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Abstract

Optimal reservoir management requires reliable reservoir performance forecasts with as little uncer-
tainty as possible. Incomplete data and inability to model the physics of fluid flow at a suitably
small scale lead to uncertainty. Subsurface reservoir models that “by construction” honor historical
production data should yield significantly more accurate predictions of reservoir performance with
reduced uncertainty than those that do not. This research aims to develop a new technique that
link temporal production data and static spatial constraints on the distribution of permeability and
porosity in reservoir models.

The technique developed here for simultaneous inversion of permeability and porosity builds upon
the approach of Sequential Self-Calibration (SSC) method for simple permeability inversion. In order
to integrate both porosity and permeability simultaneously the algorithm for sensitivity coefficients of
reservoir response variables with respect to reservoir parameters are modified. The algorithm relies
on collocated cokriging equation for permeability models using porosity models. This paper presents
the developed inversion algorithm. Applications of the algorithm to some synthetic and realistic
examples have been discussed. Also discussed are a number of implementation issues and some
important sensitivity studies.

Introduction

Reservoir development planning using detailed 3D reservoir models requires models of structure,
stratigraphy, and properties. Interpretive, deterministic and geostatistical techniques for construct-
ing models of lithofacies and properties are used that constrain the models to static data from core,
logs, seismic, and geologic interpretation. In general, however, honoring all data including the dy-
namic pressure or historical production data is quite difficult. In practice, trial-and-error history
matching is still the most common approach at the final stage of modeling. The problem of fully
integrating production and pressure data in the construction of reservoir models lends itself to a va-
riety of approaches. Property models within the volume of influence of a well are generated through
a one-step mathematical inversion of the pressure response. The problems with these techniques are
the intense computations required to generate a solution that is not unique and may be inconsistent
with some of the static data. In other approaches, the property models are generated in several
steps with a first-step coding of the well-derived data into a spatial property representation.

There is a strong need for improvement in the available techniques of dynamic data integration
to construct realistic reservoir models. State-of-the-art technologies suffer from the limitation of not
accommodating realistically complex heterogeneities of the subsurface reservoir system. Incorpora-
tion of simplistic physics and homogenization of critical reservoir features are still the only way to



resolve this reservoir characterization problem. The reason for adapting such naive approaches is
not the lack of motivation, but the problem is an inverse problem and highly underdetermined.

In this paper, we present an inversion algorithm developed to simultaneously generate porosity
and permeability models using available production data and static information. Applications of
the algorithm to some synthetic and realistic examples have been discussed. Also discussed are a
number of implementation issues and some important sensitivity studies.

Problem Description

Characterization of detailed 3-D reservoir models entails working in an almost infinite dimensional
space with multitude of parameters to be estimated. There are various reservoir model properties for
which inversion techniques are applied. In most cases, these reservoir parameters are communica-
tion between strata and across faults through transmissibility, distance to boundaries, effective flow
capacities in the vicinity of wells, productivity of wells, measures of interwell communication (abso-
lute/relative kh), coarse grid representation of kh, or ¢, facies connectivity between wells, drainage
volumes around wells, facies proportions around/between wells, connectivity between wells and con-
nected surfaces,local measures of heterogeneity (e.g., variogram, covariance, mean and variance of
permeability and porosity), etc.

Production data integration in reservoir characterization is an inverse problem. The intent of such
study is to build numerical reservoir models that by construction integrate all types of dynamic data
along with all static information about the reservoirs. In this study, an algorithm for simultaneous
inversion of porosity and permeability using production data and other available static information
has been developed.

Simultaneous Inversion Problem

Algorithm for simultaneous inversion of porosity and permeability is based on geostatistical tech-
niques [2] involved in reservoir model building through static data integration. It is quite popular to
build geostatistical reservoir porosity models by kriging [1] and then generate permeability models
by collocated cokriging [3] method using porosity values. Thus, the inversion algorithm adopted is
based on the underlying geostatistical equations.

The approach is to first do simple (or ordinary) kriging from porosity (¢) data to get estimation
of ¢ at all locations, then perform collocated cokriging to estimate y = log(k). The simple kriging
equation for ¢ at location i is

Nmp
b= T (1)

j=1
where ¢;, j =1,...,n,, are the porosity values at the master points, n,,;, number of master points,

and Tfj the kriging weights at a location ¢ for porosity value at any master point ¢;. While the
collocated cokriging equations for y; at location i is give by

Nmp
yi =Y 1y + & (2)

i=1
where y;, 7 =1,...,nmp are the permeability logarithm values at the master points, Tf’:j the kriging

weights at location ¢ for y; value at any master point, &; the collocated kriging weights at location
1 for the collocated secondary variable ¢;.
Markov assumption of first kind is then used in collocated cokriging, which entails the linear
regression model between y and ¢:
y=pp+r (3)

where p is the global correlation coefficient between y and ¢, and r a random component.



Relationship (3) is used as a closure. Combining above relationships, we have:

y; 0¢; y 0¢; 0¢;
=7.+& -
dy; oy; " . 0¢; Oy

This equation describes the change of y at any location ¢ due to the change of y at a given master
point j. It should be noted that the second term is set to zero if p = 0; then collocated kriging
equation becomes simple kriging equation.

Based on this, we can build in the correlation relationship into flow equation to get sensitivity
of pressure on y and ¢. Details are as follows:

Discretization of flow equation with an implicit scheme leads to the following equation:

Ap™t' =Bp" + " (5)

1
:Tz?{j +&i :7';{]' +£i7';?j; (4)

A, B, and f have close form equation. It is possible to obtain derivatives of A, B, and f with respect
to y. A point to be noted that A and B are explicit functions of & = exp(y), and only the diagonal
terms of these matrices have terms depending on ¢. However, since y is correlated to ¢ (as shown
in Equation 2), non-diagonal terms of both A and B are also dependent on ¢ implicitly. Thus, we
need to extend this to include ¢ being a variable as well.

Elements of A are the sum of transmissibilities. Using geometry averages of permeabilities in
the transmissibility calculation in the code, we have for any two adjacent grid cells 1 and 2

+
T172 =Vkiks = exp {u} (6)

2

where y; = log(k1) and y» = log(k2). Consequently, the derivatives are computed as

BTLQ o ].T1,2 <6y1 %)

dy; Oy,
The sensitivity coefficients in the above equation can be calculated using (4).
For terms of A and B having ¢ variable, we need

00; _ 00: 005 _ T ®)
0y; 0¢; Oy; p

Again right hand side of the above equation is set to 0 when p = 0. Using Equations 7 and 8, we
can compute derivatives of A, B, and f with respect to y, and obtain the sensitivity of pressure on
y, i.e., Op;/0y;.

The sensitivity of pressure on porosity can be similarly calculated. In order to compute derivatives
of A, B, and f with respect to ¢ at any master point j, we need the sensitivity coefficients of y;
with respect to ¢;. Applying Equation 4 and chain rule, we have

(7)
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Introducing above relationships into the derivative of Equation 5, engenders:

Opi _ Opi Oy; _ Opi
96;  y; 00; " dy;
It is observed from the above relationship that we do not need to solve equation again to get
sensitivity coefficient of porosity, but just using the linear regression relationship to get the sensitivity
coefficients of the response variables with respect to ¢ from those with respect to y. Again when
p = 0, Equation 10 can not be used, and we need to use 9 to compute the derivatives in Equation
5 to get the sensitivity coefficients with respect to porosity. Such calculation would be simple since
there is no permeability term. It is now possible to perform the optimization to find the optimal
Ayjand Agj, j=1,...,nmp -
Having performed the optimization, we propagate the optimal perturbations into the entire
domain using collocated cokriging (Equations 1 and 2).
Thus, the algorithm for the simultaneous porosity and permeability inversion is laid out below.

(10)



1. Selection of master points.

2. Performing simple (or ordinary) kriging on ¢ to get kriging weights Tff ; at a location ¢ for
Gi, J=1,...,nmp.

3. Collocated cokriging with Markov-type assumption and obtain cokriging weights Tf{ ; and &.

4. Solution of pressure equations.

5. Computing derivatives of matrices in Equation 5 with respect to y; for all master points.

Computing sensitivity coefficients with respect to y.

Computing sensitivity coefficients with respect to ¢ using Equation 10 or 9.

Performing optimization to compute optimal change of Ay; and Ag;.

© % N

Propagating changes into entire domain.
10. Updating initial ¢ and y fields.
11. Repeating Step (1) to (10) till convergence is achieved.

Thus, a methodology has been developed for simultaneous inversion of porosity and permeability.
The algorithm for computing the sensitivity coefficients is based on kriging equation for porosity
and collocated cokriging equation for permeability modeling in the framework of Sequential Self-
Calibration technique. It essentially utilizes the geostatistical correlation involved in the kriging
equations and permeability sensitivity of the pressure equation. This approximation reduces dras-
tically the computation time for the porosity sensitivity and permeability sensitivity of the flow
responses separately.

Application of the Algorithm

A synthetic example is used here to evaluate the ability of the algorithm to generate models of poros-
ity and permeability from multiple well production data. In this example, first, reference porosity
and permeability models are constructed, and then, the dynamic pressure responses at a number
of wells, caused by changing flow rates, are obtained by flow simulation. On the basis of dynamic
flow rate and pressure data and information on the variograms of porosity and permeability, the
new algorithm is used to invert for both porosity and permeability fields that match the production
data. Then, the inverted fields are compared with the reference field to evaluate the capability of
the algorithm.

Example 1. This example is a 2D, 4,000-ft> domain that is discretized into 25 x 25 grid cells of
160 x 160 ft. There is a high porosity (0.25) and high permeability (500 mD) band connecting the
lower-left corner and upper-right corner. The porosity and the permeability in other areas are 0.175
and 10 mD, respectively. Figure 1 shows the reference porosity and permeability fields. There are
four wells: W1 at the center of the cell (5,21), W2 at (21,21),W3 at (5,5), and W4 at (21,5). The
four boundaries are no-flow boundaries, reservoir thickness is 100 ft, viscosity is 0.2 cp, formation
compressibility is 1076 psi—!, and well radius is 0.3 ft. For global distribution (histogram) of porosity
and permeability, we have used bimodal distributions that are present in the reference field.

Figure 2 shows the imposed producing rates and the corresponding pressure responses at the
different wells solved numerically. Different shut-in times for different wells are intended to create
some well interference so that more information on spatial variations of permeability is contained in
the production data.

Simultaneous porosity and permeability inversion can be difficult if not impossible in many cases.
Conflicting information of various data contributes to a suite of options for the implementation. The
present code facilitates the option of using production data and other hard petrophysical information
in terms local hard data or global distribution, mainly histogram. Results obtained using various
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Figure 1: Reference deterministic porosity and permeability fields: Example 1.

options are informative. On the basis of production and pressure data at the four wells, the new
method was used to estimate the spatial distribution of both porosity and permeability. Inverted
models from runs with various options are discussed and analyzed below. Sensitivity of the inverted
models to the selection of various anisotropy, initial fields, optimization parameters, search radii,
and so forth will be demonstrated later.

For all the runs below, we used initial porosity and permeability fields of ¢ = 0.4 and In(k) = 3.15
In(mD), respectively. From prior information on variography, anisotropic variograms with very long
correlation length (about 8,000 ft) in the 45° direction for both porosity and permeability were
employed. All data and parameter files required for the runs are provided in the appendix.

e Run 1: Inversion with production data, global histogram, prior information on
variography, and local hard data.

Local hard data considered are porosity values of 0.175, 0.25, 0.25, and 0.175 for cells (5,21),
(21,21),(5,5), and (21,5) respectively. Permeability values for the same cells are 2.3026, 6.2146,
6.2146, and 2.3026 In(mD) respectively.

The inverted models are obtained after 17 outer iterations (75 seconds in 733 MHz dual pro-
cessor workstation). The pressure responses in the updated porosity and permeability fields
converge to the reference pressure data. These inverted models are shown in Figure 3. The spa-
tially connected high porosity/permeability bands connecting W2 and W3 are clearly evident.
Figure 4 shows the pressure values at the four wells computed from the true (from reference),
initial and final updated porosity and permeability fields. Pressure responses in the initial field
deviate significantly from the true values because of the poor model; however, the updated
fields by the new method accurately reproduces the true pressure data at all wells. The ob-
jective function values of the inversion process is shown in Figure 5. Final average pressure
mismatch (in L? norm sense) for 200 data was 4.1 psi, which is remarkably small as evident
from the pressure match in Figure 4. Updated porosity and permeability fields after each outer
iteration of the inversion method are shown in Figures 6 and 7. Number of function evaluation
in the inner optimization loop for each outer iteration are shown in Figure 8. It should be
noted that number of function evaluation curve gives information on the termination criteria
having been met or not. If the number of function evaluation is at the assigned minimum then
it can said that either objective function termination criterion or gradient termination criterion
has been met. On the other hand, curve of the norm of the objective function gradient gives
an indication of the amount of change taken place in the inner optimization module at the
termination of each outer iteration. Higher norm values imply more changes in the solution
space. Norm of objective function gradient in the inner optimization loop at each outer itera-
tion is shown in Figure 9. More information could be derived from the gradient curves of the
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Figure 2: Production data (both pressure and flow rates) obtained from the reference field: Example 1.



Updated Porosity Field: Example 1 Run 1 Updated Ln(k) Field: Example 1 Run 1
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Figure 3: Updated porosity and permeability fields honoring production data, local gard data, global
distribution and prior variography information : Example 1 Run 1.

objective function with respect to Master Point porosity and permeabilities. These gradient
curves of the objective function at each outer iteration are shown in Figure 10. Analyzing these
curves, one can identify the which Master Points are more effective in the inner optimization
subproblem. One could also determine variations in the sensitivities at each outer iteration.

At this point, it would be interesting to see how the porosity and permeability models and their
pressure responses when only only static information is used. Figure 11 shows the conditionally
simulated porosity and permeability fields using local hard data, prior global distribution and
information on variography. So, no production data information is captured in these models.
The models themselves appear to have the major features of the reference models. However,
the pressure responses (shown in Figure 12) computed from these models deviate from those
in the reference field significantly.

If the global distribution is not used in static inversion (conditional simulation), the models
and their pressure responses deviate drastically from the reference model. Figure 13 shows
these conditionally simulated porosity and permeability fields. Figure 14 shows the computed
pressure responses of these models. Comparison with these conditionally simulated models
with the models inverted using production data gives us an idea of what information can be
resolved and how much of it by using production data. It is important to realize that more
data we integrate, the better resolved the model. On the contrary, it must also be understood
that information from different data can be conflicting and the algorithm we develop cannot
implement global optimality criteria. Thus, sometimes in spite of using more data we are stuck
with a poor model due to lack of convergence to the global minima and conflicting information.

e Run 2: Inversion with production data, global histogram, prior information on
variography, but no local hard data.

The inverted models are obtained after 5 outer iterations (26 seconds in 733 MHz dual processor
workstation). The pressure responses in the updated porosity and permeability fields converge
to the reference pressure data. These inverted models are shown in Figure 15. The spatially
connected high porosity /permeability bands connecting W2 and W3 are clearly evident. Figure
16 shows the pressure values at the four wells computed from the true (from reference), initial
and final updated porosity and permeability fields. Interesting to note that pressure match in
this case is even better than the previous case. Pressure responses in the updated fields by the
new method accurately reproduces the true pressure data at all wells. The objective function
values of the inversion process is shown in Figure 17. Final average pressure mismatch (in L2
norm sense) for 200 data was 1.7 psi (compared to 4.1 psi in Run 1). However, close inspection
of the final models tells us that these models do not accurately capture the major features in
the reference field. Updated porosity and permeability fields after each outer iteration of the
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Objective function values

10

o
s

0.001.

Objective function values: Example 1 Run 1

4.0

Outer Iteration

12.0 16.0

Figure 5: Objective function values of the simultaneous inversion process : Example 1 Run 1.



Reference Porosi
o

¥ (eey

400000

00000

¥ (fee)

o

T

X (fee)

Field: Example 1 Run 1

Updated Porosity Field Iteration 3

Updated Porosity Field Iteration 7.

X (fee)

Updated Porosity Field Iteration 11

X (feet)

w0

Updated Porosity Field Iteration 15

Mu.

o

Figure 6: Updated porosity fields

1.

00

5000

000

5000

3000

5000

000

3000

Initial Porosity Field: Example 1 Run 1

¥ (fee

X (feet)

Updated Porosity Field Iteration 4

Updated Porosity Field Iteration 8

400000

X (fee)

Updated Porosity Field Iteration 12

Updated Porosity Field Iteration 16

o009
so00
4000
000
2000
1000
o

¥ (feet)

g X (ee) w00

Updated Porosity Field Iteration 1

00000
5000
000
000

H
> 2000
1000

X (fee)

Updated Porosity Field Iteration 5

Updated Porosity Field Iteration 9

400000

X (fee)

Updated Porosity Field Iteration 13

1000

¥ (fee) g
° 5 8 5 8
g 8 &8 8

X (feet)

Sim Inv Porosity Ref2 (Ini 0.4/3.15)

ooy
so0
a0
o0
i
H
a0
100
o
d
g = oon

Updated Porosity Field Iteration 2

5000

000

000

¥ (fee

2000

1000

X (fee)

Updated Porosity Field Iteration 6

¥ (fee)

X (feet)

Updated Porosity Field Iteration 10

400000
5000

2000

000

2000

1000

X (fee)

Updated Porosity Field Iteration 14
00000

¥ (fee)

2000

X (feet)

at each iteration of the simultaneous inversion process : Example 1 Run



Reference Ln(k)Field: Example 1 Run 1
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Figure 7: Updated Ln(k) fields at each iteration of the simultaneous inversion process : Example 1 Run 1.
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Figure 15: Updated porosity and permeability fields honoring production data, global distribution and
prior variography information but no local hard data : Example 1 Run 2.

inversion method are shown in Figures 18 and 19. In fact, the inner optimization gets confined
in a local minima within first the outer iteration. This is evident from the curves of number
of function evaluation and norm of objective function gradient in the inner optimization loop.
Number of function evaluation in the inner optimization loop for each outer iteration are shown
in Figure 20. Norm of objective function gradient in the inner optimization loop at each outer
iteration is shown in Figure 21. The gradient of the objective function at each outer iteration
is shown in Figure 22.

e Run 3: Inversion with production data, prior information on variography and local
hard data, but no global distribution.

Local hard data are employed same as those considered in the Run 1. These are porosity values
of 0.175, 0.25, 0.25, and 0.175 for cells (5,21), (21,21),(5,5), and (21,5) respectively. Perme-
ability values for the same cells are 2.3026, 6.2146, 6.2146, and 2.3026 In(mD) respectively.

The inverted models are obtained after 7 outer iterations (44 seconds in 733 MHz dual pro-
cessor workstation). The pressure responses in the updated porosity and permeability fields
converge to the reference pressure data. These inverted models are shown in Figure 23. The
spatially connected high porosity/permeability bands connecting W2 and W3 are clearly ev-
ident. Figure 24 shows the pressure values at the four wells computed from the true (from
reference), initial and final updated porosity and permeability fields. The objective function
values of the inversion process is shown in Figure 25. Final average pressure mismatch (in L>
norm sense) for 200 data was 9.1 psi. Compared to the first two runs, this is a relatively high
number. Updated porosity and permeability fields after each outer iteration of the inversion
method are shown in Figures 26 and 27. Number of function evaluation in the inner optimiza-
tion loop for each outer iteration are shown in Figure 28. Norm of objective function gradient
in the inner optimization loop at each outer iteration is shown in Figure 29. The gradient of the
objective function at each outer iteration is shown in Figure 30. Having observed these graphs
and the pressure mismatch curves, it can be said that prior information of global distribution
is important in the inversion process.

e Run 4: Inversion with production data and prior information on variography, but
no local hard data or global distribution.

The inverted models are obtained after 10 outer iterations (47 seconds in 733 MHz dual pro-
cessor workstation). The pressure responses in the updated porosity and permeability fields
converge to the reference pressure data. These inverted models are shown in Figure 31. The
spatially connected high porosity/permeability bands connecting W2 and W3 are clearly ev-
ident. Figure 32 shows the pressure values at the four wells computed from the true (from
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Figure 16: The pressure responses computed from intial (dashed lines) and updated (bullets) porosity and
permeability fields with the true data (solid lines) : Example 1 Run 2.

10__ Objective function values: Example 1 Run 2
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Figure 17: Objective function values of the simultaneous inversion process : Example 1 Run 2.
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Figure 18: Updated porosity fields at each iteration of the simultaneous inversion process : Example 1 Run
2.
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Figure 19: Updated Ln(k) fields at each iteration of the simultaneous inversion process : Example 1 Run 2.
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Figure 20: Number of function evaluation in the inner optimization loop for each outer iteration: Example

1 Run 2.
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Figure 22: Gradient of the objective function with respect to Master Point permeability (solid lines) and

porosity (dashed lines) at each outer iteration: Example 1 Run 2.
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Updated Ln(k) Field: Example 1 Run 3
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Figure 23: Updated porosity and permeability fields honoring production data, local hard data and prior
variography information but no global distribution : Example 1 Run 3.
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Figure 26: Updated porosity fields at each iteration of the simultaneous inversion process : Example 1 Run
3.

Figure 25: Objective function values of the simultaneous inversion process : Example 1 Run 3.
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Figure 27: Updated Ln(k) fields at each iteration of the simultaneous inversion process : Example 1 Run 3.

Figure 28: Number of function evaluation in the inner optimization loop for each outer iteration: Example

1 Run 3.
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0.001__Norm of objective function gradient (Inner Optimization): Example 1 Run 3
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Figure 29: Norm of objective function gradient in the inner optimization loop at each outer iteration:
Example 1 Run 3.
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Figure 30: Gradient of the objective function with respect to Master Point permeability (solid lines) and
porosity (dashed lines) at each outer iteration: Example 1 Run 3.
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Updated Porosity Field: Example 1 Run 4
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Figure 31: Updated porosity and permeability fields honoring production data, and prior variography
information but no local hard data or global distribution : Example 1 Run 4.

reference), initial and final updated porosity and permeability fields. The objective function
values of the inversion process is shown in Figure 33. Final average pressure mismatch (in L>
norm sense) for 200 data was 33.3 psi, which is a relatively high value. This poor match is
evident in the pressure match in Figure 32. Updated porosity and permeability fields after each
outer iteration of the inversion method are shown in Figures 34 and 35. Number of function
evaluation in the inner optimization loop for each outer iteration are shown in Figure 36. Norm
of objective function gradient in the inner optimization loop at each outer iteration is shown
in Figure 37. Examining the norm of the objective function gradient, it can inferred that outer
optimization has not reached the region of a minima. In fact, the gradients of the objective
function at each outer iteration (shown in Figure 38) are significantly low to arrive at the min-
ima. This is natural to expect this poor match and model generation with only information
from production data but no hard information of local or global spatial variability.

Some Sensitivity Studies

It is natural to ponder upon the performance and reliability of the developed algorithm. Is there
any norm to evaluate the algorithm? Or even if norms exist, is the algorithm sensitive to extreme
cases? We performed a number of sensitivity studies to ascertain how robust is the developed code
for simultaneous inversion of porosity and permeability.

e Sensitivity to initial porosity /permeability fields.

The dynamic data integration algorithm relies on a minimization subproblem. In a gradient
based minimization technique, initial model is an important factor for convergence. Thus, in
our data integration problem porosity and permeability fields could as well be vital in the
convergence of the algorithm. In order to illustrate the sensitivity of the inversion response to
initial fields, we performed a number of exercises almost exactly similar to Example 1 Run 1
inversion but starting from different initial fields. The responses of the sensitivity exercise with
different initial fields are tabulated in Table 1. Also shown in the table are the performance
of Example 1 Run 1 for the purpose of comparison.

The inverted models from the three sensitivity runs are shown in Figures 39, 40, and 41,
respectively. The spatially connected high porosity/permeability bands connecting W2 and
W3 are evident in all the inverted models except for the last one where the initial porosity and
permeability fields are 0.4 and 6.0, respectively. Interestingly looking at the objective function
values of the inversion processes in Table 1, we find that the last run has the best average
pressure match.
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Figure 32: The pressure responses computed from intial (dashed lines) and updated (bullets) porosity and
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Figure 33: Objective function values of the simultaneous inversion process : Example 1 Run 4.

S. No. Initial ¢ | Initial In(k) | Avg Mismatch | Outer Iter | CPU Time
p.u. In(mD) psi (L? norm) sec
1 0.2 1.0 5.82 9 37
2 0.2 3.15 4.38 16 76
3 0.2 6.0 4.18 18 75
Ex1Run1 0.4 3.15 4.1 17 75

Table 1: Sensitivity of simultaneous inversion to initial porosity and permeability fields
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Figure 34: Updated porosity fields at each iteration of the simultaneous inversion process : Example 1 Run
4.
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Figure 35: Updated Ln(k) fields at each iteration of the simultaneous inversion process : Example 1 Run 4.
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Figure 36: Number of function evaluation in the inner optimization loop for each outer iteration: Example
1 Run 4.
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Figure 37: Norm of objective function gradient in the inner optimization loop at each outer iteration:
Example 1 Run 4.
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Figure 38: Gradient of the objective function with respect to Master Point permeability (solid lines) and
porosity (dashed lines) at each outer iteration: Example 1 Run 4.

From the sensitivity exercise, it can be said that the algorithm has reasonable robustness
feature with respect to the initial fields. However, the fact that there is no optimality criteria
for global minima resounds its importance again. Some initial fields will fare better than
others. Also, this sensitivity study reveals that looking only at the pressure match might not
be a good rationale. Perhaps a regularization method with a model mismatch term will be even
more effective criteria. Notwithstanding the fact that such regularization will also improve the
stability of the algorithm.

e Sensitivity to number of Master Points.

Master points are the cells of the model where porosity and permeability values are iteratively
updated in order to minimize the pressure mismatch. Determinacy of an inversion problem
could strongly depend on the relative amount of data and unknown parameters involved. Thus,
number of Master Points could be an important element in the solution of the data integration
algorithm.

In order to illustrate the sensitivity of the inversion response to number of Master Points, a
number of exercises almost with the specification as that in Example 1 Run 1 inversion is
performed with varying number of Master Points. The number of Master Points are varied
from 2 x 2 (=4) to 7 x 7 (=49). The responses of the sensitivity exercise with different number
of Master Points are tabulated in Table 2. Also shown in the table are the performance of
Example 1 Run 1 for the purpose of comparison.

The inverted models from these sensitivity runs are shown in Figures 42, 43, 44, 45, and 46,
respectively. The spatially connected high porosity/permeability bands connecting W2 and
W3 are evident in all the inverted models. The objective function values of the inversion
processes in Table 2 are reasonably good and ranges from 2.2 to 4.7 in L? norm sense.

Envisaging the inverted models and the performance of the inversion process, increasing the
number of Master Points may not improve the inversion pressure match. Having too few or
too many Master Points might not be able to capture the major features as can be seen from
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Figure 39: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using initial ¢ = 0.2 and In(k) = 1.0 In(mD).
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Figure 40: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using initial ¢ = 0.2 and In(k) = 3.15In(mD).
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Figure 41: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using initial ¢ = 0.2 and In(k) = 6.0 In(mD). (Poor model)
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S. No. No. of Master Points | Avg Mismatch | Outer Iteration | CPU Time

X-Y psi (L? norm) sec

1 2-2 3.01 15 15

2 3-3 2.24 12 20

3 4-4 4.52 12 35

4 6-6 3.22 18 92

5 7-7 4.65 10 112

Ex 1 Run 1 5-95 4.1 17 75

Table 2: Sensitivity of simultaneous inversion to number of Master Points
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Figure 42: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using 2 x 2 Master Points.

this exercise. In case of 3 x 3 Master Points, although the mismatch norm is low (2.24),
the inverted models have not captured the major features well relatively. It should be noted
that as the number of Master Points increases, it becomes more computation intensive thus
increasing the execution time.

e Sensitivity to updating of Master Point locations.

Previous section dealt with the number of Master Points. It is conjectured that updating or
changing the locations of the Master Points has a significant effect in the inversion process.
The reason for such impact is that the inner optimization is actually implemented to find a
minima. It cannot guarantee convergence to the global minima. In case of a situation where
we are stuck with a local minima, it might be possible to shift away from the local minima to
elsewhere in the feasible space by changing the locations of the Master Points.

For investigating the sensitivity of the inversion response to location of Master Points, a number
of exercises almost with the specification as that in Example 1 Run 1 inversion is performed
with updating the Master Points after every few outer iterations. The frequency of updating
of Master Point locations are varied from 1 to 10. The responses of the sensitivity exercise
with different updating frequency are tabulated in Table 3. Also shown in the table are the
performance of Example 1 Run 1 for the purpose of comparison. It should be noted that 5 x
5 (=25) Master Points are used in Example 1 Run 1 for the inversion.

The inverted models from these sensitivity runs are shown in Figures 47, 48, 49, 50, 51 and 52,
respectively. Inverted models are almost exactly similar in appearance. The objective function
values of the inversion processes in Table 3 varies from about 1.6 to 8.3 in L? norm sense.
Evidently, frequency of updating Master Point locations affects the number of outer iterations
required to have the minimum mismatch shown in Table 3. However, it appears that location
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Figure 43: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using 3 x 3 Master Points.
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Figure 44: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using 4 x 4 Master Points.
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Figure 45: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using 6 x 6 Master Points.
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Updated Porosity Field: Number of MP 7X7 Updated Ln(k) Field: Number of MP 7X7
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Figure 46: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using 7 x 7 Master Points.

S. No. Updating Freq | Avg Mismatch | Outer Iteration | CPU Time

psi (L? norm) sec

1 1 6.30 8 46

2 2 6.26 13 64

3 3 1.62 15 70

4 4 7.35 16 72

5 8 8.27 16 74

6 10 4.45 9 40
Ex1Run 1 ) 4.1 17 75

Table 3: Sensitivity of simultaneous inversion to updating frequency of Master Point locations
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Figure 47: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every outer iteration.

Updated Porosity Field: MP Updating Freq 2

1000.00| 4000.
.5000
.4000
.3000
.2000
.1000
0
.0

X (feet) 4000.00

Updated Ln(k) Field: MP Updating Freq 2

.00]
7.000
6.000
5.000
4.000
3.000
2.000
1.000
40

X (feet) 4000.00

Y (feet)
Y (feet)

Figure 48: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every 2 outer iterations.

updating did not have the expected impact on convergence to global minima.

e Sensitivity to prior variogram information.

Prior variogram information is an important factor in a good reservoir characterization study.
From the first exercise in the previous section, it was evident that variography has a significant
impact on the inverted models. However, the right variography is extremely difficult to gather
if not impossible. So a sensitivity study of the models to variography could ascertain how well
the algorithm could resolve or characterize the reservoir parameters.

In order to illustrate the sensitivity of the inversion response to variography, a number of
exercises almost with the specification as that in Example 1 Run 1 inversion is performed
using different variogram information. The variogram information used for the sensitivity
studies are tabulated in Table 4. Variogram anisotropy was changed from a ratio of about 8:1
to 4:1. Anisotropy angle was varied from 20° to 70°. The responses of the sensitivity exercise
with different prior variography information are tabulated in Table 5. Also shown in the table
are the performance of Example 1 Run 1 for the purpose of comparison.

The inverted models from these sensitivity runs are shown in Figures 53, 54, 55, and 56,
respectively. Inverted models are almost exactly similar in appearance. The objective function

32



Updated Ln(k) Field: MP Updating Freq 3

4000.00|

7.000
6.000
5.000
4.000
3.000
2.000
1.000

X (feet) 4000.00

Updated Porosity Field: MP Updating Freq 3

1000.00]
.5000
-4000
.3000
.2000
.1000
0

X (feet) 4000.00

Y (feet)
Y (feet)

Figure 49: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every 3 outer iterations.

Updated Ln(k) Field: MP Updating Freq 4

4000.00|

7.000

6.000
5.000
4.000
3.000
2.000
1.000

X (feet) 4000.00

Updated Porosity Field: MP Updating Freq 4

1000.00]
.5000
.4000
.3000
.2000
.1000
0

X (feet) 4000.00

Y (feet)
Y (feet)

Figure 50: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every 4 outer iterations.
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Figure 51: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every 8 outer iterations.
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Updated Porosity Field: MP Updating Freq 10 Updated Ln(k) Field: MP Updating Freqg 10
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Figure 52: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information updating Master Point locations every 10 outer iterations.

S. No. In(k) Range | In(k) Angle | ¢ Range | ¢ Angle
X- Y () () | X-Y@) |
1 8100 - 1000 20 8000 - 1100 20
2 8100 - 1000 70 8000 - 1100 70
3 6100 - 1000 45 6000 - 1100 45
4 4100 - 1000 45 4000 - 1100 45
Ex 1 Run 1 | 8100 - 1000 45 8000 - 1100 45

Table 4: Prior variogram information used in sensitivity exercise.

S. No. Avg Mismatch | Outer Iteration | CPU Time
psi (L? norm) sec
1 2.80 20 89
2 2.35 12 63
3 3.40 14 66
4 2.23 16 76
Ex 1 Run 1 4.1 17 75

Table 5: Response of sensitivity exercise to prior variography information.
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Updated Ln(k) Field: Variogram Sensitivity 1
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Figure 53: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using variogram set 1 in Table 4.

Updated Ln(k) Field: Variogram Sensitivity 2
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Figure 54: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using variogram set 2 in Table 4.

values of the inversion processes in Table 5 varies from about 2.2 to 4.1 in L? norm sense.
These are reasonably good pressure match values.

e Sensitivity to inner optimization parameters.

In the inner optimization module, the object is to search for a primal local minima under
bound constraints of the ¢, In(k) correction values. An approximate subproblem of our original
data integration problem is formulated for the minimization. Questions occur: how good is
the solution of this optimization subproblem? Is there a possibility of data over-fitting in
the subproblem? Some qualitative answer to these legitimate questions can be scrounged by a
sensitivity study of the inversion algorithm to the inner optimization parameters. We can relax
the termination criteria in the minimization problem and analyze the final inverted models and
the number of function evaluations to arrive at these models.

In order to demonstrate the sensitivity of the inversion response to inner optimization parame-
ters, a number of exercises almost with the specification as that in Example 1 Run 1 inversion
is performed by varying the tolerance values for objective function convergence and norm of
the gradient. The inner optimization parameters used for the sensitivity studies are tabulated
in Table 6. The responses of the sensitivity exercise with different inner optimization parame-
ters are tabulated in Table 7. Also shown in the table are the performance of Example 1 Run
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Updated Porosity Field: Variogram Sensitivity 3
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Figure 55: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using variogram set 3 in Table 4.

Updated Porosity Field: Variogram Sensitivity 4 Updated Ln(k) Field: Variogram Sensitivity 4

4000.0
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Figure 56: Updated porosity and permeability fields honoring production data, local hard data, global
distribution and prior variography information using variogram set 4 in Table 4.
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S. No. Grad Norm Tol | Obj Func Tol | Obj Func Conv
No.
1 5.0 x10~2 1.0 x107° 40
2 5.0 x10~* 1.0 x10~° 10
3 5.0 x10°° 1.0 x10°° 10
4 5.0 x10~* 1.0 x10~* 40
Ex 1 Run 1 5.0 x10~° 1.0 x107° 40

Table 6: Inner optimization parameters used in sensitivity exercise.

S. No. Avg Mismatch | Outer Iteration | CPU Time
psi (L? norm) sec
1 2.51 18 79
2 6.93 14 50
3 3.72 7 32
4 3.35 10 36
Ex 1 Run 1 4.1 17 75

Table 7: Response of sensitivity exercise to inner optimization parameters.

1 for the purpose of comparison.

Inverted models (not shown here) capture major heterogeneity features of the reference field.
However, the objective function values of the inversion processes in Table 7 varies significantly
from about 2.5 to 6.9 in L? norm sense. Number of function evaluation in the inner optimization
loop for each outer iteration are shown in Figures 57, 59, 61, and 63, respectively for the
corresponding optimization parameters. Norm of objective function gradient in the inner
optimization loop at each outer iteration is shown in Figures 58, 60, 62, and 64, respectively.
It could be observed from these figures that when the tolerance for gradient comparison is
5 x 10~*, the number of function and gradient evaluation remains at the assigned minimum
(here 50) after first few outer iterations. However when this value is fixed at 5 x 10~ (more
stringent tolerance), this termination criteria is not met and the number of function evaluation
is much higher (over 1000). Minimum number of convergence of subsequent iterations has
minimal effect on the inversion process, as can be seen by comparing the gradient norm curves
in Set 1 with Set 2, and Set 3 with Set 4.

Some Implementation Issues

Issue 1:

Implementation issue regarding propagation of optimal corrections.

In the algorithm optimal corrections from the inner optimization at Master Point locations
are propagated onto the entire field by kriging. For ¢ corrections Ay ; we use kriging equation
(Equation 1), whereas for y = In(k) corrections A, ; we employ the collocated cokriging
equation (Equation 2). The correction propagation equations are shown in Equations 11 and
12 for ¢ and In(k) respectively.

Nmp

A(p’i = ZijA@j (].].)
j=1
Ayi= Z 7y + &0 (12)
j=1
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1000__Number of function evaluation (Inner Optim Sensitivity 1)
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Figure 57: Number of function evaluation in the inner optimization loop for each outer iteration: inner
optimization sensitivity 1.

Norm of objective function gradient (Inner Optim Sensitivity 1)

0.001

Norm of objective function gradient

0.0001.

T T T T T T T T 1
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Figure 58: Norm of objective function gradient in the inner optimization loop at each outer iteration: inner
optimization sensitivity 1.

1000__Number of function evaluation (Inner Optim Sensitivity 2)

100

Number of function evaluation

10.

1.0 5.0 9.0 13.0

Outer Iteration

Figure 59: Number of function evaluation in the inner optimization loop for each outer iteration: inner
optimization sensitivity 2.
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Norm of objective function gradient (Inner Optim Sensitivity 2)

0.001

Norm of objective function gradient

0.0001.

1.0 5.0 9.0 13.0

Outer Iteration

Figure 60: Norm of objective function gradient in the inner optimization loop at each outer iteration: inner
optimization sensitivity 2.

10000__Number of function evaluation (Inner Optim Sensitivity 3)

Number of function evaluation
-
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Figure 61: Number of function evaluation in the inner optimization loop for each outer iteration: inner
optimization sensitivity 3.

0.1__Norm of objective function gradient (Inner Optim Sensitivity 3)

0.001

Norm of objective function gradient
|

0.0001.
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Outer Iteration

Figure 62: Norm of objective function gradient in the inner optimization loop at each outer iteration: inner
optimization sensitivity 3.
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1000__Number of function evaluation (Inner Optim Sensitivity 4)
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Figure 63: Number of function evaluation in the inner optimization loop for each outer iteration: inner
optimization sensitivity 4.

Norm of objective function gradient (Inner Optim Sensitivity 4)

0.001__|
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Figure 64: Norm of objective function gradient in the inner optimization loop at each outer iteration: inner
optimization sensitivity 4.
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The average corrections A in the near-optimal region will assume trivial values (zero). How-
ever, at other points these may take non-trivial values. In the latter case, the above optimal
correction equations are more appropriately modified to Equations 13 and 14 for ¢ and ln(k)
respectively.

Nmp Nmp
D=3 1B+ (1= 27 | B (13)
j=1 j=1
Nmp Nmp
Ay,i:ZT;:jAy,j'i'fi(Ad),i_Ad))'i' ].—ZT;JJ Ay (].4)
=1 j=1

where A_¢ and A_y are average Ag and A, respectively. For our convenience, we label the
implementation using Equations 13 and 14 as ‘Opt 1’ and the other ‘Opt 2’.

A geostatistician would discern the two implementations by the difference between simple krig-
ing and and ordinary kriging. However, it was found that the performance of Implementation
Opt 1 is better than Implementation Opt 2. It has been observed that it is more likely to
get into degeneracy problems when using Implementation Opt 2. In fact, we employed Imple-
mentation Opt 1 for most inversion shown in this study. In order to illustrate the difference
between the two implementation, we performed the Example 1 Run 1 inversion and compared
the performance.

With Implementation Opt 2, the inverted models are obtained after 16 outer iterations (77
seconds in 733 MHz dual processor workstation). These inverted models are shown in Figure
65. The spatially connected high porosity/permeability bands connecting W2 and W3 are
evident in the inverted models. However, the major features are not captured with as much
details as it was obtained using Implementation Opt 1 in Example 1 Run 1. Figure 66 shows
the pressure values at the four wells computed from the true (from reference), initial and
final updated porosity and permeability fields. The objective function values of the inversion
process is shown in Figure 67. Comparing the objective functions curves for the cases (Figures
5 and 67), it can be seen that Implementation Opt 1 is smoother than the other. Final average
pressure mismatch (in L? norm sense) for 200 data in both the implementations is 4.13 psi.
Updated porosity and permeability fields after each outer iteration of the inversion method are
shown in Figures 68 and 69. Number of function evaluation in the inner optimization loop for
each outer iteration are shown in Figure 70. Norm of objective function gradient in the inner
optimization loop at each outer iteration is shown in Figure 71. The gradient of the objective
function at each outer iteration is shown in Figure 72. It should be noted that the scale of
the objective function gradients at iterations 8 and 9 (shown in Figure 72) are from -2 to 10,
while for other iterations it is -2 to 2. Sharp changes in the gradients indicate the possibility
of getting into numerical problems when using Implementation Opt 2.

Discussion

The paper presented a newly developed algorithm for simultaneous inversion of porosity and perme-
ability via collocated cokriging method. The implemented code has been demonstrated with some
synthetic and realistic reservoir example. Some sensitivity studies have been performed to investi-
gate how robust is the algorithm. Some implementation issues have been related in order to show
what and how controls can we have in the inversion process. It can be remarked that results proves
to be a positive and informative study. However, there are scopes of improvement in this area of
research. Some facets of improvement would be to explore the optimization and search algorithm,
incorporating compartmentalized reservoir concept into the algorithm, integrating for more complex
reservoir scenarios.
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Updated Porosity Field: Implementation Issue 1
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Figure 65: Updated porosity and permeability fields honoring production data, local hard data, global
Implementation Issue 1 (same inversion exercise as in

distribution and prior variography information :

Example 1 Run 1).
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Figure 66: The pressure responses computed from intial (dashed lines) and updated (bullets) porosity and
permeability fields with the true data (solid lines) : Implementation Issue 1 (same inversion exercise as in

Example 1 Run 1).
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10_ Objective function values: Implementation Issue 1

Objective function values
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Figure 67: Objective function values of the simultaneous inversion process : Implementation Issue 1 (same
inversion exercise as in Example 1 Run 1).

Some Suggested Areas of Improvement
Some suggested areas of improvement or future work on this topic would be the following.

e Stress should be given to implement a better or more robust optimization algorithm. Currently,
work is being done in implementing better bound constrained optimization.

e Implementation of some global optimization modules could be considered.

e More realistic reservoir scenarios should be incorporated. Multiphase reservoir simulation
option should be added into the integration algorithm. Extension to 3D case is virtually
imminent.

e Compartmentalization of reservoirs based on stratigraphy or lithofacies could be looked into.

Appendix

Parameters for SSCKPHI
ok ok ok ok ok ok ok ok ok ok ok ok

START OF PARAMETERS:

wd101201\well.dat -file with local well conditioning phi,ln(k) data
1 2 4 0 5 0 -columns for X, Y coordinates, phi,ln(k) & error

4 4 4 -num. of phi,ln(k) data & num. of wells with flow data
1 -index for identifying desired histogram
wd101201\ref2dpk1012_1.dat -file with phi/ln(k) histogram (scale of SSC model)
1 0 2 O -columns for phi,permeability and weight

3.0 10. 3.0 10. -tail interpolation parameters for phi, 1ln(k)

3.75 1.75 -mean and variance of 1n(k) distribution

0.2 0.025 -mean and variance of phi distribution
wd101201\wellpara2.dat -file with reservoir and well data
wd101201\flowrate2.dat -file with input flow rate and time step data
wd101201\mwspf1012_r2.out -file with input pressure data
wd101201\boundary.dat -file with boundary conditions

wd101201\pinit.dat -file with initial pressure for the entire field
wd101201\seed1012_1.dat -file with input realizations

1 2 -number for phi and perm

1 1 1 -number of total, start and end realizations

0 1.0e21 -9.0 1.0e21 -trimming limits for missing values
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Reference Porosity Field: Implementation Issue 1
somany

¥ (fee)

X (feet)

Updated Porosity Field Iteration 3
00000

¥ (ee)

X (feel)

Updated Porosity Field Iteration 7
som

¥ (fee)

X (feet)

Updated Porosity Field Iteration 11

Y (feet)

X (fee)

Updated Porosity Field Iteration 15
00000

¥ (fee)

X (feet)

2000

5000

4000

000

2000

1000

000

4000

000

2000

1000

5000

3000

2000

1000

nitial Porosity Field: Implementation Issue 1

[
00000

¥ (feet)

Updated Porosity Field Iteration 4

ooy
5000
a0
a0
H
>| 2000
1000
o
X (feeD)
Updated Porosity Field Iteration 8
som
5000
000
00
H
> 2000
1000
o
X (fee) o
Updated Porosity Field Iteration 12
oo
5000
a0
a0
H
£
s 2000
1000
o
X (feet)
Updated Porosity Field: Implementation Issue 1
somany
500
a0
00
200
1000

X (feet)

Updated Porosity Field Iteration 1

oy
0
000
00
3|
£
> 2000
1000
o
X (feet)
Updated Porosity Field Iteration 5
ooy
5000
a0
a0
H
>| 2000
1000
o
X (feet)
Updated Porosity Field Iteration 9
o0
5000
000
00
H
> 2000
1000
o
X (feen)
Updated Porosity Field Iteration 13
oo
5000
a0
a0
H
£
s 2000
1000

X (fee)

Updated Porosity Field Iteration 2

00000
s000
4000
3000
3|
£
> 2000
1000
o
X (feet)
Updated Porosity Field Iteration 6
00000
5000
4000
000
H
> 2000
1000
o0
X (feel)
Updated Porosity Field Iteration 10
00000
5000
4000
3000
H
>| 2000
1000
o
X (feet)
Updated Porosity Field Iteration 14
400000
000
4000
000
H
£
N 2000
1000

X (fee)

Figure 68: Updated porosity fields at each iteration of the simultaneous inversion process : Implementation

Issue 1 (same inversion exercise as in Example 1 Run 1).
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Reference Ln(k) Field: Implementation Issue 1
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Issue 1 (same inversion exercise as in Example 1 Run 1).
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10000__Number of function evaluation (Inner Optimization): Implementation Issue 1
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Figure 70: Number of function evaluation in the inner optimization loop for each outer iteration: Imple-
mentation Issue 1 (same inversion exercise as in Example 1 Run 1).
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Figure 71: Norm of objective function gradient in the inner optimization loop at each outer iteration:
Implementation Issue 1 (same inversion exercise as in Example 1 Run 1).
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Figure 72: Gradient of the objective function with respect to Master Point permeability (solid lines) and
porosity (dashed lines) at each outer iteration : Implementation Issue 1 (same inversion exercise as in
Example 1 Run 1)
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5

wd101201\ssc1012_r2y.dbg
wd101201\ssc1012_r2y.out
wd101201\obj1012_r2y.out
wd101201\prm1012_r2y.out

25 80.0 160.0

25 80.0 160.0

45774

5 5

5

1.0

17 0.3 0.0001

50 b5.e-5 b.e-5 1.e-5 40
3000.

1 16

0

0.8

1 0.05

1 .95 45.0 8000.0 1100.0
1 0.05

1 .95 45.0 8100.0 1000.0

-debugging level

-file for debug output

-file for output ln(k) realizatioms

-file for output objective function after each iter
-file for output matching of pressure responses

-X grid
-Y grid
-random
-number
-number
-factor

size: nx, xmn, xsiz

size: ny, ymn, ysiz

number seed

of master points in X and Y

of outer iterations to update master points
for defining constraint interval for optim.

-max num of outer iter, dumping para & min tol
-optimization parameters

-search

radius for kriging

-min and max num. of samples for kriging
-type of kriging (phi)

-correlation coefficient of phi,ln(k)
-nst, nugget effect (phi)

-type, sill, azm, max range, min range
-nst, nugget effect (perm)

-type, sill, azm, max range, min range

Figure 73: Parameter file for the program, SSCKPHI: Example 1 Runl.
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Well values for SSCKPHI Runs

5

X

Y

Z

Porosity

Ln (k)
720.000 3280.000 0.500 0.175 2.3026
3280.000 3280.000 0.500 0.250 6.2146
720.000 720.000 0.500 0.250 6.2146
3280.000 720.000 0.500 0.175 2.3026

Figure 74: Hard well data required for runs in Example 1: Runs 1 and 3.

Data file with phi, k data

2
phi
1n(k)

.2500 6.2146

.2500 6.2146

.2500 6.2146

.2500 6.2146

.1750 2.3026

.1750 2.3026

.2500 6.2146

.2500 6.2146

.2500 6.2146

.2500 6.2146

Figure 75: Global distribution data required for runs in Example 1: Runs 1 and 2.

4 0.2 100.0 0.2 1.e-6
5 21 0.3
21 21 0.3
5 5 0.3
21 5 0.3

Figure 76: Well parameter file required for runs in Example 1: Runs 1, 2, 3, and 4.
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2.0 -200.00 0.00 0.00 0.00

4.0 -200.00 0.00 0.00 0.00

6.0 -200.00 0.00 0.00 0.00

8.0 -200.00 0.00 0.00 0.00

96.0 -200.00 -20.00 -20.00 -200.00

98.0 -200.00 -20.00 -20.00 -200.00
100.0 -200.00 -20.00 -20.00 -200.00

Figure 77: Flow rate data required for runs in Example 1: Runs 1, 2, 3, and 4.

4 50

2.000 2955.301 1.0 3007.868 1.0 3007.991 1.0 3009.869 1.0
4.000 2944.773 1.0 2999.921 1.0 3000.048 1.0 3002.754 1.0
6.000 2936.084 1.0 2991.769 1.0 2991.896 1.0 2994.871 1.0

96.000 2625.815 1.0 2678.215 1.0 2678.329 1.0 2625.813 1.0
98.000 2609.079 1. 2661.481 1. 2661.595 1. 2609.077 1.
100.000 2592.349 1.0 2644.754 1.0 2644.867 1.0 2592.347 1.0

o
o
o
o

Figure 78: Observed pressure data required for runs in Example 1: Runs 1, 2, 3, and 4.
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0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.0.0.0.0.0.0.20.0.0.
0. 0

0 0

. 0.0.0.0.0.0.0.60.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

Figure 79: Boundary data required for runs in Example 1: Runs 1, 2, 3, and 4.
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Initial Pressure file

1

Initial Pressure (PSIA)
3014.70

3014.70

3014.70

3014.70
3014.70
3014.70

Figure 80: Initial pressure data required for runs in Example 1: Runs 1, 2, 3, and 4.

SGSIM Realizations

2

phi

1n(k)
.4000 3.1500
.4000 3.1500

.4000 3.1500

.4000 3.1500
.4000 .1500
.4000 3.1500

w

Figure 81: Initial porosity and In(k) field data required for runs in Example 1: Runs 1, 2, 3, and 4.
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