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A Short Note on: 

Integration of Multiple Secondary Data in Geostatistical 
Reservoir Modeling 

Clayton V. Deutsch 
Increasingly there are multiple secondary data variables to be used in geostatistical reservoir 
modeling: acoustic and elastic impedance, other seismic attributes, production data, and 
geological trend maps.  There is a need to simultaneously account for these variables.  Robust 
techniques are needed to account for multiple secondary data variables. 

One evident alternative to direct accounting for two or more secondary data is to combine the 
secondary data and use well-known techniques to account for one secondary data, that is, 
construct a Y variable as a function of the multiple data, Y=f(Y1, Y2, …).  Regression or neural 
networks could be considered for this purpose.  This would appear to be a good option when the 
secondary data arise from the same underlying data source, as in seismic.  This would not likely 
work as well when the secondary data arise from data at different scales and/or measuring 
different underlying physical properties. 

Block Cokriging – the Correct Approach 

Leaving aside lesser known iterative techniques, the correct theoretical approach to account for 
multiple secondary data is block cokriging.  The simulation of the primary Z variable proceeds 
sequentially where a kriging is performed at each grid node.  The kriging estimator for two 
secondary data variables takes the following form: 
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where there are three sources of data, hence three summations over nz, ny1, and ny2, which are the 
number of primary and secondary data.  The  λ’s are the kriging weights.  In general there are no 
restrictions regarding the units of the data, the volume support of the data, the size of the block 
being kriged/simulated, or the number of data.  In practice, there are computer and inference 
limitations that must be considered.  The (nz x ny1 x ny2) by (nz x ny1 x ny2) matrix set of equations 
that must be solved can be partitioned into 3(by 3) regions. 
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Each term in the matrix equation above is a series of volume averaged covariance, for example,  

1,YZC represents volume averages of a Z data location and a Y1 block. 

Some limitations of this “correct” approach include: (1) relatively complex software with no 
commercial alternatives, (2) CPU-expensive calculation of point-block and block-block (cross) 
covariances, and (3) the difficulty of establishing the correct histogram at the correct scale. 
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Bayesian Updating 

The Bayesian updating formalism is particularly useful in presence of one secondary variable.  In 
fact, we can show that it is identical to collocated cokriging.  This equivalence between Bayesian 
updating and collocated cokriging does not hold for more than one secondary data variable.  The 
basic idea of Bayesian updating may be written: 
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where the p**
k’s are the final probabilities, C is a normalization constant, the p*

k’s are the 
probabilities from indicator kriging with hard data alone, the p’

k’s are the probabilities from first 
secondary data, the p’’

k’s are the probabilities from second secondary data, and the pk’s are the 
global proportions or probabilities. 

The main limitation of this formalism is that the multiple secondary data must be conditionally 
independent.  If they are not too much weight is given to the secondary data.  We could think 
about weighting these terms: 
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Where w1 and w2 are equal to 1 for independent secondary data and equal to ½ for redundant 
secondary data.  One could assume that this exponent follows a linear relationship with the 
correlation between the secondary data, see Figure 1.  Of course, rigorously accounting for 
redundancy between the secondary data would require some investigation. 

Collocated Cokriging 

Collocated cokriging is a remarkably simple and effective approach to integrate secondary data.  
The main advantage of collocated cokriging over Bayesian updating is that redundancy between 
the secondary data is accounted for in the kriging formalism. 

Needed covariance functions may be estimated by the typical Markov approximation, which sets 
the covariance function as proportional to the Z-covariance: 
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Where CZ,Y1(h) is the cross covariance between Z and Y1, ρZ,Y1 is the correlation between 
collocated Z and Y1 values, and CZ,Z(h) is the covariance of the primary Z data values.  There 
must be some constraint on the correlation coefficients ρZ,Z , ρZ,Y1 , ρZ,Y2 , and ρY1,Y2 to ensure 
positive definiteness. 

Limitations include (1) the implicit assumption that the primary data, grid nodes being simulated, 
and all secondary data are at the same scale, (2) no use of cross spatial relationships, for 
example, an isolated high secondary variable is treated identical to a high value in a large region 
of high values, and (3) the Markov model does not permit any accounting for different spatial 
continuity of the secondary data from the primary data. 

Other Alternatives 

Kriging with an external drift may be extended to multiple secondary data variables, but the lack 
of explicit control over the correlation between the primary and secondary data is a cause of 
concern.  IRF-k (intrinsic random functions or order k) could also be applied to this problem, but 
the difficulty of obtaining a licit model of coregionalization would force us to use the automatic 
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fitting.  The consequences of this are (cross)variograms with too-high nugget effects and 
unrealistic heterogeneity in the final models. 

Special Case of Collocated Cokriging for Merging Secondary Data 

As stated above, one alternative to direct accounting for two or more secondary data is to 
combine the secondary data and use well-known techniques to account for one secondary data, 
that is, construct a Y variable as a function of the multiple data, Y=f(Y1, Y2, …).  Regression or 
neural networks could be considered for this purpose.  Simple collocated cokriging could also be 
used: 

( ) ( )( ) ( )( )mymymy −⋅+−⋅=− uuu 2
''

1
'* λλ  

where the variable y could be porosity, lithofacies proportions, or any other petrophysical 
property, m is the mean, u is the location being considered, λ’ is the weight to variable 1 and λ’’  
is the weight to variable 2.  This could also be written as: 
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The cokriging equation to solve for the two unknown weights: 
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A special case is when the two secondary data are uncorrelated, that is, 0
1221 ,, == YYYY CC , in 

which case the weights are equal to the correlation coefficient between the secondary variable 
and the variable being estimated, e.g., for variable one 

1111 ,,,
' / YYYYYY CC ρλ == .  In general, 

however, the weights are less due to correlation between the secondary data.  There is almost 
always such correlation if only because the secondary data are measuring the same underlying 
petrophysical properties.  We can solve this 2 by 2 set of equations to get the weights.  The 
results for standardized variables (so we use correlation coefficients): 
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The weights are undefined (matrix is singular) when the correlation between the two variables is 
1 or –1, which is understandable because the variables are perfectly redundant with each other; 
however, we see that at the limit the weights approach ½ of the correlation between the 
secondary and primary variables.  See Figure 2 below for an example.  In this case the correlation 
between both secondary variables and the primary variable is 0.6; the weight to variable 1 starts 
at 0.6 when the two secondary are uncorrelated and decreases to 0.3 for perfect correlation.  Of 
course, when the two variables are perfectly correlated they are redundant and the same and 
0.3+0.3=0.6 so cokriging works. 

This approach permits merging multiple secondary data to simplify geostatistical simulation. 
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Figure 1: Dependence of exponent used to correct Bayes relation using multiple secondary data variables.  
The exponent must decrease as the correlation between the two secondary variables decreases.  The lower 
limit is 1/n, where n is the number of variables: 2 in this case. 
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Figure 2: Dependence of the weight to a secondary data in collocated cokriging when the correlation 
between each covariate and the variable of interest in 0.6.  The lower limit is 1/n multiplied by 0.6, where n 
is the number of variables: 2 in this case. 


