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Abstract

Power law averaging was developed to scale up fine grid permeability models to effective permeabil-
ity models on a coarse grid for flow simulation. Direct calculation of effective permeability with
selected boundary conditions has largely replaced the need for heuristic scaling procedures such as
power law averaging. Nevertheless, new areas of application have emerged for power law averaging.
First, successful integration of well test and production data requires techniques to simultaneously
account for small scale data, coming from core and log measurements, with large scale data com-
ing from well test and production data. The power law formalism can be used to transform the
various permeability data so that the transformed values average linearly, which is a requirement
of geostatistical techniques. Second, the effective permeability in sandstone/shale systems can be
calculated with the volume fraction of shale and the constituent permeability values, provided that
the directional averaging exponents can be calibrated to the geological setting. The theory behind
power law averaging is revisited and new areas of application are developed.

The Use of Power Law in Modern Geostats

Power law averaging was developed to upscale fine scale realizations to coarse scale models for
flow simulation (Deutsch, 1989); however, with increases in computing power, upscaling is easily
performed with quick flow simulators instead of approximative scaling relations (Durlofsky, 1990
and many other references). We will revisit power law averaging and describe possible applications
in modern reservoir characterization.

Among other things, well log data provide a measure of porosity and the volume fraction of
shale. The porosity data can be used directly, but when permeability measurements are sparse,
permeability must be based on the combined spacial characteristics of the shale and sandstone.
The power law averaging method provides a way to calculate directional permeability values that
account for the orientation of the shales. Figure 1 shows schematically how the Vshale log data
can be transformed to a range of horizontal and vertical permeabilities based on different w values
in the power law transformation.

Another problem in modern geostatistics is the integration of small scale core-based permeability
with large-scale production data. See Figure 2 for a schematic illustration of the different scales at
which data is collected and how they are combined to create multiple realizations at an intermediate
scale. The problem is the vast difference in scale and the highly non-linear averaging of permeability.
To further complicate this situation, modelling is often performed at an intermediate scale between
the core and production data. Gaussian techniques require the data to be transformed to a Gaussian
distribution, but permeability does not average linearly after Gaussian transformation; however, a
power law transform of permeability provides values that average linearly and permits the data to
be simultaneously accounted for in modelling via a direct simulation approach.



When unstructured grids are used the data must be linear with scale and power law averaging
provides a means to do this. Figure 3 shows an example of an unstructured grid with cells that vary
in size. Modern flow simulators are tending towards unstructured grids. Power law transformation
will permit direct modelling of different volumes with block kriging.

This paper starts with a review of power law averaging and why it is important. We then
explain how it is implemented. This is followed with a discussion of implementation issues and
examples.

Background

The general formula for power law averaging of the continuous variable K is written:
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v is the volume over which the average is calculated, k(u) is the permeability at location u within
the volume, and w is an exponent of averaging.
The averaging for the categorical case is written:
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Where n is the number of classes, p; is the volume fraction of class 4, and K; is the permeability of

class i. For a binary system of sandstone/shale, the power average equation is written:
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Where K, is the permeability of shale, K, is the permeability of sandstone and Vyp is the volume
fraction of shale.

The effective permeability, K.;r, of a 3-D network of blocks must take a value between the
harmonic and arithmetic average of the constituent permeabilities, depending on their spatial ar-
rangement. The lower-bound harmonic average can be seen as a power average with w = —1; this
is representative of flowing through a series of alternating permeability layers. The upper-bound
arithmetic average can be seen as a power average with w = +1; this represents parallel flow through
alternating permeability layers. The geometric average is obtained at the limit when w = 0. A
proof of the geometric average as w — 0 can be found in Appendix A.

The problem of determining the effective permeability can be transferred to the problem of
determining the constituent permeabilities and the averaging power.

Effective permeability is sensitive to the underlying spatial structure of the permeability values
and the averaging process. Consider a reservoir volume with 50% good quality reservoir rock at 100
mD and 50% poor quality rock at 0.01 mD. The average permeability can take any value between
0.02 mD and 50 mD, depending on the spatial continuity of the different permeability rock and
the direction of flow. The calculated effective permeability can differ by many orders of magnitude
depending on the averaging process. An incorrect assumption about the spatial structure could
lead to significant errors.

An important observation is that the averaging exponents in the principal directions depend on
the spatial continuity and the geological setting but not on the univariate histogram or the amount
of good/poor quality reservoir rock. This observation makes power-law averaging useful.



Methodology

Kriging-based geostatistical techniques require variables that average linearly with scale. Perme-
ability in its original units or after Gaussian transformation does not average linearly. This causes
problems with data at different scales and when using a different modeling scale. This problem
can be avoided by using a power law transformation; the transformed values average linearly with
scale.

The challenge is to determine the direction-dependent exponents, wx,wy and wyz. The w values
are between the arithmetic and harmonic averages, or 1.0 and -1.0. The exponents depend mostly
on the spatial features in the formation and not the histogram of the data. When flow is parallel
to layering the effective permeability will be closer to the arithmetic average of constituent perme-
abilities. The effective permeability perpendicular to the layering will be closer to the harmonic
average. In practice, w will be somewhere between these two extreme cases.

A power law transformation does not change the basic geostatistical modelling process. A first
step is to obtain w for the principal directions. This is done by creating multiple realizations of the
geological model and solving for the directional w values. Alternatively, a collection of models could
been studied and used as template for different geological situations. In this case the template with
the closest geological structure could be used for the directional w values. Once the w values have
been determined, the data of all types and volume supports can be transformed into power law
space: one transform per direction. After the transformation, the histogram and variogram are
determined. These statistics and the transformed data are then used for modelling using a direct
simulation technique (Xu and Journel, 1994).

There may be a need to transform log-derived volume fraction of shale Vsh data to directional
permeability values, see Figure 1. Power-law averaging could be used to provid a continuous
estimate of the permeability in the horizontal and vertical directions. To start, w values need to
be calculated by modelling or using a template. These w values are used to transform the Vsh
data into permeability by using the binary power law formula, Equation 3. There is uncertainty in
the resulting effective permeability values due to uncertainty in the power law exponent; the log
data do not directly measure permeability. To account for this uncertainty, multiple w values, that
cover the full distribution of possible w values, can be used in the transformation process. This will
provide a distribution of possible K values at each location.

Calibration

The calibration process for a single geological model is straightforward. The numerical model of
small scale permeabilities is subjected to flow simulation with specified boundary conditions to
obtain the true effective permeabilities: Kx, Ky, and Kz. Average permeability values can also
be calculated from the small scale permeabilities for any w. This allows us to choose the wy, and
wy and wyz.

To account for uncertainty and ergodic fluctuations in the geological models we must repeat
the calibration process for multiple realizations of the same geological model. Once an assemblage
of directional w values have been calculated, the resulting distributions can be checked. The mean
value will provide a single estimate for w in a given direction, and the distribution will show the
uncertainty in w for the geological model.



The flowsim program (Deutsch, 1987) can be used to solve for the directional effective perme-
ability values given a geological model. Appendix B describes a program to calibrate w based on
the effective permeabilities and the small scale permeability values. The w value is calculated in
four steps: (1) construct multiple permeability realizations based on a specific geological model, (2)
calculate the effective Kx, Ky, and Kz values by flow simulations, (3) calculate the directional w
values based on the flow simulation results and the original realizations, and (4) plot a histogram
of the resulting directional w values.

Implementation Issues

An w derived from a synthetic geological model will have uncertainty. Multiple realizations of the
same geological model provides one way to assess this uncertainty. The resulting distribution of
directional w represents the range of possible w values for that model. For practical purposes the
mean can be used for a single best estimate and uncertainty can be estimated by using upper and
lower percentiles, say the 10* and 90*". Alternatively we could use Monte Carlo simulation from
the w distribution and the resulting uncertainty can then be quantified. This uncertainty can be
carried through the rest of the modelling process.

Models based on different geological structures could be considered. For example, elliptical
remnant shales and shales created by overlapping fluvial sands. The results of different geological
models can be compared and appropriate uncertainty transferred through subsequent steps.

In calculating the effective permeability in a binary situation, Equation 3, we require the per-
meabilities for the constituent shale and sandstone. The sandstone permeability can be calculated
from core plugs and a distribution of different values could be considered; however, the shale per-
meabilities are often more difficult to obtain. Shale permeabilities can range from 0.01 to 0.000001
mD, which can affect the calculated effective permeability values. The affect of this uncertainty is
minimized by using the same K values in the calibration and calculation step.

Another problem with binary systems is that once a critical percentage of shale has been
exceeded, all the flow paths must go through shale. This causes a dramatic change in the effective
permeability since we can no longer flow through sandstone. In trying to work with a histogram
near this percolation threshold, about 80% in a 3 dimensional correlated model, care must be taken
to calibrate the model separately for shale fractions above and below this threshold.

A final concern is that w may not be constant over every volume support. Large changes is
volume will likely cause the w value to change. This complicates calibration.

Examples

Multiple sgsim realizations (Deutsch and Journel, 1997) were created for anisotropy ratios ranging
from 1:1 to 25:1. A lognormal distribution of permeability was considered. These realizations
were flow simulated and the w values calibrated. Figure 4 shows the histograms for each direction
and anisotropy ratio. As the anisotropy ratio increases the direction perpendicular to the greatest
continuity will see a decrease in w; the 2 directions parallel to the continuity will see an increase in
w. Figure 5 shows these results in a graphical format where the black dots are the average for each
distribution and the red and blue lines represent one deviation above and below. The variance of w
is small, being the highest at the low anisotropy ratio and decreasing as this ratio increases. Note



that a 2-D example with anisotropy ratio of 1 should yield an w of zero (Matheron, 1969), but in
3-D the w will be higher at about 0.2.

Next, ellipsoidal shale intrusions with in a sandstone matrix were created, using ellipsim
(Deutsch and Journel, 1997). Two studies were performed. One study looked at the effects of
changing the anisotropy ratio and the other showed the effects of changing the shale percentage. 51
realizations of 125,000 1.0m blocks were created for each study. The histograms for the anisotropy
study are shown in Figure 6. Once again, as the anisotropy ratio increases the w value decreases
for flow perpendicular to continuity and increases in the directions parallel to continuity. Figure 7
shows the mean and variance as before, but in this case the variance increases as the anisotropy
ratio increases. The percentage study showed only a small change in w as the percentage changed
from 5% to 65% shale. The histograms are seen in Figures 8 and 9 with the mean and variance
values shown in Figure 10. These results show little variability in w for each anisotropy ratio, but
Figure 10 indicates that as the anisotropy ratio goes to infinity the w values approach a singe value.
An upper limit of 65% was used to avoid the percolation threshold. These studies show that the w
is mostly dependent on the spatial parameters and not the histogram.

ellipsim is an object based modelling program that randomply places 3-D ellipsoids in a host
matrix. The size of the ellipsoids is defined by the user. Different anisotropy ratios are considered
by varying the size of the radii of the ellipsoids.

A final study looked at how w changes in a fluvial setting using the fluvsim program (Deutsch
and Tran, 1997). 51 realizations were created for 3 different scenarios. A base case scenario was
chosen, see Figure 11. A “thick” case was used where the width was halved and the depth was
doubled, see Figure 12. A “thin” case was also considered where the width was doubled and the
thickness halved, see Figure 13. Each figure shows the histograms for w and three vertical and
horizontal cross sections. w is more variable in this setting than in previous examples, especially
perpendicular to the fluvial channels.

The fluvsim program is an object based simulation program that creates channel intrusions
into a host rock. The channel cross section is similar to a half ellipsoid, but the shape will change
as the channel meanders through the rock. The shape of the channels are based on parameters such
as thickness and width. The program creates realizations by starting with a model of floodplain
shale and then embedding channels with parameters drawn from the distributions. This process
continues until a target proportion of channels has been created.

A set of Vsh log data, Figure 14, was transformed to effective permeabilities using the directional
w values from the base fluvsim case. The transformation was performed in three directions using
the mean, 10?* percentile, and 90" percentile w values. In the X direction (across channel flow)
the effective permeability shows some variability depending on the value of wx, see Figure 15. The
thick black line shows the results for the mean wx value and the blue and red lines represent the
Py and Pyy wy values, respectively. The Y direction (parallel to channel flow) shows almost no
variability since wy is very consistent in this direction, see Figure 16. Finally, in the Z direction
(vertically) wz has a large degree of variability and this transfers to uncertainty in the effective
permeability in this direction, see Figure 17.

Another way to look at these results is to consider the permeability ratios between the directions,
see Figure 18. The upper two left plots show kx/ky ratios (red) and kz/ky ratios (blue) in arithmetic
and log scales. The lower left two plots show the same ratios with different values for Kshale. The
red, black, and blue lines represent K, values of 1.0, 0.001, and 0.000001 mD respectively. The
right four plots is the original V' sh data for comparison. To better understand how the permeability



ratios are affected by Vsh, Figure 19 was created. The top plot looks at the Kx /Ky, in arithmetic
units, versus Vsh. The points are from the example Vsh data set and the solid line is from a
synthetic data set which was created to cover the full range of V' sh values. The lower plot looks at
the Kz /Ky, in logarithmic units, versus the Vsh percentage.

A final look at how the histogram affects w was done using different means and standard
deviations values in the lognormal transformation. Figure 20 shows the resulting directional w
distributions for a mean of 10 and standard deviations of 1, 10, and 100. Figure 21 is for a mean of
1 and the same standard deviations. Figure 22 shows the histograms of the log normal data with
a mean of 10 and standard deviations of 100, 10, and 1 respectively from top down. The three
vertical lines show the harmonic (blue), geometric (black), and arithmetic (red) permeabilities. As
the variance decreases and the distribution approaches the mean value, the three base cases for the
permeabilities approach the mean or arithmetic average.

Conclusions

Power law averaging has been around for many years but recently it has found new applications
in the petroleum industry. In dealing with volume dependent variables that scale non-linearly, a
power law transformation can be used to transform the variables to scale linearly. These variables
can then be used for modelling, independent of their volume support, by using a direct sequential
simulation formalism. The resulting realizations are then back transformed to original units for
further post processing.

The power law technique has been shown to work well for several applications where the value
must average linearly. There are some assumptions made in the calibration process that may effect
w. Arbitrary boundary conditions affect the calibrated w values. Also, if the formation approaches
the percolation threshold, the w value will change. The w might also change with vastly different
scales, particularly as the nature of the geological correlation changes.
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Appendix A

The arithmetic, geometric, and harmonic averages are well known:

1
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where n is the number of permeability values: K;,7 = 1,..,n. These averaging cases are generalized
by power-law averaging:
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where the exponent w is 1, 0, and -1 for the arithmetic, geometric, and harmonic averages, respec-
tively.

The geometric average K¢ is obtained with w = 0 at the limit. For fun, let’s show a proof.
Take the log of both sides of equation 5 and pull w out

n(Kegs) = (D)3 win(Ky)
i=1

rearrange to
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We want the limit as w — 0. Recall L’Hospital’s rule.
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Substituting into L’'Hospital’s rule:
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This now satisfies L’Hospital’s rule and we have cancelled out all of the w in the formula.
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We now raise both sides by the Euler number (e). This cancels the natural log on the left hand
side.
eln(Keff) = eln(KEff) = Keff
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Appendix B

This section shows the parameter files for the two programs written for this project. The calibw
program is used to calibrate w from the original data and the quick flow results. The wlog program
is used to transform vshale log data to an effective permeability based on a power law transform.

Parameters for Calibw
sfosk ook sk ok ok o ok ok ok ok ok sk ok ok ook ok ok

START OF PARAMETERS

calibw.out -file for calibw output
sgsim.out -file with small scale perm
flowsim.out -file with flowsim output

51 -number of realizations

50 50 50 -size of grid (nx,ny, and nz)
100 -number of iterations

Parameters for WLOG
ook ok ok ok ok ok ok ok ok ok ok ok ok ook ok ok

START OF PARAMETERS:

vshdata.dat -file with log Vshale data

13 -Depth data and Vshale data columns
wlog.out -output data file

0.50 0.25 0.75 -Wx mean, Wx Q10, Wx Q90

0.50 0.25 0.75 -Wy mean, Wy Q10, Wy Q90

0.15 0.05 0.25 -Wv mean, Wv Q10, Wv Q90

0.001 1000 -K Shale md, K Sandstone md

0 - 0 for K output or 1 for K Ratios

The next sample code is an example of the scripted used to find the directional w distributions.
This shows the calculation of w for the Ellipsim program at 5% shale.



# Build Ellipsim Realizations P = 0.05

cat<<END>temp

START OF PARAMETERS:

ellipsim.out -file for output realizations
51 -number of realizations

50 0. 1.0 -nx,Xmn,xsiz

50 0. 1.0 -ny,ymn,ysiz

50 0. 1.0 -nz,zmn,zsiz

69069 -random number seed

0.05 -target proportion (in ellipsoids)
5.0 5.0 0.5 0.0 0.0 0.01.0

END

ellipsim temp
# Covert Rock type to mD value (100 for sandstone, 0.001 for shale)
sed -e "s/"1/\ 0\.001/g" -e "s/~0/100\.0/g" ellipsim.out > temp

mv temp ellipsim.out

#Flowsim The realizations

cat<<END>temp

START OF PARAMETERS

ellipsim.out \Input datafile with

1 0 0 0 O \columns for kx,ky,kz, ky/kx, kz/kx
flowsim.out \output file for effective permeabilities

51 \number of realizations

50 50 50 \input : nx, ny, nz

1.0 1.0 1.0 \input : dx, dy, dz

1 1 1 \output: nx, ny, nz

END

flowsim<<END
temp
END

#Calibrate for W

cat<<END>temp

START OF PARAMETERS

calibw-P-05.0ut -file for calibw output
ellipsim.out -file with small scale perm
flowsim.out -file with flowsim output
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51 -number of realizations

50 50 50 -size of grid (nx,ny, and nz)
100 -number of iterations
END

calibw temp

# Remove files no longer needed
rm ellipsim.out flowsim.out

# Hist Plot the ’w’ variables
#For X Direction

cat<<END>temp

START OF PARAMETERS:

calibw-P-05.0ut -file with data

3 0 - columns for variable and weight

-20 20 -  trimming limits

hist-wX-P-05.ps -file for PostScript output

-1.0 1.0 -attribute minimum and maximum

-1.0 -frequency maximum (<0 for automatic)

40 -number of classes

0 -O=arithmetic, 1=log scaling

0 -0=frequency, 1=cumulative histogram

0 -  number of cum. quantiles (<0 for all)
3 -number of decimal places (<0 for auto.)
wX Hist (P-05)

1.5 -positioning of stats (L to R: -1 to 1)
-1.1e21 -reference value for box plot

END

histplt temp

#For Y Direction

cat<<END>temp

START OF PARAMETERS:

calibw-P-05.out -file with data

5 0 - columns for variable and weight
-20 20 -  trimming limits
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hist-wY-P-05.ps
-1.0 1.0
-1.0

40

0

0

0

3

wY Hist (P-05)
1.5

-1.1e21

END

histplt temp

#For Z Direction
cat<<END>temp

START OF PARAMETERS:

calibw-P-05.out
7 0

-20 20
hist-wZ-P-05.ps
-1.0 1.0

-1.0

40

0

0

0

3

wZ Hist (P-05)
1.5

-1.1e21

END

histplt temp
rm temp
histplt temp

-file for PostScript output

-attribute minimum and maximum
-frequency maximum (<0 for automatic)
-number of classes

-O=arithmetic, 1=log scaling
-0=frequency, 1=cumulative histogram

-  number of cum. quantiles (<0 for all)
-number of decimal places (<0 for auto.)

-positioning of stats (L to R: -1 to 1)
-reference value for box plot

-file with data

- columns for variable and weight

-  trimming limits

-file for PostScript output

-attribute minimum and maximum
-frequency maximum (<0 for automatic)
-number of classes

-O=arithmetic, 1=log scaling
-0O=frequency, 1=cumulative histogram

-  number of cum. quantiles (<0 for all)
-number of decimal places (<0 for auto.)

-positioning of stats (L to R: -1 to 1)
-reference value for box plot

12
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Figure 1: Power law averaging is used to transform log data into effective permeabilities.

Figure 2: Integration data from different size scales can use power law averaging to create a linear relation
with scale.
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Figure 3: Power law averaging is used to linearly scale the data to any grid size when using unstructured
grids.
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Figure 4: The effects of changing the anisotropy ratio in sgsim: histograms of wx, wy, and wy.
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Figure 5: The effect of the anisotropy ratio on w when using sgsim. The black dots are the mean w values

for all three primary direction; increasing w for X and y, and decreasing w for Z. The red line is one standard
deviation above the mean the blue line is one standard deviation below the mean.
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Figure 6: The effects of changing the anisotropy ratio in ellipsim when looking at the histograms of wy,
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Figure 7: The effect of the anisotropy ratio on the w using ellipsim. The top lines represent the X and Y
directions and the bottom lines represent the Z direction.
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Figure 9: The effects of changing the sandstone percentage from 40% to 65% in ellipsim when using a base
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Figure 10: The effect of the percentage of sandstone on the calculated w using ellipsim. The top lines
represent the X and Y directions and the bottom lines represent the Z direction.
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Figure 11: The 3 histograms for wy, wy, and wy for the base case of fluvsim.

wX Hist (Thick Case)
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Figure 12: The 3 histograms for wx, wy, and wy for the “thick” case of fluvsim.
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Figure 13: The 3 histograms for wx, wy, and wy for the “thin” case of fluvsim.
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Figure 14: Plot of Vshale log data with depth.
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_Power Law Transformed Vshale Data in X
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Figure 15: Plot of the power law transformed Vshale data to permeability (mD) in the X direction. The
thick black line is the mean of w, the outer light lines correspond to the Py, blue, and Py, red, values for w.

_Power Law Transformed Vshale Data in Y
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Figure 16: Plot of the power law transformed Vshale data to permeability (mD) in the Y direction. The
thick black line is the mean of w, the outer light lines correspond to the Pjg, blue, and Py, red, values for w.
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_Power Law Transformed Vshale Data in Z
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Figure 17: Plot of the power law transformed Vshale data to permeability (mD) in the Z direction. The
thick black line is the mean of w, the outer light lines correspond to the Pjg, blue, and Py, red, values for w.
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Figure 18: The upper two plots show kx/ky ratios (red) and kz/ky ratios (blue) in arithmetic and log scales.
The last two plots show the same ratios with different values for Kshale. The red line is Ksh = 1.0, the black
line is ksh = 0.001, and the blue line is ksh = 0.000001.
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Figure 19: The top graph shows how the kx/ky permeability ratio changes with Vshale. The solid line is
the theoretical results, which is reproduced perfectly by the calculated values, shown in dots. The bottom
graph shows the kz/ky ratios on a log scale. The theoretical lower limit is given by ksh/kss.
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Figure 20: The histograms of w for lognormal transforms with a mean of 10 and standard deviations of 1,
10, and 100.

WX Hi For Log (1.1) WY Histogram For Log (1.1) WZ Histogram For Log (1.1)
mean 55 I mean 58 I | mean -44
std dev. 08 i std dev. 07 i 1 sta ev: 08
I I I
I I I
I I I
I I I
I I r I
: "‘7 : m“ :
L m i . m 0. i
10 5 00 0’5 1o 1o 05 0.0 05 1o 10 05 00 0’5 10
wX wy wZ
WX b For Log (1.10) WY Histogram For Log (1.10) WZ Histogram For Log (1.10)
mean .48 I N mean 48 I N | mean 22
std dev. 10 i std dev. 09 i — 1 st ev: 07
I I I
1 1 Il 1
I I I
I I I
I I I
| | |
| g ;
10 05 00 05 10 10 05 0.0 05 10 1o 05 00 05 10
wX wy wZ
wX For Log (1.100) WY Histogram For Log (1.100) WZ Histogram For Log (1.100)
mean 43 I N mean 43 I N I mean 01
s dev. 10 I s’ dev. 09 I 1 s Gev, 08
I I
I I
I I
I I
I I
I I
I I
; ; ’-‘7 nﬂ /m““
10 05 00 05 10 10 05 0.0 05 10 1o 05 00 05 10
wX wy wZ

Figure 21: The histograms of w for lognormal transforms with a mean of 1 and standard deviations of 1,
10, and 100.

28



Frequency

Frequency

Frequency

.0000

Log Normal Data (Mean 10, St. Dev. 100)

mean 6.67
std. dev. 30.13

0.001 0.01

0.1

1

Permeability

Log Normal Data (Mean 10, St. Dev. 10

.000

10

100

1000

mean 9.26
std. dev. 8.46

0.001 0.01

.800

0.1

1

Permeability

Log Normal Data (Mean 10, St. Dev. 1)

10

100

1000

mean 9.94
std. dev. .96

T
1

Permeability

10

T
100 1000

Figure 22: The histograms of the lognormal data with a mean of 10 and standard deviations of 100, 10,
and 1 respectively from top down. The three vertical lines show the harmonic (blue), geometric (black), and
arithmetic (red) permeabilities.
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