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UltimateSGSIM: Non-Stationary Sequential Gaussian
Cosimulation by Rock Type

Clayton V. Deutsch (cdeutsch@ualberta.ca) and Stefan Zanon (szanon@ualberta.ca)
University of Alberta, Edmonton, Alberta, CANADA

The sequential Gaussian simulation (SGS) algorithm is popular because of its remarkable
robustness; however, the flexibility offered by SGS is rarely used as much as it could be. The
UltimateSGSIM program was generalized from the latest FORTRAN 90 SGSIM program to
provide practitioners with access to some additional flexibility. Some of the special features of
UltimateSGSIM include: (1) simulation by rock type accounting for hard and soft boundaries
between rock types; one integer coded rock type can be set to “missing” and that rock type
“keyed out” and not simulated, (2) multiple variables are simulated simultaneously by either (i)
full cokriging, (ii) collocated cokriging with a Markov model, or (iii) after stepwise conditional
transformation, (3) the mean values of any or all of the different variables can be made locally
variable; the self-healing algorithm can be applied with this locally variable mean option (or
with the collocated cokriging option), (4) the three angles that define anisotropy can be made
locally variable to improve reproduction of large-scale curvilinear features, and (5) the
correlation coefficients in collocated cokriging can be made locally variable.

Sequential Gaussian Simulation

Alabert, 1987, devised sequential simulation under Journel’s supervision. Isaaks, 1990,
developed the Gaussian alternative also under Journel’s supervision. The first edition of GSLIB
(Deutsch and Journel, 1992) provided the public-domain code sgsim that was widely adopted as
a stand-alone program and within commercial software. The well established “recipe” of
sequential Gaussian simulation:

1. Transform the data to Gaussian (normal) deviates: y(ui) = G-1(FZ(z(ui))). Where y(ui)
is the Gaussian deviate at location ui, following a standard normal distribution G, and
z(ui) is the original data value following distribution FZ.

2. Loop over all grid nodes in a random order:

i. Search for nearby data and all previously simulated values.

ii. Calculate the conditional mean y* and variance σ2
SK by simple kriging.

iii. Draw a value from the non-standard normal conditional distribution N(y*, σ2
SK)

by Monte Carlo simulation.

3. Back transform all simulated values: z(u) = FZ
-1(G(y(u))).

4. Repeat the entire procedure with a different random number seed (that changes both
the random path and the Monte Carlo simulation) for another realization.

The sequential aspect of this simulation algorithm amounts to a decomposition of the multivariate
distribution into a series of univariate conditional distributions. It is exact. In practice, not all
values within the range of correlation are used for kriging. This leads to a Markov-type
approximation that is not a limitation provided that sufficient conditioning data are retained.
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Some common extensions to this core algorithm are cosimulation with multiple variables. The
collocated alternative is commonly used (Xu and others, 1992; Verly, 1993; Journel, 1999;
Shmaryan and Journel, 1999). A locally varying mean is also used to account for a secondary
variable (Deutsch and Journel, 1998). Locally varying directions of continuity (Deutsch and
Lewis, 1992; Xu, 1994) and locally varying correlation coefficients (Lyall and Deutsch, 2000)
have also been implemented. These features and others will be combined into a version of SGSIM
dubbed UltimateSGSIM. The programming language is FORTRAN90 with dynamic memory
allocation. Source code is provided to facilitate integration into other software and to modify the
code even further. The old version of SGSIM will no longer be maintained.

Basics: Grid and Searching

UltimateSGSIM works with the standard grid node centered Cartesian grid that all other GSLIB
programs use; however, any or all of the coordinates could be the result of some geometric
transformation that accounts for stratigraphic/geological correlation.
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The Z-axis increases upwards. “Depth” could be considered the Z coordinate with all units
increasing downwards; however, the angles must be corrected and the output ordering must be
understood (effectively written from the top downwards).

There are three angles that define anisotropy. The original X/Y/Z axes are associated to
Horizontal Minor (X), Horizontal Major (Y), and Vertical directions (Z). The search and
variogram radii are specified for hmax, hmin, and vert, which are essentially the Y/X/Z directions,
unless the angles are rotated. There are three angles that rotate the search ellipsoid or variogram
distance calculation to any arbitrary orientation. The first angle (ang1) rotates the X/Y
coordinates around the Z-axis; clockwise is positive. The second angle (ang2) rotates the Y/Z
coordinates around the rotated X-axis; clockwise is negative. The third angle (ang3) rotates the
Z/X coordinates around the rotated Y-axis; clockwise is positive. Any or all of these three angles
can be made locally variable in UltimateSGSIM.

The grid for UltimateSGSIM should be relatively fine compared to the ultimate block grid
required for calculations; an appropriate scale-up is required. For this reason, data are assigned to
grid nodes. All data outside the grid volume are not used for conditioning, but could be used to
construct the data distribution for normal scores transform. The search for previously simulated
grid nodes and original data assigned to grid nodes is the same: a spiral search using the
anisotropy of the search ellipsoid.
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A multiple grid scheme is recommended where the grid nodes are simulated on successively finer
grids; searching and data are assigned at the finest grid regardless of the multiple grid search
level. The multiple grid search helps reproduce the large range variogram (Tran, 1996).

An octant search could be considered if the data fall along strings from drill holes or wells;
otherwise, the string effect or screening of kriging can sometimes be seen in the simulated models
showing too much variability away from the strings.

The data for simulation must come from the same rock type or an allowed rock type. A “logic
matrix” specifies the boundaries between data and rock types. A “hard” boundary is appropriate
in certain geological settings where there is no correlation across rock type boundaries. “Soft”
boundaries may be appropriate when there are gradational boundaries across rock types. Soft
boundaries may be one-way or two-way, that is, a sample in r can be used for a grid node in rock
type r’ but a sample in r’ does not have to be used in the simulation of a grid node in rock type r.
All allowable data of the same type (regardless of what rock type) are treated the same in kriging.
Note that the same data value may have different normal score transform values depending on the
rock type being estimated. UltimateSGSIM keeps track of this.

In cokriging, multiple data types can be used. Each type is searched separately leading to some
number of each different data type. UltimateSGSIM allows one pre-existing secondary variable
coming from, say, seismic data. The user has the responsibility to reconcile multiple pre-existing
secondary variables into one with some type of regression or neural network.

The 0th variable is the pre-existing variable (if available). In presence of K variables there are
nk,k=0,…,K data available at each grid node: yk(ujk), jk=1,…,nk. The next step in
UltimateSGSIM is to determine the mean and variance values of the conditional normal
distributions.

Basics: Transformation

The variables (secondary variable and all K variables) often require transformation to Gaussian or
normal score values. Conventional normal scores transformation requires each variable (in each
rock type) to be transformed to a Gaussian distribution. Consider K variables and R rock types:
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A polynomial approximation is used for the Gaussian distribution: G/G-1. The original variable
distributions {Fk,r, k=1,…K, r=1,…R} are specified by either the conditioning data or as reference
histograms from some other source. The values making up these distributions can be weighted.
Linear interpolation/extrapolation are used in the back transformation. The more esoteric power
law and hyperbolic options available in GSLIB are for the dangerous situation of few data (<20),
which is not recommended for UltimateSGSIM.

A stepwise conditional transform can be applied to simplify cosimulation and to account for non-
linear, heteroscedastic, and constrained relationships (Leuangthong and Deutsch, 2001). This
transformation requires sufficient data (approximately 20K data per rock type) to accomplish the
transformation with a series of conditional transformations.
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Note that the K variograms required in case of stepwise transformation are of the transformed
variables {Y’

k,r, k=1,…,K, r=1,…,R} and not the original variables.

Basics: Kriging

Once the nearby data have been identified, simple kriging is the default type of kriging:
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The weights and kriging variance are calculated by the well-known kriging equations. Ordinary
kriging is an option under trend modeling. The sum of the weights is constrained to one to rely
less on the global mean of 0. The kriging variance is larger because of the requirement to
estimate the mean from the local data. The larger kriging variance also causes the global variance
of the simulated values to increase, which in turn causes the global histogram not to be
reproduced. The ad-hoc self-healing algorithm could be used to keep the variance under control
(Zanon, et. al., 2002). Self-healing can also be used with the local mean option.
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The non-stationary mean could be used for any subset of variables and rock types. The input
mean values are transformed in the same way as the input data for that variable and rock type.

In presence of multiple variables, there are four approaches to account for the secondary variable:

1. Independent: each variable is simulated independently, that is, equation 3 or 4 is
applied K times successively.

2. Collocated: each variable is simulated in turn using all previous collocated variables
as conditioning.

3. Stepwise: the variables are transformed in a stepwise conditional manner and then
back transformed in reverse order to preserve the correct correlation. The
transformed variables are essentially simulated independently.

4. Full Cokriging: a linear model of coregionalization is used to simulate the variables
with the specified correlation structure.

The collocated cokriging alternative may also require self-healing to correct for a too-large
variance. The variance values generated by kriging may be modified by the self healing
algorithm (see Zanon et. al. 2002 for details), which may result in the variogram not being
reproduced.

Full cokriging is probably theoretically the best approach, but it requires all of the variograms to
be fit with a licit positive definite linear model of coregionalization. Computer-aided fitting may
make this more practical than conventional wisdom tells us. The full cokriging estimator of
variable k’ is written:

( ) ( )∑∑ ==
⋅= kn

i kik
k

ki
K

kk yy
1 ,

'
,0

*
' uu λ (5)



5

The cokriging weights '
,

k
kiλ are different for every variable k’; however, the left-hand side kriging

system is the same. UltimateSGSIM takes advantage of this and solves for all of the kriging
weights simultaneously using multiple weight and right hand side covariance vectors.

Collocated cokriging and full cokriging generate a K-dimensional mean vector m and a K-
dimensional standard deviation vector s. A vector of simulated values yCS must be drawn from
these non-standard Gaussian distributions that reproduces the correlation at lag h=0. This joint
simulation is done in two steps:

1. Simulate a vector of standard Gaussian values y with the correct correlation by LU
simulation:

y = L • w (6)

where L is the result of LU decomposition using the h=0 correlation matrix and w is a
vector of independent Gaussian deviates.

2. Convert the standard Gaussian values to non-standard deviates:
yCS = y • s + m (7)

There are different ways to accomplish the joint drawing of non-standard Gaussian deviates;
however, this method is efficient many drawings from different non-standard distributions can be
achieved with a single LU decomposition. A proof that this is correct is contained in the
Appendix.

Parameters

The parameter file could be very large, which would make it difficult to use the program for
simple exercises. To make UltimateSGSIM easier to operate, the parameter file has been
divided into a number of required and optional blocks. The required input parameters include the
following blocks:

• MAIN: number of realizations, random number seed, grid size, and output options.

• SRCH: search anisotropy and radii, number of data, and other search parameters.

• VARG: variogram definition for at least one variable and rock type.

The optional blocks:

• DATA: specification of conditioning data file.

• TRAN: details of transformation including limits and reference distributions.

• TRND: specification of non-stationary parameters such as the mean and anisotropy.

• SECV: secondary variable data file.

• ROCK: valid rock types, rock type model, and logic matrix.

• MULT: specification of how to treat multiple variables.

UltimateSGSIM reads through the parameter file three times to get the MAIN, SRCH, and
VARG parameters. Defaults are assigned for all optional blocks; then, it reads through for the
parameters in the optional blocks. Finally, the program may have to read the variograms again
depending on the number of rock types and variables. Very little is written to the screen, which
could optionally be a file. Most parameters are echoed to the debugging file.
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The MAIN block of parameters:

1 -number of realizations to generate
1 -number of variables being simulated
69069 -random number seed
50 0.5 1.0 -nx,xmn,xsiz
50 0.5 1.0 -ny,ymn,ysiz
1 0.0 1.0 -nz,zmn,zsiz
sgsim.out -file for simulation output
0 - output format: (0=reg, 1=coord, 2=bin)
0 -debugging level: 0,1,2,3
sgsim.dbg -file for debugging output

The number of variables to simulate must be specified up front. The other new parameter from
the original SGSIM is the output format: option 0 is as before with multiple variables as multiple
columns, option 1 will also put the X/Y/Z coordinates in the output file, and option 2 will write
the values in binary (cycling fastest over the number of variables, then X, then Y, then Z, and
finally the realization number).

The SRCH block of parameters:

12 -number of simulated nodes to use
1 -multiple grid search (0=no, 1=yes)
0 3 -octant search (0=no, 1=yes), number
10.0 10.0 10.0 -maximum search radii (hmax,hmin,vert)
0.0 0.0 0.0 -angles for search ellipsoid

There is no two-part search. The data are assigned to the closest grid node unless they fall
outside the grid in which case they are not used. The size of the covariance lookup table is
automatically calculated and allocated.

The VARG block of parameters:

1 -number of variograms
0 1 1 -rock type, variable 1, variable 2
2 0.4 - number of structures, nugget effect
1 0.25 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

50.0 50.0 50.0 - a_hmax, a_hmin, a_vert
1 0.35 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

1000 1000 1000 - a_hmax, a_hmin, a_vert

The specification of a variogram is as before. There may be many variograms specified for
multiple variables and multiple rock types. The rock type, variable 1, and variable 2 specify the
specific variogram. The first variogram encountered is the default. The order of the variograms
does not matter.

These three blocks (MAIN/SRCH/VARG) are required. Of course, with only these three blocks
the simulated realizations must be unconditional and standard normal. The program searches for
these blocks first and then attempts to read the remaining

The DATA block of parameters is required for conditional simulation:

cluster.dat -file with data
1 2 0 0 0 - columns for X,Y,Z,wt,rock type
3 4 - columns for variables
-1.0 1.0e21 - trimming limits

Each data point can have coordinates, declustering weight, rock type, and the variables being
simulated. The trimming limits are not for removing or cutting outliers; they are global and are
used to remove missing values. The declustering weight applies to all variables. If the data are
not equally sampled and a different declustering weight should apply; then, the user has to enter
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that through the reference distribution option in the TRAN block. If required, the rock type will
come from the 3-D rock type model when the rock type is not contained in the data file.

The TRAN block of parameters specifies the transformation and back transformation:

1 -transform the data (0=no, 1=yes)
200 -number of quantiles to keep
3 -number of min/max values
1 1 0.0 15.0 - variable, rock type, min, max
1 2 0.0 15.0 - variable, rock type, min, max
1 3 0.0 15.0 - variable, rock type, min, max
1 -number of reference distributions
1 1 - variable number, rock type number
data01.dat - file with ref. distribution
1 0 - columns for value and weight
1 2 - variable number, rock type number
data02.dat - file with ref. distribution
1 0 - columns for value and weight

No parameters are needed from this block if the option is to not transform the data. Of course,
additional parameters can be left in the parameter file to recall the format in future runs. The tail
interpolation/extrapolation is always linear (the nscore/backtr programs can be used as pre-
and post-processing for UltimateSGSIM if a more elaborate option is required. The minimum
and maximum values are taken from the input data files unless specified. The user gives the
number of minimum and maximum values and then one line per entry with the variable number,
rock type number, minimum, and maximum. The distribution will be taken from the data unless
a reference distribution is specified. There must be data for every variable in every rock type if
the transformation option is turned on.

The TRND block of parameters specifies the possibility of trends or non-stationarities:

0 -consider ordinary kriging (0=no, 1=yes)
0 -consider self healing (0=no, 1=yes)
0 -consider LVM (0=no, 1=yes)
2 -number of locally varying means
1 1 - rock type number, variable number
lvmfl01.dat - file with local mean
1 - column for value
1 2 - rock type number, variable number
lvmfl02.dat - file with local mean
1 - column for value
0 -locally varying angles (0=no, 1=yes)
locang.dat - file with local angles
1 0 0 - columns for three angles

The default is simple kriging and no non-stationary parameters. If this block is present in the
parameter file, then it will be read for the possibility of locally varying (non-stationary)
parameters. Ordinary kriging should only be used when the data spacing is dense relative to the
variogram range; otherwise, the kriging variances are too high and the global histogram will not
be reproduced. Locally varying means can be used for some variables and some rock types. No
local mean values will be used if the option is turned off. There is an option for self-healing with
each local mean and rock type; this will prevent a too-large variance and lack of histogram
reproduction. Any or all of the three angles can be made locally variable. These angles will
override the variogram angles specified in the VARG block.

The SECV block of parameters specifies the existing secondary variables at the same grid
resolution as being simulated.

0 -consider secondary data (0=no, 1=yes)
sgsim01.dat -file with secondary variable
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1 - column for value
1 -transform secondary data (0=no, 1=yes)

The default is no secondary data. If this block is present in the parameter file, then it will be read
for the possibility of secondary data coming from remote sensing or some previous simulation.

The ROCK block of parameters specifies the rock type model as an optional input. The
parameters for this option are:

0 -use rock type model (0=no, 1=yes)
3 -number of rock types to model
1 2 3 -the rock types to model
sisim.out -file with rock types
1 - column number for rock type
1 -consider logic matrix (0=no, 1=yes)
1 1 0 - sample in rock type 1 (0=hard, 1=soft)
1 1 0 - sample in rock type 2 (0=hard, 1=soft)
0 0 1 - sample in rock type 3 (0=hard, 1=soft)

The number of rock types to model and their integer numbers are required if a choice is made to
use rock types. The file with the rock types must also be present and at the same grid resolution
as that being simulated. All rock types not modeled will be left as missing values in the SGS
output; multiple rock types and missing values can be “keyed out.” There are no errors if rock
types are chosen that are not in the input file; however, there must be corresponding histogram
and variogram input for each variable and each rock type specified if the data are being
transformed.

The “logic matrix” is used to specify whether or not data from one rock type should intervene in
modeling another rock type. The default is for no logic matrix to be considered (option 0) and all
rock types are modeled separately. Alternatively, the user can specify the rock types that can be
affected by a sample in each rock type. With R rock types, there must be R lines for the logic
matrix; one for a sample in each rock type. Each line refers to a sample in one rock type. A 0
means that the sample cannot be used to estimate that particular rock type; a 1 means that it can
be used. In the example above, there is a soft boundary between rock types 1 and 2 and rock type
3 is modeled by itself. Note that the boundaries can be soft in one direction. Consider:

1 - consider logic matrix (0=no, 1=yes)
1 1 0 - sample in rock type 1 (0=hard, 1=soft)
0 1 0 - sample in rock type 2 (0=hard, 1=soft)
0 0 1 - sample in rock type 3 (0=hard, 1=soft)

In this case, a sample in rock type 1 can be used for rock types 1 and 2, but a sample in rock type
2 can only be used in rock type 2.

The MULT block of parameters specifies the details of joint simulation of multiple variables.
The following input parameters are considered:

2 -1=independent, 2=collocated, 3=stepwise, 4=full cokriging
10 -number of classes for stepwise
multivariate.dat -file with transformation data
4 5 6 - columns for variables
0 - column for weight
0.6 0.7 0.5 -correlation coefficients: 0 with 1,2,3,.

0.4 0.3 -correlation coefficients: 1 with 2,3,.
0.5 -correlation coefficients: 2 with 3,.

Multiple variables may be simulated independently (no correlation), with collocated cokriging,
after stepwise conditional transformation, or with full cokriging. The number of secondary
classes for stepwise conditional transformation applies to all variables. The order of the variables
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is from 1 to K as specified in the input conditioning data file. The number here is so that the
correlation

Testing Protocol for Ultimatesgsim

A recursive testing scheme has been setup for UltimateSGSIM program to ensure that it is
properly performing the different types of sequential Gaussian simulation. The GSLIB data is
being used to test the different algorithms. In some cases these files will need to be altered to
accommodate new simulating methods and/or new data will be used.

The test protocol has been designed to check the statistics for individual and multiple realizations.
The results from UltimateSGSIM will be compared to existing programs when available. For a
single realization a histogram and pixel plot are created to visually inspect the results and to look
at histogram reproduction. Then 51 realizations are created and the mean and variance are
calculated at every location over all the realizations. Pixel plots and histograms are created for the
mean and variance. The mean map will help to remove the effects of ergodic fluctuations in the
process and at each location this should be close to the same value independent of the new and
old program for the same kriging type. The variance map shows the degree of ergodic fluctuation
at each location providing a sense of uncertainty. At locations of hard data the variance should be
zero if the program is reproducing the input data.

Variogram reproduction was calculated for ten of the multiple realizations to show how two point
statistics were being reproduced. If required a variogram could be created of the averaged mean
map that will be much smoother but this has not been used so far. A scatter plot of the average
mean and variance was also created to show the spread of variability for each mean value but this
does not provide any new information, it only presents it differently. The final test, so far, is a
scatter plot of the primary and secondary data for the single realization to look at correlation
reproduction.

The parts of the UltimateSGSIM tested so far are SK, OK, LVM, CCK, and full CK has been
started. The main parts left are stepwise, self-healing and kriging using different rock types.
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Conclusion

This program fills a need for a flexible version of SGS that permits simultaneous simulation of
multiple variables by rock type with non-stationary means and directions. The design is more
modular than the original version. Dynamic memory allocation makes the program efficient for a
variety of grid sizes.

There are still features that could be included. The piecewise simulation of large grids that was
implemented by Julian Ortiz is one example.
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Appendix: Drawing from Multivariate Gaussian (From Oy Leuangthong)

Consider n variables, for which simultaneous cokriging yields the parameters of each of the
conditional univariate distributions.

(1)

with

(2)

where wk, k=1,…,n is independent, identically distributed (iid) as N(0,1), and Lik is the element in
the ith row and kth of the lower triangular matrix from the Cholesky decomposition of the
correlation matrix at h = 0, denoted simply as ρ.

So Equation (1) becomes

(3)

The mean of
icY is

The covariance between
icY and

jcY is

with

(4)
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Since wk, k=1,…,n is iid N(0,1), then E{wk}= 0, ∀ k and

Equation (4) becomes

The covariance is then

Recall from Cholesky Decomposition of the correlation matrix that the correlation between the ith

and jth element is given by

Therefore the covariance between
icY and

jcY is

which reproduces the covariance matrix at h=0, with si and sj as the standard deviation of the ith

and jth variable provided by cokriging and ρij is the correlation at h=0.

Recall of Cholesky Decomposition

Consider the following correlation matrix at h=0, denoted simply as ρ.

Cholesky decomposition yields the following lower triangular matrix, L (the upper triangular
matrix is simply the transpose of the lower triangular matrix, U=L′:

that is, for n=3, L becomes:
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To determine the initial correlation matrix based on the lower matrix, all that is required is to
multiply the lower and the upper triangular matrices together:

Correspondingly, the ith and jth element of this correlation matrix is obtained by
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Parameters for UltimateSGSIM
****************************

START OF MAIN:
1 -number of realizations to generate
1 -number of variables being simulated
69069 -random number seed
50 0.5 1.0 -nx,xmn,xsiz
50 0.5 1.0 -ny,ymn,ysiz
1 0.0 1.0 -nz,zmn,zsiz
sgsim.out -file for simulation output
0 - output format: (0=reg, 1=coord, 2=bin)
4 -debugging level: 0,1,2,3
sgsim.dbg -file for debugging output

START OF SRCH:
12 -number of data to use per variable
1 -multiple grid search (0=no, 1=yes)
0 3 -octant search (0=no, 1=yes), number
10.0 10.0 10.0 -maximum search radii (hmax,hmin,vert)
0.0 0.0 0.0 -angles for search ellipsoid

START OF VARG:
1 -number of variograms
1 1 1 -rock type, variable 1, variable 2
2 0.10 - number of structures, nugget effect
1 0.25 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

5.0 5.0 5.0 - a_hmax, a_hmin, a_vert
1 0.65 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

25.0 25.0 25.0 - a_hmax, a_hmin, a_vert
2 1 1 -rock type, variable 1, variable 2
2 0.90 - number of structures, nugget effect
1 0.05 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

5.0 5.0 5.0 - a_hmax, a_hmin, a_vert
1 0.05 0.0 0.0 0.0 - type,variance,ang1,ang2,ang3

25.0 25.0 25.0 - a_hmax, a_hmin, a_vert

START OF DATA:
cluster.dat -file with data
1 2 0 0 6 - columns for X,Y,Z,wt,rock type
3 4 5 - columns for variables
-1.0 1.0e21 - trimming limits

START OF TRAN:
1 -transform the data (0=no, 1=yes)
200 -number of quantiles to keep (default=200)
3 -number of min/max values
1 1 0.0 15.0 - rock type, variable, min, max
2 1 0.0 300.0 - rock type, variable, min, max
1 3 0.0 15.0 - rock type, variable, min, max
0 -number of reference distributions
1 1 - rock type number, variable number
cluster.dat - file with ref. distribution
3 0 - columns for value and weight
1 2 - rock type number, variable number
data02.dat - file with ref. distribution
1 0 - columns for value and weight

continued on next page…



15

START OF TRND:
0 -consider ordinary kriging (0=no, 1=yes)
0 -consider self healing (0=no, 1=yes)
0 -consider LVM (0=no, 1=yes)
2 -number of locally varying means
1 1 - rock type number, variable number
lvmfl01.dat - file with local mean
1 - column for value
1 2 - rock type number, variable number
lvmfl02.dat - file with local mean
1 - column for value
0 -locally varying angles (0=no, 1=yes)
locang.dat - file with local angles
1 0 0 - columns for three angles

START OF SECV:
0 -consider secondary data (0=no, 1=yes)
sgsim01.dat -file with secondary variable
1 - column for value
1 -transform secondary data (0=no, 1=yes)

START OF ROCK:
0 -use rock type model (0=no, 1=yes)
2 -number of rock types to model
21 22 -the rock types to model
Working/rock.out -file with rock types
1 - column number with rock type
0 -consider logic matrix (0=no, 1=yes)
1 1 0 - sample in rock type 1 (0=hard, 1=soft)
1 1 0 - sample in rock type 2 (0=hard, 1=soft)
0 0 1 - sample in rock type 3 (0=hard, 1=soft)

START OF MULT:
2 -1=independent, 2=collocated, 3=stepwise, 4=full cokriging
10 -number of classes for stepwise
multivariate.dat -file with transformation data
4 5 6 - columns for variables
0 - column for weight
0.6 0.7 0.5 -correlation coefficients: 0 with 1,2,3,.

0.4 0.3 -correlation coefficients: 1 with 2,3,.
0.5 -correlation coefficients: 2 with 3,.

Figure 1: Example parameter file for UltimateSGSIM with all parameter blocks


