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Abstract

Reservoir models are updated as new well data become available. These updated models provide the

basis for future decisions such as modi�cations to the locations of wells that have not been drilled.

We perform numerical studies to quantify the value of incremental information for decision making.

The �rst numerical study shows that incremental data does not always improve decision making.

In particular, there is no improvement when the incremental data only reduce local uncertainty; new

wells are often drilled outside the range of correlation of previous wells, thus those previous data

do not help much. A second numerical study shows that incremental data can be very valuable if it

changes the conceptual model of the reservoir or provides signi�cant new data about the geostatistical

modeling parameters.

Introduction

A critical step in geostatistical modeling is to devise a modeling approach and required parameters
that are consistent with all sample data. The modeling approach includes decisions regarding
rock type modeling and the suitability of Gaussian techniques for continuous variables. Important
parameters include the histogram of each variable, the spatial correlation of each variable, and the
relationship between variables.

Modeling errors a�ect decision making. A lack of data is often the root cause for inappropriate
conceptual models. The best way to proceed with a modeling exercise is to use all of the data at
hand to revise the conceptual model and the geostatistical model at each stage of the reservoir life
cycle. As reservoir development proceeds, the additional data can be used to incrementally update
the model and aid in future decisions. It is diÆcult to keep track of ever-changing models and
how the decision making evolves with incremental data. We aim to understand more clearly how
incremental data improve the model with no change to the conceptual model and how incremental
data help when the conceptual model changes.

We are concerned with the placement of wells in reservoir development. The idea is to place
the wells using information from previous wells to better select the next well location. Proceeding
in this fashion should result in well locations that improve recoverable reserves. Evaluating the
value of added information requires a model for what that new data might be. We simulate a set
of possible \truth" models and extract incremental data from this set of truth models. The value
of using incremental data for decision making can be assessed relative to decision making without
using the incremental information and the possible truth model. Of course, the simulated truth
model provides no new data; it simply provides a means to assess incremental information. The
proposed procedure is described in detail.
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Figure 1: Schematic illustration of histograms of uncertainty in recoverable reserves accounting for explo-
ration data (red on left side), updating the model and well locations with incremental information (blue in
the middle). The distribution of reserves given \perfect" information is the green distribution on the right.

The paper starts with an example where we show that simply adding incremental information to
the model with no updating of the conceptual model or parameters does not yield better decisions.
Then, another example illustrates that a change in the conceptual model improves decision making.

Methodology 1

Consider the problem of selecting N wells in petroleum reservoir development. Choosing N po-
sitions all at once with exploration data is not expected to be as good as using the well data
incrementally. The idea is to start with a model that represents our current state of uncertainty
and proceed by adding information to update this uncertainty. At each step a decision is made and
the value of the added information is assessed. Of course, the very best decisions are made with
the inaccessible true reservoir description. We have color-coded these three cases (see Figure 1):

1. The red case (histogram on the left) is the decision using only exploration data for all wells.
It is important to note that all wells are placed together to be jointly optimal.

2. The blue case (histogram in the middle) shows the distribution of reserves where each well
location is chosen using the exploration data and all previous development wells. This is the
best approach in practice and should be better than the red case.

3. The green histogram (on the right) shows the distribution of reserves if the true reservoir
description were available. This will be better than the red or blue case.

True reserves are unique and would appear as a \spike" on a histogram. The true reserves are not
accessible in practice, however, and we substitute the model of uncertainty as the \true" reservoir
and suppose that each realization represents a plausible truth. The distribution of reserves is found
by measuring the reserves obtained by optimally locating the required number of wells on each
realization.

This simulation approach to predicting the value of incremental information is shown schemat-
ically in Figure 2, and explained in more detail below:

1. The starting point is a set of truth reservoirs, Rl, l = 1; : : : ; L. These truth reservoirs are
the set of geostatistical realizations that represent the current state of uncertainty, that is,
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they reproduce all available exploration data. Note that each reservoir model Rl is a full
speci�cation of the reservoir structure and all internal heterogeneity.

2. Apply the best available algorithm to determine the optimal number of wells, N , and their
locations over the set of true reservoir models fui; i = 1; : : : ; Ng. Note that there is only one
optimal number of wells and set of locations. It is unreasonable to determine the best set of
wells on each realization because there is no practical way of reconciling di�erences in the L
di�erent well plans afterwards.

3. Calculate the recoverable reserves on each of the L realizations and construct a distribution
of recoverable reserves given the initial state of uncertainty. This is the red histogram in
Figure 1. Set M = N , where M will be the remaining wells to drill and N is the optimal
number considering the present state of uncertainty.

4. The following steps are to be considered for each of the l = 1; : : : ; L true reservoir models.

a. Choose one of theM wells to drill based on logistical drilling considerations or simply the
one with the largest expected recoverable reserves. Extract the reservoir properties and
structure at that location from the current (l) realization to be considered in building a
new set of realizations with the added information. Reset M to M � 1 once one of the
wells is chosen.

b. Construct another suite of geostatistical realizations conditional to all available infor-
mation including the original data and the data from all previously drilled (N � M)
simulated wells. Clearly, this procedure must be automated in a script or in some com-
mercial software such as JactaTM .

c. Run the optimal well placement to re�ne the position of the remaining M wells using
the latest suite of geostatistical realizations. These new locations will be considered to
select the next one. Loop back to b if M > 1; otherwise, proceed to e and then keep
looping over L.

d. Calculate the recoverable reserves using the updated well locations and the current
simulated true reservoir Rl. This is one number to go into the blue histogram of Figure 1.
The set of updated reserves make up the blue histogram.

5. Find the unique optimal well locations for the N well on each of the L realizations. Use these
locations to calculate the production for each realization. This set of L numbers make up the
green histogram.

This simulation exercise provides a measure of how incremental information improves the ulti-
mate reservoir decision-making or pro�tability. We acknowledge that no new information is being
considered in this exercise; in that sense it is similar to the bootstrap technique.

First Example

The setting of the �rst example is a model of uncertainty for a synthetic reservoir on a regular 50x50
grid. The model consists of porosity and porosity-derived geo-bodies. Porosity is conditionally
simulated using sequential Gaussian simulation (SGS) and the four conditioning data shown in
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Figure 2: Schematic illustration of a procedure to assess the value of incremental data.
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Figure3. Porosity is �rst simulated as a normally distributed variable and later transformed to
porosity using the simple linear transform to avoid issues surrounding the Gaussian transform: z =
5�y+10, where y is the simulated Gaussian value and z is the porosity value. A histogram of porosity
over 100 realizations is shown in Figure 4. The geo-bodies represent a set of connected blocks having
porosity greater than 7.5md. Figure 5 shows a simulated porosity map and the corresponding geo-
body map. We select optimal well locations by calculating a well location performance metric. For
each node in the grid we calculate a quality parameter:

quality(u) = �(u)(1 � Sw) � C

where Sw is the water saturation and C is related to the selling price per unit hydrocarbon.
For simplicity we keep Sw and C constant. The performance of a well locations is evaluated by
calculating the sum of all the quality parameters falling within the drainage radius and belonging
to the same geo-body intersected by the well path. In Figure 6 we show a geo-body map with four
well locations superimposed on the map. The well path is indicated by a dark pixel. The drainage
radius is indicated by a shaded circular region around the well path. The well located in the bottom
right of the map would have the highest quality because, as indicated in the corresponding porosity
realization shown in Figure 5, it is in a location of high porosity and the drainage radius is almost
completely occupied by a geo-body. The well location of the lowest quality is shown in the top
right.

We submitted 100 realizations of our synthetic reservoir to the incremental data algorithm with
the goal of sequentially placing four wells. Figure 7 shows the results for steps 3 through 5 for
a single realization. The map at the top of the �gure corresponds to step 3: a realization of a
geo-body map with four optimally placed wells superimposed. The set of maps below the step 3
map are each one realization of the updated model of uncertainty with the updated optimal well
locations corresponding to step 4c. Starting from the right, the maps show the �rst through the
fourth �xed wells. A heavy circle is drawn around the �xed wells. The map on the far left is
the map for step 4d: the updated well locations superimposed on the geo-body realization in step
3. Below the set of step 4 maps is the map for step 5: the four well locations optimised to the
realization.

The Red, Blue and Green Histograms for 100 realizations are shown in Figure 8. The mean
of the Red Histogram is 7476, the Blue Histogram is 7302, and the Green Histogram is 10596.
Over 100 realizations updating does not lead to better well locations. The results were veri�ed and
extensively tested.

Comments

The results of the �rst experiment are an apparent violation of common sense: using incremental
data should lead to better decision making. We showed that incremental information did not help
in the decision making. The primary reason for this is that the model is only re�ned within the
range of correlation which is about the same as the drainage radius of the well. The updated
portion of the model is never available for decision making because it is already occupied by a well.
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Figure 3: The four conditioning data are positioned at the corners of the grid.
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Figure 4: The distribution of transformed porosity for 100 realizations.
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Figure 6: A geo-body map with four well locations superimposed. The well locations are denoted as a single
dark pixel surrounded by a shaded circular drainage radius. Referring to the porosity map in Figure 5, the
well location on the bottom right corner has the highest quality, the well on the top right has the lowest.
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Figure 9: Schematic illustration of histograms of uncertainty in window quality accounting for exploration
data (red on left side), updating the model and window locations with incremental information ( blue
second from the left), updating the model and window locations using the conceptual information and the
incremental data (orange second from the right). The distribution of reserves given \perfect" information is
the green distribution on the right.

Methodology 2

The results of the �rst experiment motivate a second more simpli�ed experiment where we examine
the impact of changing the conceptual model and using incremental data versus using only the
incremental data. We set the goal of this experiment to be the sequential selection of two optimal
locations or \windows" that maximize quality Q. We quantify the quality of a window location
by taking the sum of all the values falling within the window. This is similar to optimally placing
two wells of maximum quality except that in this experiment a square window is used instead of a
drainage radius.

We retain the color coding scheme outlined previously but add one more histogram: the his-
togram that represents the use of a revised conceptual model and incremental information for
decision making. We expect that this distribution will have a mean greater than that of using only
incremental information. Thus we expect that the distribution will fall between the blue distribu-
tion and the green distribution. We call this the orange histogram and it is shown in Figure 9.

The methodology for this experiment is a variation of the algorithm described above. We
start by constructing a \true" conceptual model consisting of a map of secondary data (Ytruth), a
map of primary data (Ztruth) and a randomly selected correlation coeÆcient (�l) correlating the
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primary and secondary data. The Ytruth is intended to mimic the type of information that would
be provided by seismic data. The pseudo-seismic information and the correlation coeÆcient are
used to construct a map of a primary reservoir parameter. We proceed as follows:

1. Draw a random correlation coeÆcient �l either +/-, where l is the lth trial for l = 1; : : : ; L.
We alter the correlation between the primary and the secondary information over a large
number trials to observe the e�ect of using an inappropriate conceptual model.

2. Simulate Y unconditionally and call this the true secondary information Ytruth.

3. Simulate a Z using y as collocated with �l. Call this Ztruth.

4. From the corners of the Ztruth map collect four conditioning data. This data is considered
exploration data. At this point the conceptual model consists of the exploration data and the
same variogram as used in the construction of Ztruth.

5. Simulate 20 realizations of the Z variable using the four conditional data. At this stage we
proceed with the construction a geostatistical model with all available data.

� Find the two best locations, i(ix; iy) and j(jx; jy), for the windows that maximize Q�,
, where Q� is the window quality at locations i; j given one piece of information: the
exploration data. The two best locations are found by searching the grid exhaustively.
Overlapping windows are accounted for by assigning the blocks in the overlapping area
to only one window.

� Using the two optimal locations i(ix; iy) and j(ix; iy), calculate Ql
red from the truth

model. The distribution of the Ql
red values is the red histogram.

6. Randomly select one of the two locations i or j. Go back to the truth model Ztruth and
extract a new conditioning data.

7. Simulate 20 Z realizations using only the 5 conditioning data.

� Find the second location that maximizes Q��, i(ix; iy), j(jx; jy) respectively, where Q��

is the quality for the window locations using two pieces of information: the exploration
data and the incremental information. This step represents decision making using only
incremental data.

� Calculate Ql
blue from the truth model.

8. Cosimulate 20 Z realizations using the 5 data, Ytruth, and �l.

� Find the second location that maximizes Q���, i(ix; iy), j(jx; jy) respectively, where the
third piece of information is the conceptual model. This step represents decision making
using both the conceptual model and the incremental data.

� Calculate Ol
orange from the truth model. The distribution of the Ol

orange values

9. Using Ztruth �nd the two locations i; j that maximize Ogreen. The distribution of Ogreen

values is the green histogram in Figure 9.

10. Repeat over L trials to observe the distributions of uncertainty.
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Second Example

The experiment occurs on a 20 x 20 grid. We randomly select the correlation between the primary
and the secondary information to be either 0.75 or -0.75. The secondary map is constructed
unconditionally using SGS and a Gaussian variogram having a long range and minimal nugget
e�ect. The primary map is also constructed unconditionally but uses an exponential variogram
with moderate nugget e�ect. The simulated values for both maps are normally distributed: no
transform was applied. Figure 10 shows a map of Ytruth on the left and Ztruth on the right. The
corresponding histograms are shown below. The observed correlation coeÆcient is 0.75.

We show the mapped results for one trial and for both of the optimal locations selected in the
Red case. Collectively the following �gures represent a single trial in the second experiment. For
each of the �gures, the histogram of Gaussian values over the 20 realizations is shown on the left.
The map in the middle is the e-type estimate over 20 realizations, and the map on the right is
a single realization. The optimal window locations are superimposed on the maps. We show the
histograms to illustrate the e�ect of bias sampling. The optimal window locations are preferentially
located in high valued areas. Using the data extracted from Ztruth conditions the realizations and
arti�cially increases the mean. The e-type map is shown because it illustrates what the optimisation
routine \sees" when searching for the two optimal locations.

Figure 11 shows the results for the Red case. Two optimal locations are in the bottom left and
bottom right corners of the maps. The mean of the realizations is not the same as the mean of the
Ztruth map (-0.236 vs. 0.027, respectively). In practice there is no way to know if the sample mean
is equivalent to the true mean, but the sample mean represents one aspect of our conceptual model.
Figure 13 shows the results after updating using the optimal window location on the bottom right
in the Red case. The updated location is the same as in the Red case. The mean is 0.07. The
mean is much higher in the Blue case because of the high values conditioning data. Figure 12
shows the results after using the conceptual model. The second window location is better than
the selection made without the conceptual model. The mean is -0.009. Figures 14, and 15 are the
same as above but use the incremental data from the bottom left window location in Figure 11.
The respective means are -0.001, and 0.032. Note that all of the updated means di�er signi�cantly
from the mean in the Red case. Despite the fact that they are closer to the mean of Ztruth and all
represent di�erences in the conceptual model. Figure 16 shows the optimal location for the Green
case: perfect information.

Comments

The resulting histograms for 100 trials are shown in Figure 17. The mean quality of the Red
Histogram is 50.6, the Blue Histogram is 61.0, the Orange Histogram is 88.4, and the Green
Histogram is 113.7. In this case using only the incremental information leads to better optimal
location selection, but only marginally. Using both the conceptual model and the incremental
information lead to signi�cantly better location selection on average.

A summary of results is shown in Table 1. Note the number of times the Red case exceeded
the Blue and Orange cases (Red > Blue, Red > Orange), the Red case was equivalent to the Blue
and Orange case (Red < Blue, Red < Orange), the Blue and Orange cases were equivalent to
the Green case (Green = Blue, Green = Orange). The tabulated results show that using just
the incremental information does not clearly lead to better decision making even though the Blue
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Figure 10: The map on the left is the secondary information, the Y information. The corresponding
histogram is below. The map on the right is the Z map. The secondary information was used to construct
this map. It corresponding histogram is on the right. The correlation coeÆcient is -0.75. The mean of Ztruth
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Figure 13: The results for the Orange case: the incremental data from the bottom right corner of the Red
case and the conceptual model was used. The mean is -0.009.
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Blue Orange
(Percent) (Percent)

Red > 22 3
Red = 37 19
Red < 41 78
Green = 5 10

Table 1: Summary of results for 100 trials in the second experiment.

Histogram showed higher average quality than the Red Histogram: only 41% of the time the Blue
case exceeded the Red case. Comparing the Blue and Orange cases, the Orange case yielded better
decisions 78% of the time.

Summary

The results of the �rst experiment show an apparent violation of common sense: using incremental
well data to update a reservoir for subsequent decision making does not always lead to better well
locations. The results of the �rst experiment can be explained: (1) due to the range of correlation
the new data succeeded in updating the model near the existing well and provided little additional
information for the rest of the model, and (2) the well locations are preferentially located in high
valued areas and the extracted samples lead to bias in the simulations.

The results from the second experiment show that although the incremental information did
lead to better decision regarding optimal window placement the improvement was not clear. Using
conceptual information and incremental information clearly led to better window locations.

In general these �ndings should not be extended to other decision making problems without
further investigation. The problem of selection well locations is peculiar because the region of
interest is not allowed to contribute to the next decision for a future well location.

One useful lesson that could be extended to almost any other decision making problems is that
of revising the conceptual model as more information becomes available. The conceptual model is
the foundation of the entire model; stochastic or deterministic. As we have shown, revisions to the
conceptual model has greater impact than that of simply adding data.
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