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Abstract

Geostatisticians commonly face modeling with multiple data types derived from different
measurements of the same variable or measurements of different variables. These different data
types are often non-isotopic, that is, not available at the same locations. There are many
examples of this complex data configuration in mining, environmental and petroleum
geostatistics. If the objective is to make full use of all available information in constructing a
model of coregionalization for subsequent estimation/simulation, it is necessary to calculate the
cross-covariance between the different data types for all lag distances h. Extrapolating the
behavior of non-isotopic data to the expected behavior of collocated (h=0) data accounts for
short-scale variability ignored in assuming collocation. The model of coregionalization and
subsequent mapping will then makes full use of all available sample data information.

Introduction

It is a rare luxury to conduct a geostatistical mapping exercise with only one variable
measured with one sampling protocol/device. We are almost always faced with multiple
variables, more than one sampling device and more than one sampling procedure. As a result, we
are faced with modeling non-isotopic data. Isotopic sampling is when the multiple data variables
are at the same location (Goovaerts, 1998). Some data are isotopic. For example, multiple grade
or chemical assays on drill hole composites or porosity/permeability measurements from core
plugs are isotopic. Nevertheless, there are many situations where we do not have isotopic
samples:

• Two sampling campaigns with different sampling procedures, e.g. diamond drilling versus
reverse circulation. Data of different vintages are collected with different sampling
protocols, equipment and people at different times.

• Blast hole samples versus exploration drill hole samples. Blast hole samples represent a
larger volume, incur a larger error in sample delimitation and extraction and are more
prevalent than exploration samples.

• Geophysical measurements (seismic) may be collocated with well data, but may also be
considered as data at different locations.

An ongoing problem of geostatistical analysis with non-isotopic or non-collocated samples is
variogram calculation and modeling. The only practical model of coregionalization available is
the Linear Model of Coregionalization (LMC). An LMC for two stationary variables, for
example, requires, in addition to the two direct-variogram models, a cross-variogram or cross-
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covariance value at all distances and directions. Moreover, the cross-variogram cannot be
calculated unless the data are collocated.

Consider two stationary variables Z and Y. The cross-variogram is calculated as follows for
the LMC:

)]}()()][()({[
)(2

1
)(

)(

1

huuhuu
h

h
h

+−+−
⋅

= ∑
=

− iii

N

i
iYZ YYZZ

N
γ (1)

The Z and Y data must be collocated, that is, the locations ui and ui+h, ),(,...,1 hNi = where

)(hN is the number of Z-Y pairs separated by lag distances h, must have the complete set of both
Z and Y variable values.

It is important to note at this point that the cross-covariance at lag distance h=0 ( )(0C ) is the
sill of the cross-variogram while the cross-covariance for lag distances infinitesimally larger than
0 by some distance ε ( )(εC ) accounts for the cross-variogram nugget effect. The two are not

equivalent, that is, )()( εCC ≠0 .

Like all variogram modeling, a legitimate LMC requires judicious selection of geological rock
types, treatment of trends and an appropriate coordinate space. Most orebodies permit some
deterministic modeling of geological controls. Subsequent multivariate geostatistical estimation
and simulation must consider all such interpretive geological information. This should not be
forgotten in the following discussion.

A cross-variogram with non-isotopic data could only be calculated by assuming the samples
are collocated. There are a number of problems with this approach. Consider the schematic
illustration of Figure 1 with the non-isotopic x-o data configuration. When collocation is
assumed, the variability for distances less than the smallest x-o lag distance h is not known and is
not accounted for. The cross-covariance at lag h=0, which is the sill of the non-standardized
cross-variogram, would thus be severely underestimated; it would be higher if the data truly were
collocated. Thus, the difference between the different sampling methods or the two different
variables is ignored. To avoid this misrepresentation of cross-covariance, nearby pairs, within
some distance tolerance, can be assumed collocated. Figure 2 gives an example of this procedure
using the x-o data configuration presented in Figure 1. This practice is also problematic. Although
less severe than assuming collocation without a distance tolerance, short scale variability and/or
the nugget effect may make the correlation seem poor when the variables could be, in fact, very
well correlated.

The assumption of collocation for non-isotopic data makes the cross-variogram easy to
calculate and the LMC straightforward to construct; however, there is no reason to pay with the
inherent under evaluation of the cross-variogram sill. We would rather spend the additional
professional time required to extrapolate the non-isotopic cross-covariance to that of collocated
(h=0) cross-covariance.

The cross-covariance of two stationary non-isotopic variables Z and Y can be calculated and
modeled for lag distances h greater than and equal to the minimum lag distance separating the
paired Z-Y samples:
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The cross-covariance calculation does not require collocated data. For distances less than the
smallest h, however, the cross-covariance cannot be calculated using relation (2).

The cross-covariance model is completed for all h by an extrapolation procedure and an
estimate of the nugget effect. The extrapolation procedure involves extrapolating the cross-
covariance from h equal to the smallest distance separating the non-isotopic samples to h
approaching 0. This contribution to the cross-covariance is referred to as the structured cross-
covariance contribution. The cross-covariance at lags h smaller than what corresponds to the
structured cross-covariance but infinitesimally larger than 0 by some distance ε, can be explained
by an estimate of the nugget effect. A reasonable estimate of the relative cross-covariance/cross-
variogram nugget effect is an average of the two direct-variogram relative nugget effects. The
resulting nugget effect estimate also contributes to the cross-covariance. The cross-covariance at
h=0, that is, the sill of the cross-variogram is calculated by adding the structured cross-covariance
contribution to the cross-covariance contribution due to the nugget effect.

The sill estimate should be validated. The correlation coefficient associated to an estimated
cross-variogram sill can be calculated and should agree with the correlation of the data as if it
were collocated/isotopic. Uncertainty in the sill should also be evaluated. There is inherent
uncertainty in all of the modeling parameters used to calculate the sill value and the impact of
these uncertainties on the sill estimate should be assessed.

Knowing the sill of the cross-variogram and the model of cross-covariance for all lags h, the
cross-variogram can be inferred. The LMC is then constructed so that subsequent cokriging
and/or cosimulation accounts for the cross-covariance at all distances and directions h. The
procedure effectively utilizes the full spatial potential of all the available sample information.

Theory

Consider two stationary variables Z and Y with means mZ and mY and variances σ2
Z

and σ2
Y. The variables are non-isotopic. A legitimate LMC takes on the following form:
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where

h is the separation distance or lag vector between Z-Y data pairs;

)()( hiΓ are the ith nested structures, each defined by a variogram type, e.g. spherical,
exponential, etc) and relevant anisotropy parameters. By convention, the 0th nested structure
is the nugget effect;

the )(iC coefficients are variance contributions. They are constrained to ensure a positive
definite LMC:
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the Z-Z and Y-Y direct-variograms and the Z-Y cross-variogram, ),(),(),( hhh YZYYZZ −−− γγγ
respectively, are calculated as:
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Since Z and Y are stationary and we assume )(hYZC − = )(hZYC − , that is, there is no “lag
effect”:
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The Problem. The Z and Y variables are non-isotopic – the experimental cross-variogram
)(hYZ −γ cannot be calculated because the cross-variogram sill, or equivalently, the cross-

covariance at h=0 is inaccessible and the cross-variogram nugget effect, or equivalently, the
cross-covariance at h=ε is also inaccessible.

Proposed Approach. Calculate, plot and model )(hZZ −γ and )(hYY −γ . Observe the relative

nugget effect in these models as
2

0

Z

ZZC

σ
− and

2

0

Y

YYC

σ
− , respectively (see Figure 3). Note the

superscript “0” (i = 0) is used to represent the variance contribution due to the nugget effect.

Calculate, plot and model )(hYZC − for lag distances available from the data. In Figure 3, this
corresponds to the x’s modeled by the solid line on the cross-covariance plot. Extrapolate the
cross-covariance (dotted line) to separation distances h approaching 0 to obtain the structured
cross-covariance YZB − (Although YZB − contributes to the sill of the cross-variogram, it is not

equal to the sill of the cross-variogram, )(0YZYZ CB −− ≠ , because it does not account for the Z-Y

cross-covariance at h=ε, that is, the nugget effect.). We still need to estimate the cross-variogram
nugget effect to access the cross-variogram sill. Our solution is to assume that the relative nugget
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effect of the cross-variogram,
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The cross-variogram sill )(0YZC − can now be inferred. YZB − and 0
YZC − are the structured

cross-covariance and nugget effect of the non-standardized cross-variogram, respectively. They
both contribute to the sill:

YZYZYZ BCC −−− += 0)(0 (8)

In this calculation, relation (7) is substituted for 0
YZC − leaving )(0YZC − as the only unknown:
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The cross-variogram is now calculated:

)()()( h0h YZYZYZ CC −−− −=γ (10)

Relation (7) is the key to our approach. It allows us to infer the cross-covariance for
infinitesimally small lags h=ε even though the data are separated by larger distances; however, it
is reasonable that the relative nugget effect of the cross-variogram is between the relative nugget

effects of the direct variograms. Recall relation (4) with the constraints on the )(iC variance

contributions. The last constraint, nstiCCC i
YZ

i
YY

i
ZZ ,...,0,)( 2)()()( =≥ −−− , limits the possible values

for 0
YZC − . Given 0

ZZC − and 0
YYC − , the upper bound of 0

YZC − is 00
YYZZ CC −− ⋅ and the lower

bound is 0. Since the domain of these bounds is consistent with a positive definite LMC, any

estimate of 0
YZC − can be checked.

Validation

We must show that the cross-variogram sill estimate )(0YZC − is consistent with the isotopic
correlation of the data. This cannot be proven in practice since the collocated data configuration
would make our proposed approach unnecessary in the first place; however, we show that it
works with an extensive example dataset. There is always uncertainty involved in extrapolating or
fitting variogram parameters. Since the sill estimate )(0YZC − is a function of such parameters, it
will also be uncertain. The magnitude of uncertainty in the sill must be assessed.

Correlation at h=0. A cross-plot of collocated Z-Y pairs will give the correlation at h=0. This is
the true and maximum correlation of the data. And an estimated cross-variogram sill )(0YZC − is
related to an estimate of the true (collocated) correlation:
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Validation of )(0YZC − is based on the agreement of its associated correlation to the true Z-Y

correlation (Accepting the structured cross-covariance YZB − as the sill of the cross-variogram is
incorrect – relation (11) shows that the associated correlation would be a severe underestimate of
the true correlation. The cross-variogram sill )(0YZC − is the addition of the structured cross-

covariance contribution YZB − and the cross-covariance contribution due to the nugget effect
0

YZC − .).

Uncertainty in the Sill. From relation (9) it is clear that the cross-variogram sill estimate
)(0YZC − is a function of five parameters:

),,,,()( 2200
YZYZYYZZYZ BCCfC −−−− = σσ0 (12)

The uncertainty in each of the five parameters can be assigned using expert judgment – we

know the direct-variogram sill parameters ( 2
Zσ and 2

Yσ ) have low uncertainties since they are

reliable one-point statistics and the extrapolated parameters ( 00 , YYZZ CC −− and YZB − ) have higher
uncertainties. An illustration of these 5 uncertainties is shown in Figure 4. A Monte Carlo
approach can be used to transfer the 5 input uncertainties through to uncertainty in )(0YZC − and

)(0YZ −ρ : A distribution is constructed for each parameter given its assigned uncertainty, a value
from each of the 5 parameter distributions is drawn, these 5 values are input into relation (9) to
obtain a sill estimate, the sill is then input into relation (11) to obtain the associated and the
process is repeated a large number of times to create multiple realizations. Validation is based on
the summary statistics of the resulting histograms of the sill and associated correlation
realizations.

The theoretical and experimental link between the variance/covariance relationships will be
applied to a poly-metallic sedimentary-exhalative deposit of lead and silver. The initial sampling
campaign was based on collocated samples of two variables. This allows us to illustrate the
proposed approach and validate the results.

An Example

The abundant dataset contains 52,080 2m composites of lead (Pb) and silver (Ag) over a
3500m by 500m area. Although this data configuration may not be available in practice, the
methodology can only be checked with collocated data.

The collocated/isotopic Pb-Ag distribution is visualized in Figure 5. The true correlation
between Pb and Ag is 0.82. The LMC is defined in order to quantify the Pb-Ag direct-variability
and cross-variability. The three calculated and modeled variograms for the East-West direction
and the resulting LMC modeling parameters are shown in Figure 6.
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A non-isotopic database consisting of two datasets is now constructed. The first dataset is
created by choosing 33,519 collocated samples of lead and silver (Pb1-Ag1); the second dataset is
created by choosing 18,561 collocated samples of lead and silver (Pb2-Ag2). Both datasets
approximate a regular grid covering the entire 3500m by 500m area; however, they are not
available at the same locations, that is, they are non-isotopic. The 450m bench amongst both
datasets is shown in Figure 7.

The proposed approach to variogram calculation and modeling with non-isotopic samples is
demonstrated with the Pb1-Pb2 data and the Pb1-Ag2 data. The main East-West direction of
continuity is presented and the variables are not standardized.

Pb1-Pb2. Typically, the correlation and sill of the Pb1-Pb2 cross-variogram would be accessed
from a standard Pb1-Pb2 scatterplot assuming the samples are collocated. This plot is shown in
Figure 8. We expect excellent correlation (1.0) since the Pb1 and Pb2 samples are from the same
distribution (Pb). Ignoring the short-scale variability of the non-isotopic Pb1-Pb2 samples,
however, significantly underestimates the correlation and cross-variogram sill to be 0.30.

In Figure 9, the calculated, plotted and modeled Pb1 and Pb2 direct-variograms are presented.

The relative nugget effects of the latter are calculated as
0.50

0.34
2

1

0
11 =−

Pb

PbPbC
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,

respectively. The calculated Pb1-Pb2 cross-covariance )(21 hPbPbC − is also shown in Figure 9.

The structured cross-covariance 21 PbPbB − is extrapolated to 17.0. The relative nugget effect

)(21

0
21

0PbPb

PbPb

C

C

−

− of the cross-variogram is calculated as 615.0
0.40

0.22

0.50

0.34

2

1 =






 + . The sill of the

Pb1-Pb2 cross-variogram )(21 0PbPbC − is then calculated as 2.44
615.01

0.17 =
−

.

The link between covariance and correlation is now used to estimate the collocated Pb1-Pb2

correlation (expected to be 1.0). Using
2

2
2

1

21
21

)(
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PbPb

PbPb
PbPb

C

σσ
ρ

⋅
= −

−
0

0 with

0.50,2.44)( 2
121 ==− PbPbPbC σ0 and 0.402

2 =Pbσ , the theoretical correlation is 0.99.

Uncertainty in the parameters used for the cross-variogram sill calculation is now taken into

account. Symmetric uncertainty of 1.0% for 2
1Pbσ and 2

2Pbσ and 3.0% for 0
22

0
21 , PbPbPbPb CC −− and

21 PbPbB − were assumed. The uncertainty in the cross-covariance value 44)(21 =− 0PbPbC .2 and

associated correlation value 99.0)(21 =− 0PbPbρ is assessed by constructing 10,000 Monte Carlo

realizations of relations (9) and (11), respectively. The histograms of all such possible sill values
and associated correlations are shown in Figure 10. The variance of each histogram is very low
indicating that our estimates of 44.2 and 0.99 are very reliable given the assigned uncertainties.
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Pb1-Ag2. A similar exercise is carried out with the non-isotopic Pb1-Ag2 data. By involving a
second variable in the analysis, the expected correlation is no longer 1.0; we now expect the
correlation to be that shown in Figure 5 (0.82). The scatter of Pb1-Ag2 pairs assuming collocation
is shown in Figure 11. The Pb1-Ag2 correlation of 0.28 significantly underestimates the true
correlation of 0.82.

The Pb1 and Ag2 direct-variograms and the Pb1-Ag2 cross-covariance model are presented in
Figure 12. The structured Pb1-Ag2 cross-covariance and the relative Pb1-Ag2 nugget effect is
extrapolated to 210.0 and calculated as 0.625, respectively. The sill of the cross-variogram is then
found to be 560.0. The theoretical correlation corresponding to the sill estimate of 560.0 is
calculated to be 0.82. This matches exactly the isotopic correlation shown in Figure 5. Using the
same symmetric 1.0% uncertainty for the direct-variogram sills and the same 3.0% symmetric
uncertainty for the extrapolated direct-variogram and structured cross-covariance parameters, the
resulting uncertainty in the estimated sill value and its associated correlation estimate is assessed
and displayed in Figure 13. Again, the variance of both histograms is very low indicating reliable
estimates.

Discussion

We account for short-scale variability that is ignored in assuming collocation; however,
reproduction of the correlation is extremely good in this example because of the large number of
data. We expect some discrepancies between experimental and expected values when the
variograms and cross-covariance models are not as well informed.

In a practical non-isotopic data setting, validation of the sill estimate would not be possible
since the collocated data configuration is unknown. Nevertheless, if the goal is to make full use of
all available information, the non-isotopic cross-covariance behavior must be extrapolated to
cross-covariances smaller than the smallest non-isotopic data separation distance.

Assigning the relative cross-variogram nugget effect as the average relative nugget effect of
the direct-variogram structures is crucial in our proposed approach. This method was not tested
against other mineralogical settings. Uncommon trends or “lag” effects may invalidate the
assumption implicit to relation (7); however, this assumption is consistent with physical intuition
and a positive definite LMC. If the nugget effect in the cross-variogram is outside either direct-
variogram nugget effects, the resulting LMC would not be positive definite and would not be
“physically consistent”. Further analysis is needed so that this proposed averaging technique can
be applied to more general settings.

Implementation of the proposed approach is straightforward and repeatable. Any modest PC
available at virtually any mine site can be used for implementation. The expert time required to
implement the approach is minimal. Of course, we admit that cokriging and cosimulation is
underutilized because of perceived difficulties in implementation.

The preceding discussion assumes a direct or Gaussian approach. Indicator geostatistics
would require a different approach. Indicator cokriging or the Markov-Bayes algorithm could be
adapted to the problem of non-isotopic sampling; however, the problem of inference would be
more difficult.
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Conclusion

Extrapolating non-isotopic cross-covariance to that of the expected collocated cross-
covariance and estimating the cross-variogram nugget effect effectively solves the problem of
geostatistical mapping with a Linear Model of Coregionalization. Cokriging and/or Cosimulation
can be implemented so that the variability for all distances and directions is accounted for.
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First phase of sampling
Second phase of sampling

Figure 1 – Non-Isotopic Sampling. A schematic illustration of non-isotopic sampling. The x’s and o’s are
not available at the same locations.

Value

V
al

ue

Figure 2 – Pairing Nearby Data. A schematic illustration of the common practice of pairing nearby data
types. Samples are paired according to a distance tolerance (shown as the elliptical shapes). Six x-o pairs
are deemed close enough (hollow ellipses), whereas two x-o pairs (shaded ellipses) are deemed too far
apart. The six close x-o pairs are cross-plotted to infer the x-o cross-variogram sill.
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Figure 3 – The Proposed Approach. A graphic illustration of the parameters involved in the problem and
proposed approach. The two direct-variograms, from which the relative nugget effects are to be calculated,
are shown in the top. The calculated cross-covariance are the x’s and the solid line is the model through
them. The extrapolation to lag distances approaching 0 is shown by the dotted line.
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Figure 4 – Sill and Associated Correlation Uncertainty. A graphical illustration of the 5 parameter
uncertainties relevant to the calculation of a sill estimate.
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Figure 5 – Silver vs. Lead. The scatter of collocated Pb-Ag pairs showing a correlation of 0.82.
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Figure 6 – LMC for Pb-Ag. The Pb-Ag Linear Model of Coregionalization (LMC) for the major East-
West direction of continuity. For each structure of the three structures (not including the nugget effect), the
variogram type is spherical, the C values are the variance contributions and the R (range) values define the
deposit’s anisotropy.

Variable C0 C1 C2 C3 R1 R2 R3

Pb-Ag 50 170 180 100 5 15 100
Pb 5 16 14 10 5 15 100
Ag 1000 2800 2700 1550 5 15 100
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Figure 7 – Location of Pb1-Ag1 and Pb2-Ag2. The Pb1-Ag1 and Pb2-Ag2 data on the 450m bench.
There are, in total, 33,519 samples of collocated Pb1 and Ag1 (top) and 18,561 collocated samples of Pb2
and Ag2 (bottom).

Figure 8 – Pb2 vs. Pb1. The scatter of non-isotopic Pb1-Pb2 pairs. The pairs are separated by h. The
correlation of 0.30 is significantly lower than the expected correlation of 1.0.



16

Figure 9 – Pb1-Pb2. The calculated and modeled direct Pb1 and Pb2 East-West direction direct-
variograms along with a plot of the Pb1-Pb2 extrapolated cross-covariance model.
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Figure 10 – Pb1-Pb2 Sill Uncertainty. The histograms of 10,000 realizations of the sill and associated
correlation, given symmetric uncertainty of 1.0% in the direct-variogram sill parameters and 3.0%
symmetric uncertainty in the extrapolated direct-variogram and cross-covariance modeling parameters. The
variance of both distributions is low indicating the sill and associated correlation values are quite reliable.

Figure 11 – Ag2 vs. Pb1. The scatter of non-isotopic Pb1-Ag2 pairs. The plotted pairs are separated by h.
The correlation of 0.28 is significantly lower than the expected correlation of 0.82.
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Figure 12 – Pb1-Ag2. The calculated and modeled direct Pb1 and Ag2 East-West direction direct-
variograms along with the extrapolated Pb1-Ag2 cross-covariance model.
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Figure 13 – Pb1-Ag2 Sill Uncertainty. The histograms of 10,000 realizations of the sill and associated
correlation, using the same uncertainties for the same parameters as in the Pb1-Pb2 case. The variance of
both distributions is quite low indicating that the sill and associated correlation estimates are reliable.


