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Abstract

Geostatistical simulation techniques are being increasingly used in industry. The common
Gaussian simulation has some restrictions. Performing simulation in the original data
units has the advantage of integrating different data sources for better characterization.
The problem of obtaining the local ccdf shape remains largely unsolved except by brute force
calculations. In this study, we explore an analytical approach to calculate the local cedf shape
to make calculations faster. Hermite polynomials and disjunctive Kriging are used.

Introduction

Let Z(u) be the random variable modeling the the uncertainty about z(u), where u corre-
sponds to a location coordinates vector. The distribution function F'(u; z|(n)) = Prob{Z(u) <
z|(n)} is conditional to the available information (n) and models that uncertainty. Each
conditional cumulative distribution function (ccdf) provides a measure of local uncertainty
related to a specific location u and level of conditioning data (n). The model of local un-
certainty may be post-processed to retrieve specific values such as: (1) the probability of
exceeding a critical threshold z., and (2) an estimate of the unknown value z(u) that is
optimal for a given criterion, which need not be least-squares.

One may also draw a series of L simulated values z()(u),l = 1,...,L from the local
distribution. Each value z() (u) represents a possible outcome or realization of the random
variable Z(u) modeling the uncertainty at location u.

A series of single-point ccdfs do not provide a measure of multiple-point or spatial
uncertainty, such as the probability that a block average exceed a given threshold value.
The concept of conditional simulation allows the assessment of such spatial uncertainty
from several realizations.

Sequential simulation is commonly used. Monte Carlo simulation from one-point dis-
tributions of uncertainty proceeds sequentially from distributions with increasing levels of
conditioning. Each distribution is conditional to the original data and all previously simu-
lated values. For continuous variables, simple (co)kriging is used at each step to give the
mean and variance of the ccdf, F'(u;z|(n)). Under the multivariate Gaussian model each
distribution is Gaussian in shape and the mean and variance are sufficient to establish the
full distribution.

The multivariate Gaussian random function model, which is the heart of sequential
Gaussian simulation, is by far the most widely used model because of its extremely congenial
properties (Deutsch and Journel, 1992; Isaaks, 1989). The (co)kriging system provides an



estimate and an estimation variance. These two parameters fully characterize the local
distributions of uncertainity, since the local distributions are Gaussian in shape. However,
there is significant motivation to avoid the Gaussian transformation required for sequential
Gaussian simulation. First, for a given covariance, the Gaussian random function (RF) has
maximum “disconnectedness” of extreme values; a property known as maximum entropy.
Multivariate Gaussianity also entails that the pattern of spatial correlation is symmetric
with respect to the median, that is, there is symmetric destructuration of extreme values.
Third, transformation of the data variable to a Gaussian distribution is problematic when
dealing with data of different scale. Most variables average linearly (lithofacies proportions
and volumetric proportions such as porosity and mineral grades) or with very particular
known scaling laws (permeability). The non-linear transformation to a Gaussian variable
means that the correct averaging in “Gaussian space” is complex and intractable. The
Gaussian transformation must be avoided to permit rigorous multiscale data integration.

Working in “direct” space is desirable; this is the “Direct Sequential Simulation” ap-
proach, which does not require Gaussianity of the ccdf models. The notion of direct sequen-
tial simulaton was developed at the same time as sequential Gaussian simulation (Journel
1986). It was shown early in the development of sequential techniques that the variogram
(covariance) structure and the global mean can be reproduced without transformation to
Gaussian space provided that the simulated values are drawn from local conditional distri-
butions centered at the simple (co)kriging estimates with a variance corresponding to the
simple (co)kriging estimation variance. The conditional distribution could be of any shape.
Exercising this freedom, however, leads to simulated realizations where the univariate his-
togram is not controlled and therefore not reproduced.

The recent studies of Deutsch et. al. (2000) and Oz et. al. (2001) establish a framework
to ensure that the global histogram is reproduced. This methodology relies on the link be-
tween direct space (Z space) and Gaussian space (Y space) through the global distributions.
The proposed “graphical approach” has been shown to work in practice. An extensive table
look up must be constructed. The motivation of this paper is to consider and document an
alternative procedure based on Hermite polynomials and disjunctive kriging (DK) to build
the ccdf shape models

Graphical Approach

The correct shape of the local distributions is known for the Gaussian case because we have
a model for the full multivariate distribution. The central idea of this proposal is to infer
the correct shape of the local distributions that permits the simulated values, taken all
together, to reproduce the global histogram.

The original Z variable with stationary histogram Fz(z) can be transformed to a Y
variable with stationary standard normal distribution G(y). The quantile or normal-score
transformation is widely used for such transformation.

y =G~ (Fz(2)) (1)
This transformation can be reversed at any time to get back to the original variable units:
z=F;'(G(y)) (2)



The cumulative distribution functions Fz(z) and G(y) and their inverse relations or quantile
functions F,'(z) and G~!(y) are known. Thus, we have a direct link between Z and Y
units. This transformation is unique, reversible, and almost always non-linear.

Valid distribution shapes in Z space can be determined from back transformation of
non-standard Gaussian distributions. The back transformation of the non-standard p' prob-
ability data:

2 =FUGGT (- o +y7)], l=1,...,L (3)

where y* and oy are the mean and standard deviation of the non-standard Gaussian distri-
bution of uncertainty, and the p', 1 = 1, ..., L values are uniformly distributed between 0 and
1. The distribution of uncertainty in Z space is assembled from the z!,1 =1, ..., L values.
There is no analytical equation for this distribution, aside from Equation 3; nevertheless,
the distribution is completely defined from y*, oy, F'(z), and G(y).

The shape of the z-conditional distributions are neither Gaussian nor identical to the
original Z data distribution. The shape of every z-conditional distribution is explicitly
known and the direct sequential simulation with histogram reproduction program, DSSIM-HR
(Oz et. al., 2001), uses these shapes to reproduce the global input histogram within statis-
tical fluctuations.

A lookup table of distributions corresponding to non-standard Gaussian distributions is
constructed before simulation starts. The lookup table or database of local distributions is
constructed with different Gaussian means (from approximately -3.5 to 3.5) and variances
(from O to 2). The Z mean and variance corresponding to each distribution is calculated
and saved so that the right distribution can be retrieved during the sequential simulation
procedure.

The distribution with the closest mean and variance to the simple (co)kriging mean, z*,
and variance, 02 must be found in the database. It is unlikely that the distribution will
have the exact mean and variance; therefore, we can either (1) interpolate in the lookup
table, or (2) rescale slightly the closest distribution to have exactly the right mean and
variance.

The variogram is calculated from the original data with no normal or Gaussian trans-
formation. The histogram and variogram all come from original data units. The Gaussian
transform is only used to help in determining correct shapes for conditional distributions.

This approach will create realizations that reproduce the (1) local point and block data
in the original Z data units, (2) the mean, variance, and variogram of the Z variable, and
(3) the histogram of the Z variable. More details of this approach including a theoretical
justification on how the input global histogram is reproduced is given by Deutsch et. al.
(2001).

Example Applications of Graphical Technique

Using the graphical technique, some conditional distributions for global lognormal, bimodal
and uniform distributions are shown in Figures 1, 2 and 3. The shapes of the non-standard
distributions are significantly different than either the widely assumed Gaussian distribution
or the original global distributions. Different Gaussian means, -1.0, 0.0, 1.0, and variance
values, 0.1, 0.5, and 1.0 are considered. The local uncertainity distributions are defined by
Equation 3. The boxed histograms correspond to a Gaussian mean and variance of 0.0 and



1.0, which gives the original distribution. The shape of the local distributions are unique
and do not look like the input distributions. The skewness, shape, and other characteristics
do not change in a simple manner.

This graphical approach is simple and effective; however, there may be significant ad-
vantages if an analytical approach could be used to quickly establish the conditional distri-
butions. The analytical result using Hermite polynomials and disjunctive kriging (DK) will
be the same because both methods rely on the multivariate Gaussian model. The use of
other orthogonal polynomials such as the Legendre or Laquerre polynomials would result
in other distribution shapes that would also permit reproduction of the global histogram.
This interesting theoretical avenue has not been explored in this work.

We admit that reproducing the graphical approach with an analytical method may be
of little practical value. Neverthless, there is a hope that the Hermite polynomials/DK
approach could be used to directly infer F,(z) shape without going through y* and o;.

Hermite Polynomials

Let z(uy), @ = 1,..., N be the data values with y(u,) their Gaussian (normal) transformed
values, with u, being the location coordinates vector for the o data. We can calculate
an anamorphosis function (normal score transformation) y(u) = ¢(z(u)) and establish a
one-to-one relationship between z and y, see back to Equations 1 and 2.

Hermite polynomials H,(y) are polynomials that have special properties related to the
normal distribution (Rivoirard, 1994). They are defined by Rodrigues’s formula (n > 0):

Hoy) = —— 90 oy N (4)

Vnl gly) dy"

where v/n! is a normalization factor and g(y) is the standard Gaussian probability distri-
bution function (pdf) defined by

1
9(y) = NeT:

The n'* Hermite polynomial H,,(y) is a polynomial of degree n. More specifically, Hy(y) = 1,

Hy(y) = —y, and Hy(y) = %(y2 —1). The other polynomials can be calculated using the

recurrence relation (n > 0):

eV /2 (5)

1 n

H. —

Except for Hy(y) which is constant and equal to 1, their means are:

Hya(y) = Hya(y) (6)
E(Ha ()} = [ Hag(w)dy =0 (7

and, due to the normalization factor, their variances are:

Var{H,(y)} = E{[Ha(y)]’} =1 (8)
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Figure 1: Non-standard distributions for lognormal data set (from left to right: mean in
normal space: -1.0/0.0/1.5; from top to bottom: variance in normal space: 1.0/0.5/0.1).
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Figure 2: Non-standard distributions for bimodal data set (from left to right: mean in
normal space: -1.0/0.0/1.5; from top to bottom: variance in normal space: 1.0/0.5/0.1).
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Structure of Hermite polynomials

When pairs of values, say (y(u), y(u+ h)) are bivariate standard normal with correlation
coefficient p(h), the Hermite polynomials have the following property:

E{Hn(y(u + h))|y(n)} = [p(h)]" Hp(y(u)) (9)

the spatial covariance between the p— order polynomial of y(u) and the n— order polynomial
of y(u+ h) can be written as,
Cov{Hy(y(u)), Hn(y(u +h))} = E{Hp(y(u))Hn(y(u + h))}
= E{Hy(y(u)) E{Hy(y(u +h))|y(u)}}
= E{H,(y(u))[p(h)]" Hy,(y(u))}

= [p(0)]" E{H, (y(u)) Hy (y () } (10)

When p = n, and also remembering Equation 8, Equation 10 results in

Cov{Hy(y(u)), Hn(y(u+h))} = [p(h)]" (11)

The spatial covariance of H,(y(u)) is equal to [p(h)]™; that is, the covariance of y(u) raised
to the n' power. Since p(h) < p(0) = 1, the spatial dependence of H,(y(u)) decreases
rapidly to nothing as n increases, i.e. the structure tends to pure nugget.

For p # n the Hermite polynomials for a bivariate standard normal pair are orthogonal

Cov{Hy(y(u)), Hn(y(u+h))} = E{Hy(y(u))H,(y(u +h))} =0 (12)
Equation 12 also reveals that there is no spatial correlation between polynomials of
different orders.
Expressing functions in terms of Hermite polynomials

Virtually any function of f(y(u)) can be expanded in terms of Hermite polynomials:

f(y(w)) = fo+ frHi(y(w)) + foHa(y(u)) + - - (13)
= Z ann(y(u)) (14)
n=0

To calculate the coefficient f, consider;

E{f(y(w)) Hn(y(w)} = E{Y_ foHy(y(w)) Hu(y(u))} (15)

p=0

By taking the expected value operator inside of summation term and taking the f, term
outside of all summation (since f, is not function of y), Equation 15 can be written as;

= 3" fB{H, (y(w) Ha(y(w))} (16)

p=0



Since the expected value term in the summation ends up 0 for n # p, Equation 15 results
in;

E{f(y(u))Hp(y(w))} = fp (17)

Using the definition of expected value operator, Equation 17 can be rewritten as;

fo = E{f(Y () Hp (Y (u))} = /f(y)Hn(y)g(y)dy (18)

for any given function f. The variance of f(y(u)) is given by

Var{f(y(w)} = E{(f(y(w) — E{f(y(w))})*} = E{D_ [faHa(y(w)]*} (19)
n=1

By writing the square terms in Equation 19 explicitly;

[0 SENNe o]
=E{Y>_ Y fafpHa(y(u)Hy(y(w)} (20)
n=0 p=0
By taking the expected value operator inside of summation term and taking the f, and f,
terms outside of all summation (since both f, and f, are not function of y), Equation 20
can be rewritten as;

=33 fafo B{Ha(y(w)Hy(y(w))} (21)
n=0p=0
Since, E{H,(y(u))Hp(y(u))} = Cov{Hy,(y(u)), Hy(y(u))}, Equation 21 can be rewritten

o o
=YY fafyCov{Hn(y(w)), Hy(y(w))} (22)
n=0p=0
The covariance term inside the summation operator is only defined for p = n; otherwise, it
is 0. When it is not zero, for h = 0, it is equal to Cov{H,(y(u)), H,(y(u))} = [p(0)]" =1,
then we can rewrite Equation 22;

o0

Var{f(y(u))} = > (fa)? (23)
n=1
Equation 18 is a general expression to obtain the Hermite coefficients from the Hermite
polynomials. Once we have the coefficients, then in the coming sections, we will show how
to fit a continuous Global distribution and an indicator function. Both this section and the
coming sections will be the main basis for producing local conditional distributions from
the given Gaussian mean and variance.



Fitting a Global distribution

In this section we will show how to fit a continuous distribution. Equation 14 is the key
equation for this purpose. There are two terms in Equation 14 that need to be calculated
and the sum of their product (f,Hy(y(u))), for a sufficient number of polynomials, would
delineate the complete distribution. The Hermite polynomials, H,,(y(u)), in Equation 14 are
calculated using Equation 6. Then, the Hermite coefficients, f,, are described by Equation
17.

In general, the first Hermite coefficient corresponds to the mean value in the original
data space;

fo=E{f(y)} = E{o(y)} = E{Z} (24)
Then the resultant coefficients are calculated by rewriting the Equation 18 as:
N Yi41
fo= BUGHW} =X [ aHa gy (2)
i=1"Yi
=S e o e1) — = o ()90 (26)
= Vn vn

Let’s write a few terms of the Equation 26 in order to group some of the similar terms;

fu = zﬂ%ﬂn_l(m)g(yg) _ %Hn_l(yng(yl)] + zﬂ%ﬂn_l(ym(yg)—

%Hn_l(m)g(ym T zN_l[%Hn_l(ymg(yN)—

%an(ywq)g(yw_l)] + ZN[%HTL—I(?JN+1)9(?/N+1) - %Hna(yzv)g(yzv)]

Since g(y1) = g(—o0) = 0 and g(yn+1) = g(oco) = 0, we can regroup the terms as;

N 1

n =) (zi-1 — zi)—=Hn—1(y:)9(yi 27
f ;( | )\/ﬁ 1(yi)g (i) (27)

Once one transforms the original variable to Gaussian space, the corresponding Hermite

polynomials, Gaussian pdf and the original variable z; would be used to fit a continuous
function.

Fitting an Indicator function

In the previous section, we showed how to fit to a continuous distribution. Now, we will
extend this fitting to an indicator function. The probability of y < y., with y. being a
cutoff value, is equivalent to z = ™' (y) < ¢~ '(y.) and by choosing z. = ¢~ !(y.), then
calculating I,., turns into calculating:

o0
Licoe = Iycy. = Z fnHn(y) (28)
n=0

10



The coefficient of order n of the indicator function I, is written:

fn = E{f(y)Ha(y)}
o0 Ye
= /_Oofy<ycHn(y)g(y)dy= H,(y)g(y)dy (29)

— 00

for n =0,
fo=G(ye) (30)
and for n > 1, by inserting Equation 5 into Equation 29, we get:

Ye 1 d'g(y)

fr= g9(y)d(y) (31)

P s Vil gly) dyn
the two g(y) are cancelled and the integration of dr;g Eff) results in d;:ﬂ(ly), we can simplfy

Equation 31 as
1 d"'g(y) 1
fn= == gt e = e Hna(we)y (n = D! glue) (32)
1

fn= %Hn—l(yc)g(yc) (33)

Then, inserting Equation 30 and 33 into Equation 28;

o

Iy (wyey. = Gye) + D Hno1(ye)g(ye) Hu(Y (u)) (34)

n=1

where G(y) is the Gaussian cumulative density function and ¢(y) is the Gaussian probability
distribution function. So, any indicator of f(y), can be expanded in terms of generating
the Hy(y) family. It is important to note that the developed Hermite coefficients in this
section are not the same as the ones developed for the continuous function case.

Application to Uniform, Bimodal and Lognormal Distributions

We demonstrate fitting continuous distributions. The original distributions can be fitted
with increasing accuracy with more polynomials. The general procedure of fitting to a
continuous function is:

e Tranform the original variable z;,7 = 1,..., N a into Gaussian space

Y; :G_I(F(Zi)),i = 1,...,N)

e Using Equation 6, calculate the successive Hermite polynomials for all the Gaussian
transformed y; data values

o1 (0) = 2y = [ a9

11



Original Lognormal Data Fit for LogNorm Data (10 Herm. pcoeffs)
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Figure 4: Original lognormal distribution (top left) and corresponding reproduction of log-
normal distribution with 10, 50 and 100 Hermite polynomials

e Calculate the Hermite coeflicients using Equations 24 and 27.

fo=E{p(y)} = E{Z}

N 1
n = zi—1 — 2;)——=Hn_1(y:) 9y
f Z;( ! )\/ﬁ 1(yi)g(y:)

e Reproduce the original distribution by using those calculated Hermite polynomials
and the coefficients in Equation 14.

fly(u)) = Z fnHn(y(u))
n=0

Consider 10000 values drawn from a uniform distribution, see Figure 4. Then using 10,
50 and 100 polynomials, the original data distribution has been reconstructed and presented
in Figure 4. It is clear that as the number of polynomials gets larger, we get better fit of
the original distribution. 25 polynomials are enough to reproduce the uniform distribution.
The bimodal distribution was also fit, see Figure 5. 500 polynomials were used because of
difficulty in fitting bimodal data. The lognormal distribution was tested with 10, 50 and
100 polynomials, see Figure 6.

Disjunctive Kriging Paradigm

Disjunctive kriging (DK) provides an estimate for the value of any known function of a
single unknown as a linear combination of functions of data values, with the usual criteria

12



Original Bimodal Data Fit for Bimodal Data (10 Herm. pcoeffs)
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Figure 5: Original bimodal distribution (top left) and corresponding reproduction of bimodal
distribution with 10, 50, 100 and 500 Hermite polynomials
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Original Uniform Data Fit for Uniform Data (10 Herm. pcoeffs)
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Figure 6: Original uniform distribution (top left) and corresponding reproduction of uniform
distribution with 10, 50 and 100 Hermite polynomials

of unbiasedness and minimum estimation variance (Goméz-Herndndez’s notes on DK):
N
Dy =) bi[Z(u)] i=1,...,N (35)
i=1

Since Dy is generated by well-behaved functions b;[Z(u;)] (i.e. function has finite expected
value and variance) of one datum at a time, the previous conditions can be written as the
following N conditions and for any function b(-)

E{Lo|b[Z(w)]} = E{Lpg|b[Z(w;)]} i=1,...,N (36)
we can rewrite Equation 36 as:
E{E{Lo|Z(w;)}|b[Z (w)]} = E{E{Lpk|Z(w)}b[Z(w)]} i=1,...,N (37)

By substituting L’ = SN, b;[Z(u;)] into Equation 37 leads to the following set of integral
equations:

N
S B (Z(w)|Z(w)} = B{L(Z(w)|Z(u)}, i=1,....N (38)
j=1

The solution of this set of integral equations requires full knowledge of the bivariate
distributions of the pairs of RV’s [Z(u;), Z(u;)] and [Z(w;), Z(up)], for 4,7 = 1...., N, to
allow evaluation through integration of the conditional expectations involved in expression
(38).

14



Implementation of DK requires the solution of the set of integral equations (38) to
determine the N functions b;[Z(u;)]. There are two problems involved in the solution of
these integral equations: the first relates to inference of a bivariate distribution from a single
realization sparsely sampled; the second relates to the difficulty of solving a system of type
(38) even from a known bivariate distribution. To overcome these two problems, a bivariate
“isofactorial model” has been adopted. This model amounts to assume that the bivariate
distribution of [z(u), z(u + h)] is fully described by its marginal distribution and a single
function of h, the correlogram. In the same way that kriging is based on the variogram, so
DK is based on the bivariate distributions.

An isofactorial bivariate distribution which presents for marginal pdf f(z) is defined as

fsz2) = 1) Y P x (), () (39)
n=0 n

where p(h) is the stationary correlogram of the RF Z(u) and z, z are any two threshold
values applied on the random variables Z(u) and Z(u + h) at two locations h distant away.
The bivariate pdf is f(h;z,2z') = f(2)f(z). The set [X,(:),n = 0,...,00] is a set of
polynomials orthogonal for the marginal pdf f(z) with respective norms h2. Expression 39
appears as a decomposition of the bivariate pdf into a sum of products of the two marginal
pdf values f(z) and f(%).

Depending on whether the pdf f(z) is bounded, one-sided bounded or un-bounded, the
corresponding orthogonal polynomials are of three types: Legendre polynomials, Jacobi
polynomials and Hermite polynomials. Hermite polynomials, which results in a marginal
pdf, f(z), which is Gaussian, have been used throughout the analytical derivations of local
ccdfs.

Since the Hermite polynomials are spatially non-correlated, they are the factors of the
(bi—)gaussian model, which then is isofactorial. Consequently the polynomials have only
to be kriged separately to give the DK of any function Y (u):

Fly(@)]”% = fo + filHi(y()]" + fol Ha(y()]* +- - (40)
If we denote
u;, uj ... the data points
Pij the correlation coefficient between y(u;) and y(u;)
H, (y;) the Hermite polynomials Hy,(y(u;)),
“DK” Disjunctive Kriging
“SK” Simple Kriging.
then we have,
N
[Ha(y(@)]* = AniHa(y:) (41)
i=1

where the \,; satisfy the SK system

N
> AnCov{H(yi), Ha(y;)} = Cov{Hn(ys), Hn(y(u))} (42)
j=1
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Using Equations 10 through 12, we can rewrite Equation 42 as;

N

Z nj pn] ,Ozu] (43)

As the correlation structure [p ( )]" of H,(y(u)) rapidly tends to one of pure nugget
effect, the kriged estimator at unknown point rapidly tends to its mean, that is, to zero. So
even if the coefficients, f,, are not negligible, we have to krige only fairly few polynomials
in Equation 40 to get the result.

Besides, for n series of polynomials, Kriging variance of the H, (y(u)) and that the DK
estimation variance of f[(y(u))] can be stated as;

N
U%(n =1- Z Anj [Pnj]n (44)
j=1
Var{fly(w)] — fly(w)]"*} = Z(fn) Tkn (45)

n=1

“1-point” Disjunctive Kriging

Given a conditional mean m, and variance O'; in Gaussian space, we can determine a one-
data-point data value, y;, with correlation p(h) so that the conditional variance and mean
are what we specify (my, UZ). The variance is written

72 =1 [p(h)? (46)
p(h) = /1 -0}
The mean m,, is written as;
my = p(h)y, (47)
We can write y1, as;

my
Y1 = 48
() ‘)

So, “one-data-point” DK with the data value being y; and p(h), will return a DK estimate
with the correct mean and variance.

When we have one data point, the DK kriging weight is [p(h)]”. Also, in case of one-
data-point, one can write the estimated Hermite Polynomials for point y(u), as;

[Hn(y(w)]" = MHp(y1) + (1= M) E{Hn(y)} (49)

since E{H,(y)} = 0 (see Equation 7), the second term in Equation 49 vanishes and results
in:

[Hn(y(0))]" = [p(0)]" Hn(y1) (50)

after a substitution of A\; = [p(h)]" in Equation 49, Equation 50 is the final form of Hermite
Polynomials of conditional distributions.

16



Derive the Conditional Distribution

Case A: m, and 05 known

Our aim in this section is to calculate the local conditional distributions, F'(u; z|(n)), (ccdf)
from the given m, and 02. The steps for the “analytical” derivation of these ccdfs are

outlined:
e Tranform the original variable z;,i = 1,..., N into Gaussian space (i.e. y; = G~'(F (%)),
i=1,...,N)

e Using Equation 6, calculate the Hermite polynomials for all the Gaussian transformed
y; data values (i.e. Hy(y))

e Calculate the p(h) and y;, (one-data-point DK) using the Equation 46 and Equation
48.

e Calculate the Hermite polynomials for the y;, (i.e. Hy,(y1))

e Calculate the simple kriging Hermite polynomials for point of y(u) using Equation 50
(ie. [Hn(y(w))]" = [p(h)]"Hy(y1))

e Now, in order to calculate the full ccdf, we need to calculate the complete series of
indicator values of I,(y)<,, using Equation 34. Then, the DK estimator is obtained
by kriging each of the H, (y(u)) separetly.

o0

[L(wy<z)”" = Glye) + D Huo1(4e)9(ye) [Ha(y(u))]*" (51)

n=1
where, simple kriging Hermite polynomials, [H, (y(u))]*% = [p(h)]" H, (y1).

e All the terms in Equation 51 have been calculated in previous steps. The local con-
ditional cumulative density function is given by [I. Z(u)<ZC]D K,

e In order to get the probability density functions (i.e. pdfs) from ccdfs, one can uni-
formly sample from the calculated ccdfs and retrive the corresponding data values,
(z;(u),s =1,...,K), where K is the number of uniformly sampled discretized values.
The pdf can be established by getting the histogram of the z;(u).

e Once we have the probability density function, the conditional mean, m, and condi-

2 can be calculated using the relations:

tional variance, o

m, = Z{i}?z(u) (52)
ol = Efil[zi(;) —mel (53)
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Bimodal case (my=-1.0, vary=1.0)

Bimodal case (my=0.0, vary=1.0)

_Bimodal case (my=1.0, vary=1.0)
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Figure 7: Non-standard distributions for lognormal data generated by Hermite polynomials
(from left to right: mean in normal space: -1.0/0.0/1.5; from top to bottom: variance in
normal space: 1.0/0.5/0.1).

e By using the “Graphical” technique, we have already presented the conditional prob-
ability distributions for lognormal, bimodal and uniform distributiona for different
mean and variance in Gaussian space (Figures 1, 2 and 3). As an example application,
by using the new analytical relations, we will try to reproduce all those conditional

probability distributions for lognormal, bimodal and uniform distributions.

The same mean and variance configurations used in Figures 1, 2 and 3 are also used
for this section in order to calculate those conditional probability distributions by
using one-data-point DK and Hermite polynomials. Generated ccdfs for lognormal,
bimodal and uniform distributions are presented in Figures 7, 8 and 9. When we
compare the corresponding figures, it is seen that new anaytical technique reproduces

all the desired conditional probability distributions, m, and o73.
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Figure 8: Local

wal

distributions for bimodal data generated by Hermite polynomials (from
left to right: mean in normal space: -1.0/0.0/1.5; from top to bottom: variance in normal
space: 1.0/0.5/0.1).
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Figure 9: Non-standard distributions for uniform data generated by Hermite polynomials
(from left to right: mean in normal space: -1.0/0.0/1.5; from top to bottom: variance in

normal space: 1.0

/0.5/0.1).
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Case B: Direct Inference from m, and o?

The value of having an analytical relation to calculate the local condtional distributions,
F(u;z|(n)), from the given m, and o2 is obvious. The proposed analytical technique in Case
A is definitely a good starting point; however, it does not go far than calculating the ccdfs
relatively quickly in case of having m, and 02. The main motivation for calculating the
ccdfs directly is the desire of using them in direct sequential simulation technology. In such
case, our hope is to replace all the graphical transformation and extensive lookup table
construction with anaytically defined, easy to be calculated and implemented equations.
The steps for the direct calculation of ccdfs are outlined;

e Tranform the original variable z;,i = 1,..., N a into Gaussian space (i.e. y; =
G Y(F(z))yi = 1,...,N)

e Using Equation 6, calculate the Hermite polynomials for all the Gaussian transformed
y; data values (i.e. H,(y))

e Using Equation 27, calculate the Hermite coefficients for all the Gaussian transformed
y; data values (i.e. fp)

e The main difference of Case B from Case A is that the p(h) and the y; are not read-
ily available to proceed to get the ccdfs. Both the p(h) and the y; values could be
determined either by iteration or minimization methodolies. We chose the minimiza-
tion technique and try to get the p(h) value by minimizing the difference between
the calculated conditional variance, 0% ;- and the given o2. For a one-data-point DK,
Kriging variance (Equation 44) can be written as

Ohen =1 Z Alp(h)ng]" =1 = [p(h)]*" (54)
J

where, A\; = [p(h)]™.

The conditional variance, which is the variance of DK can be calculated by inserting
the Equation 54 into Equation 45 and reorganizing it as:

oo

obx = Y _(fa)?[L = (p(h)*"] (55)

1

By minimizing the difference [0% ;- — 0'2], optimum correlation coefficient, p(h) can be
found.

Now we can use the p(h) value in order to determine the one-data-point, y;. The DK
estimate z*(h) could be calculated as (see Equations 14):

Z(u) =) fuHa(y (w)) (56)
n=0

For a one-data-point DK case and using the relation 50, Equation 56 can be written
as:

Z*(u) =) falp(h)"Hy(y1) (57)
n=0
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By minimizing the difference (2*(u) —m,), optimum y; can be calculated. Once we
have determined the (p(h)) and the y;, the determination of ccdfs is same as that of
Case A.

e Although we have just outlined the determination of ccdfs, once we know the m,
and o2, we could not able to produce the ccdfs using this technique. One alternative
technique could be the “conditional expectation” concept.

Conclusion

An alternative analytical technique has been developed to calculate local conditional dis-
tributions (ccdfs) using the theory of Hermite polynomials and Disjunctive Kriging. For a
given mean and variance in Gaussian space, one can calculate the conditional distributions.
Our main aim was to calculate the ccdfs having mean and variance in the original data
space.

References

Deutsch, C. V., Tran, T. T. and Xie, Y. L., An approach to ensure histogram reproduction in
Direct Sequential Simulation, In C. V. Deutsch editor, 2001 CCG Report, CCG, University
of Alberta, Canada, 2000.

Deutsch, C. V. and Journel, A. G., GSLIB: Geostatistical Software Library and User’s
Guide, Oxford University Press, New York, 1992.

Oz, B., Deutsch, C. V., Tran, T. T. and Xie, Y. L., DSSIM-HR: A FORTRAN 90 Program
for Direct Sequential Simulation with Histogram Reproduction, submitted to Computer &
Geosciences, November 2001

Goméz-Herndndez, Disjunctive Kriging: The Untold Story, Department of Applied
Earth Sciences, Stanford University, CA, 94305-2225

Journel, A. G., Class notes on sequential simulation, Stanford University, CA, 1986

Rivoirard, J., Introduction to Disjucntive Kriging and Non-linear Geostatistics, Claren-
don Press, Oxford, 1994.

Isaaks, E. H., and Srivastava, R. M., An Introduction to Applied Geostatistics, Oxford
University Press, 1989.

22



