.r.t. x
E : index sets of equality constraints
f(x): function space of x
I: index sets of inequality constraints
�: Lagrangian multipliers
L(x; �): Lagrangian function w.r.t. x with Lagrangian multipliers �
LA: augmented Lagrangian function
max: maximum
min: minimum
�i: penalty parameters
R: space of real numbers
R
n : n-tuple space of real numbers

P : projection operator in Projection-Gradient methods
P(x; �): penalty functions of x with penalty parameters �

A
T: transpose of any matrix A

A
�1: inverse of any matrix A

[: union of two sets
\: intersection of two sets

14


