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Abstract

An algorithm for automatic determination of dig limits has been proposed, synthetic examples, and
a comparison betweeen hand drawn dig limits and automatic dig limits has been shown. Two papers
summarizing the research have been presented; at the SME meeting in Denver and the APCOM
meeting in Pheoniz. This update summarizes recent results. We propose an alternative approach for
constructing an expected profit map, a new starting point for the automatic dig limits. A framework
for dealing with multiple and nested dig limits is developed. The idea of a digability catalogue is
presented for selecting a digability factor. Other outstanding issues such as multiple ore types and
guidelines on the annealing schedule are also discussed.

Background

The automatic dig limit selection algorithm aims to select dig limits that are robust with respect to
uncertainty and that simultaneously account for profitability and limitations of mining equipment.
Automatic dig limits are not simple grade contours: grade contours do not account for uncertainty
or the non-linearity of the grade to profit conversion. Automatic dig limits are not a modified
version of a block-by-block classification scheme: “blockwise” classification schemes rely on perfect
selection and mining equipment does not mine cubic selective mining units with perfect selection.

The automatic dig limit selection algorithm starts with a map of expected profit. Uncertainty
in grade, the effect of mulitple minerals and contaminants, and the non-linear transform of grade
to profit are accounted for in the expected profit map. Initial dig limits are determined from the
expected profit map. The profit is discounted by the “digability” of the dig limit. Digability is
a term used to indicate how easily a dig limit can be mined. High digability means that the dig
limits can be easily mined. Digability is quantified by converting angle of operation into a penalty
for each vertex on the dig limit polygon. The penalty must be calibrated to a mining scenario.
Random perturbations are performed to the dig limits until they maximize profit. Perturbations
that increase profit are always accepted, perturbations that decrease profit are accepted or rejected
by simulated annealing. The optimal dig limits are approached iteratively.

The final dig limits account for digability: dig limits near blocks that have high profit potential
are smoothed very little or include adjacent low grade material and dig limits near blocks having low
potential profit may be partially excluded from the dig limits depending on digability or equipment
constraints.

Implementation

Our propposed algorithm should be applied on a region-by-region basis for ore or waste polygons.
We do not suggest fully automatic determination of mulitple dig limits although we admit the
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Figure 1: A decomposition approach is adopted for solving the problem of multiple dig limits. The ore/waste
map shown on the left shows a waste pod in a larger ore body; the waste pod is to be mined seperately as
waste. With the decomposition approach the dig limit is found for the waste pod first, as in the map labeled
Step 1, then, as shown in the map labeled Step 2, the dig limit for the ore body is found.

usefullness of an automatic approach at the feasibility study stage for calculation of recoverable
reserves.

The latest diglim program works for a single ore/waste polygon within a subarea of the model
defined by minimum and maximum X and Y values. A central seed location must be specified
with an option for either an ore or waste polygon. The initial dig limit and the optimal results
will be within the subarea limits. Obtaining dig limits for nested ore/waste volumes requires a
decomposition approach. An example of the decomposition approach is shown in Figure 1. The
map on the left shows an ore/waste map with a waste pod nested inside of a larger ore body. The
map in the middle shows the first step of the decomposition approach:

1. select the centriod of the waste pod for the seed location of the initial dig limits

2. select a nominal size for the initial dig limits. The nominal window should include as much
of the nested pod as possible.

3. select a maximum dig limit window that represents the desired maximum extent that the dig
limits may extend to. The dig limits are not perturbed beyond this window. The nominal
initial dig limit window must not overlap the maximum dig limit window.

The map on the right shows the second step of the decompoosition approach. Step 2 is similar to
the first step except that the waste pod is ignored. The final profit is the sum of the profits earned
by the two dig limits - the algorithm maximizes the profit for the waste dig limits but they will
be negative because the dig limits are waste dig limits. There are alternative approaches to the
decomposition shown in Figure 1.

There are additional implementation considerations to be addressed in the future. A windows
interface with the option for digitizing an input polygon would be useful. Directing the output to
commercial mine planning software and AutoCAD-type drawing programs would also be useful.
Our concern, however, is primarily with the algorithm and demonstrated optimallity of the results.
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Figure 2: The distribution on the left is a distribution of material that is clearly waste. The distribution
on the right is a distribution of material that is clearly ore. The distribution in the middle is a distribution
of material that is not easily classified.

Grade to Profit Conversion

Using a cutoff grade for classification is common. The grade at unsampled locations is represented
by a model of uncertainty because of data spacing and variability. Figure 2 shows distributions of
uncertainty for three types of material. The material on the left is clearly waste, the distribution is
centered about a grade that is much less than the cutoff grade. The material on the right is clearly
ore because its distribution is centered about a grade that is much greater than the cutoff grade.
The material in the middle is near the cutoff grade and is not easily classified; the true grade of
the material has high probability for either classification.

Material should not be classified using “probability of ore” thresholds. Figure 2 shows two
models of uncertainty. Both would have the same probability of being classified as ore. The model
on the left has a higher lost opportunity cost because there is a higher probability of the material
being high grade than in the distribution on the right. A lost opportunity cost is an expense
equivalent to the profit that would have been made if the material had been sent to the mill. Even
if the material is below the cutoff grade ore can be recovered and the proceeds used to offset the
cost of treating the material. The expense is not accounted for in the economic workings of the
mine, nevertheless it is expensive to waste ore.

Material should not be classified using expected grade. Expected grade does not account for
the non-linear conversion of grade to profit. Consider an example scenario for a copper mine: a
model of uncertainty consisting of 10 grade realizations for 1 ton of material, a cutoff grade =
0.8%, a selling price of $0.75/1b copper, and the hypothetical recovery curve shown in Figure 4.
The grades, recoveries, and corresponding profits for each realization are tabulated in Table 1. The
expected grade is less than the cutoff grade. Using an expected grade classification would indentify
the block as waste. By definition the cutoff grade is the grade at which the mine makes no profit,
therefore, material having an expected profit less than zero would be classified as waste. Due to
the non-linearity of the recovery curve the expected profit in the example is not 0, the block is
classified as ore. Counter examples could also be shown. The best decision depends on the full
distribution of uncertainty and all econommic parameters.

Classification should account for the risk of misclassification. We propose a grade to profit
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Figure 3: The two distributions have the same probability of being ore, but the distribution on the left has
higher lost opportunity cost because it has higher probabability of being high grade.
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Figure 4: A hypothetical recovery curve. Note that the recovery changes with grade. The result is a
non-linear transform from grade to profit.



Realization Grade(%) Recovery (%)  Profit

1 0.80 0.70 0.00
2 0.60 0.59 -306.65
3 0.71 0.66 -140.97
4 0.67 0.63 -202.24
5 1.30 0.93 973.50
6 0.59 0.59 -321.22
7 1.20 0.90 780.00
8 0.59 0.59 -321.22
9 0.60 0.59 -306.65
10 0.75 0.68 -78.78
Average 0.781 7.58

Table 1: Example results showing the non-linearity feature of converting ore to profit. The recovery
for high grade material is higher than that of low grade material. Due to uncertainty and the non-
linearity of the recovery curve some material may have an expected profit greater than 0 even
though the expected profit is less than the cutoff grade, as shown here.

conversion that quantifies the risks associated with classifying material as ore or waste. This grade
to profit conversion requires five essential parameters:

The grade information (z()(u),l =1,...,L, u € A): The grades at unsampled locations
are represented by an uncertainty model.

The cutoff grade (z.): The cutoff grade is often defined by management. In general the
cutoff grade is interpreted as the grade at which the mine can operate and make no profit.
Market conditions and the recovery process control the cutoff grade. Other considerations
are the mining cost, administration cost, and contract obligations.

The recovery curve (7(z)): In most mines the recovery factor varies with the grade. Often
recovery increases with increasing grade.

The price per unit mineral (price): The price per unit mineral consistent with units used
for grade z.

The cost for processing waste (cpw): The unit cost for processing material that have
zero grade. In most cases the cost of waste is equivalent to the product of the cutoff grade,
the recovery at the cutoff grade, and the price:

cpw = 2. - r(2c) - price

In special cases the cost for processing waste can be different. There may be a greater cost
of processing waste if the ore supply is abundant and milling cost is high. The cost may be
less if ore supply is tight and processing cost is low, (e.g. heap leach operations). In these
cases cpw # z. - r(z.) - price. We account for these special cases by scaling the profit when
grade < z.
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Figure 5: The grade to profit conversion takes place over the model of uncertainty for grade. The conversion
is shown schematically. Alternatively, depending on the distribution of uncertainty and the recovery curve
shape, material with expected grade above the cutoff may be classified as waste.

Profit for grade realization I, [ =1,..., L at location u is calculated as:
g = | F ) (W) =z r(z0)) - price, if 2'(a) >z
Profit (W) =\ _am (o) - (! () ~ 7+ r(z)) - price, if 2(w) < z

The grade to profit conversion is shown in Figure 5. Grade is on the x axis and profit is on the
y axis. The conversion function is represented by a curved line that falls on the intersection of
the cutoff grade and zero profit. The non-linear curve represents the product of selling price and
recovery which is a function of grade.

This profit calculation is shown in Figure 6. Three cases are shown where the profit is scaled
to reflect different costs for waste: (1) cpw < z. - r(z.) - price, (2) cpw = z. - r(z.) - price, (3)
cpw > 2. - r(zc) - price. The ratio affects marginal blocks. If the ratio is less than 1 more marginal
blocks are included in the dig limits. If ratio is greater than 1 fewer marginal blocks are included
in the dig limits.

Expected profit for location u is calculated as:

L
_ . 1 .
plu) = B {profit(u)} = T3 profit (u)
=1
Material is classified as ore if the expected profit is greater than 0 and waste otherwise. Four
scenarios exist when comparing classification by expected grade and expected profit:

1. The block has an expected grade greater than the cutoff and an expected profit greater than
0, and is classified as ore.

2. The block has an expected grade less than the cutoff grade and an expected profit less than
0 and is classified as waste.

3. The block has an expected grade less than the cutoff and an expected profit greater than 0,
and is classified as ore.
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Figure 6: A hypothetical profit curve with three cpw scenarios: (1) the cpw ratio is less than 1, (2) the cpw
ratio is equal to one, and (3) the cpw ratio is greater than 1. The first case implies that cpw is less than
the cost of mining material at the cutoff grade. The third case implies that cpw is greater than the cost of
mining material at the cutoff grade.

4. The block has an expected grade greater than the cutoff and an expected profit less than 0
and is classified as waste.

Scenario three occurs when the distribution of grades is positively skewed and/or the cpw is low.
Scenario four occurs when the distribution of grades is negatively skewed and/or the cpw is high.

This technique accounts for the two aspects of accounting for lost opportunity cost: (1) uncer-
tainty, and (2) classification. Transforming the distribution of uncertainty in grade to a distribution
of uncertainty in profit accounts for the uncertainty aspect of accounting for lost opportunity cost.
If the true grade were available lost opportunity cost would be straightforward to calculate, but
only the distribution of uncertainty in grade is available. We evaluate profit over the entire dis-
tribution of uncertainty in grade and thus automatically account for lost opportunity cost in the
construction of the distribution of uncertainty in profit. The second aspect is deferred to the au-
tomatic determination of dig limits algorithm. The idea behind accounting for lost opportunity
cost is to classify the material such that the classification maximizes profit. This is the aim of the
automatic dig limit algorithm, so the algorithm automatically accounts for the classification aspect
of accounting for lost opportunity.

Selecting a Digability Factor

Digability is enforced by a penalty curve calibrated to the operating parameters of the mine. The
penalty curve reflects equipment and operating conditions. A revised procedure is presented. The
penalty curve is parameterized by a single number. This makes the process easier to apply. It
turns out that flexibility is not lost by fixing the shape of the penalty curve. A digability factor
is selected by reviewing a “catalogue” of dig limits that correspond to increasing digability values.
An example catalogue is shown in Figure 7. The selected digability factor would be representative
of the abilities of the mining equipment.

Figure 8 is schematic of the effect of different digability factors. Increasing digability factors
“slide” the penalty curve to the right and increases the impact to profit. This permits single
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Figure 7: A digability catalogue. The maps show dig limits with increasing digability factor, starting from
0 and going to 1. The map on the top left has a minimum digability factor, and the bottom left has the
maximum digability factor.
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Figure 8: The digability factor “slides” the penalty curve. High digability factors impact the profit more
than low values.

parameter accounting for mining equipment.

The Annealing Schedule

The simulated annealing schedule dictates how the perturbations are accepted or rejected. Recom-
mended parameters are described below:

e The initial temperature (#y): The initial temperature specifies the initial decision criteria
for accepting perturbations. Selecting a high ¢y allows almost all perturbations to be accepted.
The consequence of selecting a high value for ¢y is greater CPU time is required for conver-
gence. Selecting low values for ¢y will result in too few perturbations being accepted and the
possibility that sub-optimal dig limits will be found. An initial temperature approximately
equal to one-tenth the initial penalty is suggested.

e The reduction factor ()\): The reduction factor is a multiplicative factor for reducing #.
A X between 0.75 and 0.5 is recommended.

e Acceptance factor (k4): After k4 perturbations have been accepted ty is multiplied by .
A k4 of 5 times the initial number of dig limit polygon vertices is recommended.

e Rejection factor (k): After k perturbations have been rejected ty is multiplied by A\. A k
of 10 times the initial number of dig limit polygon vertices is recommended.

e Maximum perturbations (Maxzp): The maximum number of perturbations to ba carried
out. Around 100,000 perturbations are suggested.

The suggested parameters are good starting points. Experience will play a significant role in fine
tuning them. For example, if a large number perturbations are performed with no change in profit
Maxp could be reduced.



Multiple Variables

In the presence of multiple variables the profit calculation is somewhat more complicated. There
may be some minerals that contribute to profit and some contaminants that reduce profit. A
procedure must be established to convert each realization of multiple grades to profit:

), 2 ),..., W) = profittw) 1=1,...,L
then

1L l
p(u) = = profit'(u)

L =1

The final mapped P values represent a summary of expected profit for each block for all variables
of interest.

Guide to Geostatistical Grade Control and Dig Limit Determina-
tion

A Guidebook to Geostatistical Grade Control and Dig Limit Determination is currently under
construction. The twofold focus of the guidebook is to (1) map the geostatistical modeling steps
required to quantify the spatial distribution of grades from blasthole samples, and (2) transfer the
predicted grades to economic parameters and determine optimal dig limits. The focus is not on
geological mapping, sampling practices, the use of dedicated grade-control sampling, or the link to
advanced positioning equipment and scheduling software.

The guide will take a pragmatic approach to the application of geostatistics for grade control.
Each geostatistical study requires a certain degree of interpretation, customization, and iteration
for a robust solution. The guide will represent a minimal guide to the complexity of geostatistical
modeling. The reader is referred to the numerous papers and books available on the subject of
geostatistics and geological modeling.

The guidebook will consist of six sections related to the steps required for geostatistical modeling
and grade control for optimal dig limit determination:

e Introduction: This first section presents an overview of the manual and illustrates the practice
of grade control with a preliminary example.

e Data Assembly: The second section discusses data handling, extraction of representative
data, the use of rock type models, and grid specification.

e Geostatistical Modeling: The third section tackles the required geostatistical modeling for
grade control.

e Economic Calculation: The fourth section covers cutoff grades and the calculation of expected
profit.

e Dig Limit Determination: The fifth section describes the determination of dig limits that
maximize profit.

e Case Studies: The sixth section presents a number of case studies and implementation details.

10
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Figure 9: A location map of the blasthole samples. The drill hole spacing is about 10m.

The programs used in the guide will be documented in an Appendix and presented in the familiar
GSLIB style. The guide is expected to be completed in early September, 2002.

Example

The following example is taken from the Guide to Geostatistical Grade Control and Dig Limit
Determination. The data are percent copper assayed from blasthole data. Figure 9 shows the
sample information in a color coded location map. The area is 200m x 200m. The histogram of
grades is shown in Figure 10. The mean grade is 1.02%. A cutoff grade of 0.8% is selected. The
normal scores variogram was calculated and Gaussian simulation performed using 2.5m x 2.5m
blocks. The fine scale realizations are block averaged to 5.0m x 5.0m blocks on a 40x40 regular
grid. One realization is shown in Figure 11. Expected profit, using a selling price of $ 0.75 per Ib
of copper, was calculated over 100 realizations. The profit map is shown in Figure 12.

Figure 13 shows the fraction of blocks on the profit map that fall into each of the scenarios
discussed in the Grade to Profit section. None of the blocks fall into scenario four.

One block from scenario 3 was selected for closer study (21,1). The coresponding grade to profit
conversion, histogram of grades andprofit are shown in Figure 14. The expected grade is 0.7318%
and the expected profit is $83.81. Note that the blocks that would have been classified as waste by
the cutoff grade only occur next to regions of waste in Figure 13. Using the cutoff grade for grade
control would have incurred a higher lost opportunity cost than using expected profit.

The final step is to select a digability factor and “draw” dig limits on the expected profit map.
Dig limits for two digability factors, 0.5 and 0.8, are shown in Figure 15.

Using a low digability factor results in dig limits that require greater selectivity of the mining
equipment. Increasing the digability factor excludes more ore or includes more waste in the dig

11
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Figure 10: The distribution of copper grades for the blasthole samples. The mean is 1.02 and the cutoff
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Figure 12: The example expected profit map. 100 realizations and a selling price of $0.75/lb were used.
The cpw was not scaled.
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Figure 13: None of the blocks had an expected grade greater than the cutoff grade and an expected profit
less than 0. Blocks with profit less than zero are classified as waste, all other blocks are ore. Some of the
blocks have an expected grade less than the cutoff grade but are classified as ore because the expected profit
is greater than 0. These blocks are shown in blue.
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Figure 14: The image on the right shows grade to profit conversion for a single on the x axis and profit on
the y axis. The points represent the grade to profit conversion for 100 realizations for a location where the
expected grade is less than the cutoff grade. The expected profit is $83.81. The histogram in the middle
is the histogram of the 100 profit values. The histogram on the right is the histogram of 100 grades. The
expected grade is 0.7318%.

limits. Manual dig limits attempt to trade ore or include waste to pay for digability but do so
subjectively and inconsistently. The automatic dig limit selection algorithm does it systematically.

DIGLIM: Inputs, Outputs, Parameters

DIGLIM is the name of the program used to determine optimal dig limits. The program requires a
2-D map of expected profit and expected grade as a single file as input data. The outputs include:

e Dig Limit Output: The true x and y coordinates for each vertex in the dig limit polygon.

These are in the Geo-EAS format and could be easily prepared for use in programs such as
ACAD.

Debugging File: This file includes the information reported to the screen while the program
is running. The file is in Geo-EAS format. Plotting the objective function versus the number
pertubations is usefull for evaluating convergence: there should be no change in the objective
function near the end of the run. If the plot does not “flatten out” then more perturbations
should be run. The tempertature should be zero for a large number of perturbations.

Gridded Output: The gridded output give the fraction of the block included in the dig limits.
Blocks that are not included in the maximum dig limit window are written as -1.0. Blocks
falling within the maximum dig limit window range from 0 to 1 according to the fraction of
the block within the dig limits.

An example paramter file is shown in Figure 16. The parameters required for the proram are listed
below:

datafl: file in simplified Geo-EAS format containing the expected profit and the expected
grade.

icol and igcol: column number for expected profit and expected grade.

14
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Figure 15: The map on the left shows dig limits using a low digability factor. The map on the right shows
dig limits using a high digability factor.

outfl: the z, y output dig limit polygon file in simplified Geo-EAS format.

dbgfl: debugging file in simplified Geo-EAS format. The file includes the reporting informa-
tion shown on the screen when the program is running.

porfl: file with grid of block fractions within the dig limits in simplified Geo-EAS format.
Blocks outside of the maximum dig limit window are written as -1.

nx, xmn, xsiz: definition of the grid system (z axis).

ny, ymn, ysiz: definition of the grid system (y axis).

xcent, ycent, psize: center and size of the nominal seed dig limits.

wxmin, wxmax, wymin, wymax: the dimension of the maximum dig limit window.
iorelim: flag to identify as an ore or waste limit.

ixv(1): random number generator seed (a large odd integer).

t0,redfac,kasas,ksas,num: the annealing schedule: initial temperature, the reduction fac-
tor, the maximum number of perturbations at any one given temperature, and the target
number of acceptable perturbations at a given temperature (maximum number of times that

ka is reached).

maxpert, nrepo: the maximum number of perturbations. After a fixed number of pertur-
bations the number of perturbations, the profit, the penalty, the global objective scaled by
the initial penalty, and the temperature is written to the debugging file and the screen.

15



Parameters for DIGLIM
3k 3k >k 3k 3k 3k >k 3k 3k >k >k >k >k >k >k >k %k >k >k >k %k k

START OF PARAMETERS:
eprofit.out

21

diglim.out
diglim.dbg

grid.out

40 93652.5 5.0

40 22152.5 5.0
93800 22200 40
93750 93850 22150 22250
1

382769

10.0 0.5 1000 300 100
050000 100

1.0 5.0

1.0

0.70

\file with the data

\ column for expected profit, grade
\file for dig limit output

\file for debugging output

\file for gridded output
\nx,xmn,xsiz

\ny,ymn,ysiz

\dig limit: centroid, nom. size

\max window: xmin,xmax,ymin,ymax
\dig limit: ore (1) or waste (0)
\random number seed

\SA schedule: t0O,redfac,ka,k,num

\ maximum perturbations, reporting
\minimum and maximum interval length
\maximum perturbation distance
\weight for equipment

Figure 16: An example parameter file for the DIGLIM program.

e dismin, dismax: minimum distance and the maximum distance permitted between polygon
vertices. If the minimum limit is exceeded one of the vertives is deleted. If the maximum is

exceeded then a vertex is added equidistant between the violatin vertices.

e dmax: maximum perturbation distance. The selected distance is randomly chosen, but does

not exceed the maximum perturbation distance. The distance is symetric.

e dig: digability factor. The digability factor as selected from the digability catalogue.

Summary

The primary aim of a mining operation is to excavate minerals of interest, process, and sell for a
profit. We have shown one way to convert grade to profit. A profit based classification of material
is not enough. The blockwise profit map needs to be further classified to account for the limitations
of the mining equipment. Further processing of the profit map for classifying material as ore and
waste must be done systematically accounting for the value of the block. We have devised an

automatic dig limit selection algorithm that does this.

Further work may include a user friendly graphical interface for implementing dig limit selection.
Demonstrated optimality, depart from the concept of a block model: mode the bench as a dense
grid of points with increased density surrounding the dig limits, real-time classification of aterial

16



on a truckload-by- truckload basis, incorporate direction of mining into dig limit determination
(digging at an angle to the dig limits must incur additional penalty due to equipment induced
dilution.
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