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Abstract 
Reservoir characterization requires simultaneous modeling of 
multiple correlated variables including seismic attributes, 
porosity, permeability, and water saturation.  The relationship 
between these variables is often non-linear with complex 
variability patterns.  Classical normal scores transformation 
and least squares regression fails to capture these realistic 
features.  A multivariate stepwise transformation procedure is 
proposed whereby the original data variables are transformed 
to Gaussian variables with multivariate Gaussian properties.  
This procedure leads to much improved reservoir models with 
conventional geostatistical procedures.  These models, in turn, 
lead to improved reservoir production forecasting and 
development planning. 

This normal or Gaussian transformation is essential prior 
to geostatistical modeling with Gaussian techniques.  The 
procedure proceeds with a stepwise transformation using 
conditional probability distributions.  Once all variables have 
been transformed the collocated Gaussian variables are strictly 
multivariate Gaussian.  Conventional transformation 
procedures only ensure that the univariate distributions are 
Gaussian; cross plots (bivariate) and higher order distributions 
are not Gaussian. 

This transformation approach is important and relevant to 
modern reservoir characterization due to the widespread use of 
Gaussian techniques.  Aside from object-based facies 
modeling, more than 90% of geostatistical applications use 
Gaussian techniques. 

 

Introduction 
Petroleum reservoir characterization increasingly uses 
geostatistical tools.  Large-scale lithofacies modeling is 
typically followed by smaller scale modeling of more 
heterogeneous features, such as porosity and permeability.  
Different geostatistical simulation methods can be used to 
develop a suitable numerical reservoir model of heterogeneity 
and for uncertainty assessment.  These include sequential 
indicator simulation, p-field simulation, simulated annealing, 
and the more commonly used sequential Gaussian 
simulation1,2,3. 

The use of Gaussian techniques, such as sequential 
Gaussian simulation, depends on the mathematical 
characteristics of a Gaussian variable4,5,6.  In the presence of 
two or more variables, the conventional procedure is to normal 
score transform each variable one at a time.  This ensures that 
each variable is univariate normal; however, the multivariate 
distributions (two or more at a time) are not necessarily 
multivariate Gaussian.  Yet, all Gaussian simulation 
algorithms assume this to be the case. 

Once transformed, the model variables are cosimulated in 
order to preserve the correlation between them.  Cosimulation 
requires a model of coregionalization. The variogram and 
cross variogram modeling must be modeled in a 
mathematically consistent manner, that is, through the linear 
model of coregionalization or a Markov model suitable for 
collocated cokriging.  Alternatively, one might consider the 
application of a more sophisticated transformation that 
removes correlation between the model variables hence 
eliminating the need for cosimulation. 

The stepwise conditional tranformation has three important 
advantages that make it a practical technique that may catch 
on in practice.  First, it leads to transformed variables that are 
exactly multivariate Gaussian and not just univariate 
Gaussian; thus, the back transformed results of Gaussian 
simulation better mimic geological features.  Second, the 
stepwise transformed variables have no linear or non-linear 
correlation, which greatly simplifies simulation.  The 
relationship between the variables is captured in the 
transformation and back-transformation.  Third, it is very 
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simple to apply and does not introduce any artifacts in 
resulting models. 
 
Multivariate Gaussianity 
Gaussian-based geostatistical tools require the data variables 
to follow a Gaussian distribution.  Earth science data, 
however, rarely are Gaussian distributed; therefore, the 
original N data variables Zi, i=1…N must be transformed to 
Gaussian variables Yi, i=1…N.  The merit of any 
transformation technique is dependent on how well the 
transformed variables, the Yi's, follow the multivariate 
Gaussian distribution of the following orders. 
1. First order: univariate case where each Yi, i=1…N should 

have a Gaussian density function with zero mean and unit 
variance and characteristic bell shape, see Fig. 1.  The 
probability density must follow the Gaussian distribution: 
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2. Second order: bivariate case where all cross plots between 
Yi and Yj should show a bivariate Gaussian probability 
distribution with elliptical probability contours along a 
line through the origin, see bottom of Fig. 1.  The 
bivariate probability must follow the Gaussian 
distribution: 
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Fig. 1. Schemetic illustration of a univariate and bivariate 
Gaussian distributions. 
 
3. Third and higher orders: A distribution of order k between 

k-variables in k-dimensions should follow a multivariate 

Gaussiandistribution with probability contours following 
a hyperellipsoid in k-dimensional space. 

 
With no loss of generality, we will consider first and 

second order Gaussianity.  The technique we propose, 
however, works for any number of variables provided 
sufficient data is available. 

The requirement for multivariate Gaussianity extends to 
multivariate spatial distributions, for example, the bivariate 
distribution of two variables separated by lag distance vector 
h: Yi(u) and Yj(u+h).  The transformation method proposed 
here does not ensure the Gaussianity of such multivariate 
spatial distributions.  The stepwise-conditional transformation 
procedure ensures that “collocated” variables are Gaussian and 
independent. 
 
Normal Score Transform: A Recall 
A standard normal distribution has a mean of zero and a unit 
variance, see Eq. 1 above.  The normal distribution is the limit 
distribution for the Central Limit Theorem.  The sum of two or 
more normal distributions is also a normal distribution.  In 
fact, the sum of independent random variables following any 
distribution tends toward a normal distribution.  This result 
implies great simplicity for simulation and is the main reason 
why Gaussian approaches are commonly used. However, most 
earth sciences variables are not normally distributed.  In order 
to apply the Gaussian approach, the variables must first be 
transformed to normal space. 

The three basic steps in the common normal score 
transformation process (also known as the “graphical” or 
“quantile” transformation)9,10 are described below and 
illustrated in Fig 2. 

 
 

Fig. 2. Illustration of normal score transform.  The cumulative 
probability pi of the original data zi is determined, then the 
matching normal value yi is calculated. 
 
1. The original data are ranked in ascending order. 
2. The sample cumulative distribution function of the 

original data variable, Z, is calculated. 
3. For each sample data, z(uj), the corresponding cumulative 

probability is identified.  Once determined, the normal 
score value, y(uj), corresponding to each probability is 
found:  

y(uj) =G-1[F(z(uj))]=G-1 (pj) 
where y(uj), is the normal transform of z(uj), G-1(• ) is the 
inverse of the cumulative Gaussian distribution, and 
F(z(uj)) is the data-derived cumulative probability. 
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Alternative transformation procedures such as fitting Hermite 
polynomials could be considered.  This normal score 
transformation procedure is simple and effective. 

Once transformation is complete, the transformed variables 
are used for Gaussian simulation.  The results of simulation 
must then be back transformed.  Fig. 3 gives a sketch of the 
procedure: the original data variables are transformed to 
normal distributions (starting from the right), the variables are 
cosimulated to honor the relationship between the variables, 
then, the simulated values and transformed data are back 
transformed to the correct units. 

 
 

Fig. 3. Procedure for conventional Gaussian simulation for 
reservoir modeling: the original data are normal score 
transformed to normal variables, these variables are cosimulated 
accounting for correlation, and then back transformed to the 
correct units. 
 
Stepwise Conditional Transformation: 
Rosenblatt7,8 first introduced this technique in 1952.  It bears 
resemblance to the normal score transformation technique.  In 
the univariate case, the stepwise-conditional technique is 
identical to the normal score transform. 

In the bivariate case, the normal transformation of the 
second variable is made conditional to the probability class of 
the first variable.  Correspondingly, for k-variate problems, the 
kth variable is conditionally transformed based on the k-1 first 
variables.  For three variables: 
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Fig. 4 shows the steps to accomplish this conditional 

transformation.  Once the data are binned based on their 
conditional probabilities, each group of data is normal score 
transformed.  Each variable follows a univariate normal 
distribution.  The bivariate distribution between all pairs of 
variables follows a bivariate normal distribution with zero 
correlation.  This is a consequence of each conditional 
distribution being normal with a mean of zero and a variance 
of 1, that is, each conditional distribution is a standard normal 
distibution.  All multivariate distributions are independent 
standard Gaussian distributions. 

The independence of the transformed variables has two 
very important consequences.  First, there is no need for 
cokriging or cosimulation.  All variables have no correlation 
and should be simulated independently.  Second, the back-
transformed variables have the correct behavior, that is, any 
non-linear correlation or heteroscedastic (unequal variance of 
the conditional distributions in real coordinates) features are 
reproduced in the back-transformed result. 

Simulation is then performed on the transformed Yi's and 
the final back transformation introduces the right correlation.  
The steps for porosity-permeability simulation: 

1. Transform porosity by normal score transformation. 
2. Transform permeability according to the conditional 

distributions of permeability given porosity. 
3. Simulate the porosity normal score values. 
4. Independently simulate the permeability stepwise 

transformed data. 
5. Back transform the simulated “permeability” values 

using the correct conditional distributions. 
 

 
 

 
Fig. 4. Illustration of stepwise conditional transformation for two-
variables (porosity and permeability).  The top row of the Figure 
shows the porosity histogram, porosity-permeability cross plot, 
and permeability histogram.  The second row from the top labeled 
Univariate Case shows the normal score transform of porosity; 
the permeability is left unchanged, but the central cross plot 
changes because the porosity has been transformed to normal 
space.  The third and fourth rows from the top labeled Bivariate 
Case shows how the permeability values are transformed 
according to conditional distributions given the porosity values.  
The left side shows the transformation of permeability values 
belonging to a “low” class of porosity; the right side shows 
transformation of permeability values belonging to a “high” class 
of porsosity. 



4 O. Leuangthong, C. V. Deutsch, A. Haas, and A. Shtuka SPE 63069 

 
6. Back transform the simulated porosity values. 
7. Check the results to ensure reproduction of the 

histograms, variograms, and cross plot relations. 
As mentioned above, the multivariate spatial relationship 

of the original model variables is not transformed.  That is, 
there is no modification to bivariate spatial distributions Y(u) 
and Y(u+h) or trivariate spatial distributions Y(u), Y(u+h1) 
and Y(u+h2). 

There is no correlation between the transformed variables 
since each class of Y2 data is independently transformed to a 
normal distribution removing any correlation between Y2 and 
Y1.  Consequently, the simulation of a multivariate problem 
does not require cosimulation due to the independence of the 
transformed variables.  This is the primary motivation for 
transforming multiple variables in a stepwise conditional 
fashion. 
 
Limitations of Stepwise Conditional Transfomation 
There are few limitions of this method; however, there are 
three considerations to be mentioned. 

The transformed variables Yk, k=2,…,N  are combinations 
of multiple “real” variables.  These values cannot be 
backtransformed by an inverse Gaussian transformation.  Each 
variable must be back transformed in the reverse order using 
the correct conditional transform. 

In presence of many variables (N>3) The main limitation 
of the stepwise conditional transformation lies in the need for 
sufficient data.  In order to classify data and transform each 
class, there must be sufficient data to identify a conditional 
distribution.  Sparse data leads to eratic and nonrepresentative 
conditional distributions.  There is no general rule; however, 
we estimate the need for 10N – 20N data where N is the number 
of variables.  As we develop later, a smoothing or modeling of 
the conditional distributions may be adequate. 

The data are partitioned into classes.  There must be 
sufficient data to determine reliable classes; otherwise, 
artifacts could result.  We suggest smoothing the multivariate 
relations to provide adequate data.  This may be particularly 
important to use this technique with seismic data where few 
calibration data points are available.  Log and core data 
typically provide sufficient data.  
 
Application 
It is straightforward to develop programs to perform the 
stepwise conditional transformation and the back 
transformation.  Data for a porosity / permeability modeling 
example are shown in Fig. 5.  These are real data from a 
deltaic depositional setting. 

The conventional approach to geostatistical modeling 
would be to normal score transform both variables, determine 
the variogram of each, and to perform some form of 
cosimulation (typically collocated cosimulation).  The porosity 
– permeability cosimulation would require that the cross plot 
relation between the normal score of porosity and the normal 
score of permeability be bivariate Gaussian.  We see from Fig. 
6 that this is not the case.  The correlation coefficient is 0.59. 

 
 
 
 
 
 
 

 
 

 
 

 
Fig. 5. Porosity / permeability data: top – porosity histogram, 
middle – permeability histogram, and bottom – porosity – 
permeability cross plot. 
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Fig. 6. Cross plot of normal score transforms of porosity and 
permeability.  Note that these points do not follow the elliptical 
probability contours of the bivariate Gaussian distribution. 

 

 
Fig. 7. Cross plot of stepwise conditional transforms of porosity 
and permeability.  Note that these points follow a bivariate 
Gaussian distribution with zero correlation.  There are some 
minor visual artifacts due to the class structure used in the 
transformation. 

 
Fig. 8. Variogram of the normal score transform of porosity.  This 
variogram is used for the simulation of porosity in both the 
conventional and the stepwise approach. 

 
 

 
 
 

 
Fig. 9. Variogram of the normal score transform of permeability.  
This variogram is only used for the simulation of permeability in 
the conventional approach. 
 

 
 

 
Fig. 10. Cross variogram between the normal score transform of 
porosity and the normal score transform of permeability.  This 
variogram would only used for a full cosimulation approach.  In 
practice the collocated cosimulation approach is used and this 
variogram is never explicitly used in reservoir modeling. 

 
 
 

 
Fig. 11. Variogram of the stepwise conditional transform of 
permeability: used for the independent simulation of the 
transform of permeability. 
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The stepwise conditional transforms of porosity and 
permeability are plotted on Fig. 7: note the circular probability 
contours of a bivariate Gaussian distribution with zero 
correlation. 
Fig 8 shows the vertical normal scores variogram of porosity 
that is used for both the conventional and stepwise conditional 
approaches to simulation.  There are only two wells available 
in this data set; therefore, there is no horizontal variogram and 
the horizontal to vertical anisotropy ratio is taken from 
analogue information. 

The Gaussian approach to permeability modeling would 
also require the variogram of the normal score transform of 
permeability, see Fig. 9.  The cross variogram between 
porosity and permeability (see Fig. 10) is only needed for a 
full cokriging approach, which is not used very much due to 
heavier modeling and computer requirements.  The collocated 
cosimulation approach would only require the sill of the cross 
variogram or the correlation coefficient of 0.59. 

The variogram of the stepwise conditional transform of 
permeability is shown on Fig. 11.  As we have mentioned 
before, there is no need to cosimulate this permeability 
variable since the correlation is captured in the transformation. 

 
Fig. 12. Color scale image of simulated porosity.  This is a vertical 
cross section.  The two vertical wells are at either end of the 
cross section. 

 
Fig. 13. Color scale image (in log scale) of simulated permeability 
using collocated cosimulation with correlation coefficient of 0.59.  
Note the correlation with porosity on Fig. 12. 

 

 
Fig. 14. Color scale image (in log scale) of simulated permeability 
from stepwise approach, that is, independent simulation of the 
stepwise conditional transform and then back transform 
according to correct conditional distributions. 

 

 
Fig. 15. The “normal-space” cross plots between porosity and 
permeability.  In the top case (conventional) the relation is 
bivariate Gaussian with the correct correlation coefficient, but 
does not have the same features as Fig. 6.  The lower cross plot 
shows a bivariate Gaussian relation with no correlation, which is 
required by the stepwise conditional approach. 
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Fig. 12 shows a simulated porosity model.  No prior facies 
model was used in this case; however, often porosity and 
permeability model is modeled on a by-facies basis.  Note that 
the porosity model is identical for both the conventional and 
stepwise approaches. 

Fig. 13 shows a permeability model constructed by 
collocated cosimulation and the correlation coefficient of 0.59.  
There are no evident problems with this model although there 
can be difficulty in reproducing the correct histogram of 
permeability if the first variable has a variogram model with 
greater spatial continuity. 

The permeability model constructed by after stepwise 
transformation, independent simulation, and back 
transformation is shown on Fig. 14.  This model has no 
evident problems; it has the right histogram, variogram, and 
bivariate correlation to porosity. 
The bivariate relation resulting from the stepwise conditional 
transformation is correct provided enough classes have been 
used in the transformation.  The conventional approach often 
introduces an artifact due to the implicit assumption that the 
normal score transformed variables are multivariate Gaussian. 
Fig. 15 shows the “normal-space” cross plots between 
porosity and permeability.  In the conventional case the 
resulting bivariate Gaussian relationship has the correct 
correlation coefficient, but does not have the same features as 
the data distribution shown on Fig. 6.  The lower cross plot 
shows a bivariate Gaussian relation with no correlation, which 
is required by the stepwise conditional approach, see Fig. 7.  
The cross plot looks larger because there are more points. 

The original cross plot is better represented by the stepwise 
approach.  Visualization of the many points on the cross plot 
of simulated values is awkward because the plot is almost 
entirely covered by points. 
 
Implementation Details 
There are a number of implementation details that must be 
addressed.  They center around the number of classes to use 
for the conditional distributions and dealing with sparse data. 

All data within the same class are treated the same; 
therefore, no correlation between variables can be captured if 
only one class is used.  Considering the data used above, a 
cross plot of the correlation coefficient versus the number of 
classes is shown on Fig. 16.  20 classes provides excellent 
convergence of the correlation coefficient to that of the data. 

Of course, there must be sufficient data within each class 
to provide a reliable conditional distribution.  Too few data 
lead to unnecessary random variations in the transformation.  
Fig. 17 illustrates one problem; two data pairs with nearly the 
same values could appear quite different in “transformed 
space” because they fall in different classes that are poorly 
defined by too few data. 
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Fig. 16. Convergence of the correlation coefficient with increasing 
number of classes in the stepwise conditional transformation 
procedure. 

 

 
Fig. 17. Schematic illustration showing how two data points of 
essentially the same values can lead to different transformed 
values if the number of classes and data are too few. 

 
Stable conditional distributions are defined with 20 to 100 

data.  This implies that 400 to 2000 data are required in the 
bivariate case.  Although we may not have this many data, we 
could consider a procedure to smooth, fill in, or model the 
multivariate distributions.  Fig. 18 shows an example where 
there are only 12 hard data, but 1000 additional data have been 
added to make fill in the relationship.  There are a number of 
techniques to accomplish this smoothing.  The simplest is 
adding stochastic data points (see Fig. 18 below) although 
kernel smoothing11 and simulated annealing10 algorithms 
could be employed. 

Adding stochastic data points proceeds in three steps: (1) 
fit the conditional mean of the second variable given the first, 
(2) fit the conditional variance and assume a distribution 
shape, and (3) draw with Monte Carlo simulation many points 
from the conditional distributions.  Of course, the fitted 
distributions could be used directly. 
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ρ = 0.984

 
Fig. 18. Twelve hard data (large black dots) and modeled data to 
permit reliable inference of conditional distributions. 
 
Similarities to P-Field Technique 
There are similarities between this stepwise conditional 
transformation technique and the p-field3 or cloud transform 
technique.  In particular, the back-transformation according to 
conditional distributions; however, the procedure is quite 
different in practice.  P-field separates data conditioning from 
simulation.  The stepwise approach requires conditional 
simulation using the transformed values.  This avoids the local 
minima and local maxima artifacts that result from p-field 
simulation. 
 
Summary and Future Work 
We have presented a technique that will transform 
multivariate data (e.g., porosity, permeability, water 
saturation) to transformed variables that are Gaussian and 
independent.  This removes the need for cokiriging or 
cosimulation and greatly simplified reservoir modeling in 
presence of multiple variables. 

Implementation of this technique is straightforward.  In 
presence of sparse data (less than 500 pairs) is is necessary to 
“fill-in” the cross plot and multivariate relations with synthetic 
data or a statistical model.  Reliable techniques exist for this. 
 
Nomenclature 

 Y  = Gaussian random function 
 Z  = original data variable, e.g., porosity 
 u  = location in space 
 h  = separation lag distance in space 
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