Sequential Gaussian Simulation for Large Grids (sgsim pw)

Julidn Ortiz C. (jJmol@ualberta.ca) and Clayton V. Deutsch (cdeutsch@ualberta.ca)
Department of Civil & Environmental Engineering, University of Alberta

Abstract

The GSLIB program sgsim cannot handle large grids due to limitations in RAM memory. The al-
gorithm has been modified in order to permit simulation of large grids. The new algorithm sgsim_pw
simulates pieces of the larger model, so each piece can be handled with the available RAM memory.
To preserve the spatial continuity, a coarse grid is simulated first and added to the conditioning
data, so when simulating a piece, there are conditioning points to honor the long range correlation.
Moreover, an overlapping zone is used to preserve the correct transition from one piece to the next.
This avoids discontinuities and artifacts due to the separate generation of the pieces. Changes in the
original code are presented in this short note. Examples are shown. To avoid large files, a binary
output is implemented (sgsim_pwb). Two additional programs are presented: getsim extracts one
or all realization of the binary output file and writes them as an ASCII file, and getslice permits
to extract a slice from a large ASCII file, so that other GSLIB programs do not present allocation
problems.

Introduction

Sequential Gaussian Simulation is one of the most widely used geostatistical simulation techniques.
Application to dense grids for large domains required the modification of the code to avoid RAM
memory limitations.

sgsim requires roughly 4N bytes of RAM to simulate a grid of N nodes. A computer with
128MB of free RAM would be limited to approximately 30 million cells. One way to overcome the
RAM limitation is to simulate piece-wise. The grid to be simulated, which has nz levels, is divided
into npie pieces with nx - ny nodes in the horizontal plane and n% = levels each. The algorithm is
presented schematically in Figure 1:

1. Set parameters to simulate a coarse grid: the new dimensions of the grid, number of nodes
and coordinates of the first node have to be reset. The original parameters are kept. The
dynamic allocation of memory is done using new parameters that account for the size of the
coarse grid and the number of nodes to be simulated at one piece that includes overlapping.

2. Simulate the coarse grid: using the specified parameters for the coarse grid, the routine
sgsim_pw is called. The output is kept in an array and transferred to the next step.

3. Add the coarse grid to the conditioning data array: based on the specifications for the coarse
grid, the locations and corresponding coordinates are calculated for each simulated node.
They are loaded into the data array to be considered as hard data during the dense simulation.

4. Set parameters to simulate a piece of the dense grid: the specifications for the dense grid
simulation of a piece are made. Depending on the piece number the size of the sub-model

Coarse Grid

X O O g O O (@)
O O O O O O
O O O O O O
© OO 80 80 80 80 OOO
O @) O O O O
Piece5 © © 8U 8U 8U 8b OUO
@) Q Q Q Q
> 080 80 80 80 OOO
O OQ OQ OQ OQ O : o
@) @) O O g
O @) @) O @) O
. O
Piece 4 o o0g8,8.,38 8. °
@) Q Q @) ﬂo
o 080 80 80 80 O
O \)Q OQ OQ OQ O
O O O O g O
@) @) @) @) @) O
. O @)
Pleces O O 8u 8u 8u 8u .
@) O O O ﬁo g
> 080 80 80 80 O
O OQ OQ OQ OQ O
O O O O g O
O @) O O O O
. O O
Piece 2 o o0 8.3 38 3. °
) O O O ﬁo O
> 080 80 80 80 O
O OQ OQ OQ OQ O 0
O O O O g O
O @) O O O O
1 (@) O
Piece 1 o o J8.8_8_8]°
O O O O O
O ¢) ©) ¢) @) @) .
Overlapping

Figure 1: Schematic description of sgsim_pw algorithm.

will include the overlapped nodes or not. The size of the first piece is nz - ny - n’;je, while the

size of the other npie — 1 pieces is nz - ny - (T%e + over).

5. Start piece-wise simulation: looping over the pieces, the following steps are repeated:

(a) Set parameters depending on the piece: the dimension in the z direction depends on the
piece number. The first piece does not include an overlapping zone from the previous
piece, since there is none. The dimension in the z direction and consequently, the total
number of nodes are reset.

(b) Simulate the piece: given the current parameters, sgsim pw is called to simulate the
dense piece.

(c) Keep the nodes in the overlapping zone: as defined by the user, a zone of over levels
is used in the next piece. That makes a total number of nover nodes to keep. Those
nodes are stored in a temporary array and loaded into the grid for the next piece before
simulating, so they are considered informed, hence skipped by the algorithm.

Modifications to the code

Modifications in several units of the sgsim were required. The main program was modified to call
several times sgsim pw, to complete the pieces. The loop to simulate several realizations was also
taken out the original sgsim routine, to the main program.

The definition of the variables was the most important modification, since this is where the
problem of memory allocation is encountered. Each array was modified to handle the larger piece
to be simulated. Parameters for maximum sizes of arrays were also changed.

Finally, a few parameters were added to the parameter file to give the user the flexibility to
manipulate the sizes of the pieces, overlapping and coarse grid.

Changes to the main program

The code was modified to create different realizations in the main program, and perform the step-
wise simulation. The variables ipie and nover were added to the parameters used when calling the
routine sgsim _pw:

call sgsim_pw(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MAXCTZ,
+ MAXSBX,MAXSBY ,MAXSBZ,ipie,nover)

Details of changes made to the main program:
1. Keep original parameters

nxold=nx
nyold=ny
nzold=nz
xsizold=xsiz
ysizold=ysiz
zsizold=zsiz
xmnold=xmn
ymnold=ymn
zmnold=zmn
ndold=nd

2. Loop over realizations:

do isim=1,nsim
3. Set parameters to simulate a coarse grid:

nd=ndold % Set number of data

ipie=0 % Set piece number

if(nx.ne.1) nx=int(nxold/ratio) %

if(ny.ne.1) ny=int(nyold/ratio) % Reset number of nodes
if(nz.ne.1) nz=int(nzold/ratio) ¥%

if(nx.ne.1) xsiz=xsizold*ratio ¥

if(ny.ne.1) ysiz=ysizold*ratio J Reset spacing between nodes
if(nz.ne.1) zsiz=zsizold*ratio ¥

nxy=nx*ny % Reset number of nodes in horizontal plane
NXyZ=nx*ny*nz % Reset number of nodes overall
if(nx.ne.1) xmn=xmnold+(xsiz/2)-(xsizold/2) %

if(ny.ne.1) ymn=ymnold+(ysiz/2)-(ysizold/2) 7, Reset new origin
if (nz.ne.1) zmn=zmnold+(zsiz/2)-(zsizold/2) %

4. Simulate the coarse grid:

call sgsim_pw(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MAXCTZ,
+ MAXSBX ,MAXSBY ,MAXSBZ, ipie,nover)

5. Add the coarse grid to the conditioning data array:

==

ndnew = ndold + nxyz Temporary number of data

do in=nd+1,ndnew % Loop over simulated nodes
in2=in-nd
iz=1+int((in2-1)/nxy) A
iy=1+int ((in2-1-(iz-1)*nxy)/nx) 7% Get index in large grid
ix=in2-(iz-1)*nxy-(iy-1)*nx %

x(in)=xmn+real (ix-1)*xsiz
y(in)=ymn+real (iy-1)*ysiz
z(in)=zmn+real(iz-1)*zsiz %

===

Assign coordinate

=

vr(in)=coarse(in2) Assign value

end do

=

Finish loop

==

nd=ndold+nxyz Update number of data

6. Set parameters to simulate a dense grid of size nz - ny - nZpjece

nx=nxold %
ny=nyold % Reset number of nodes
nz=nzold/npie %

xsiz=xsizold %

ysiz=ysizold % Reset spacing between nodes

zsiz=zsizold %

nxy=nx*ny % Reset number of nodes in horizontal plane
NXyZ=nx*ny*nz % Reset number of nodes overall

xmn=xmnold % Reset new origin x and y only

ymn=ymnold %

nover=nx*ny*over % Set number of nodes to overlap

7. Start piece-wise simulation. Loop over pieces:
do ipie=1,npie

(a) Set parameters depending on the piece:

zmn=zmnold % Reset z origin
if (ipie.ne.1) then %
nz=nzold/npie+over %
zmn=zmnold+(ipie-1)* % Reset number of nodes
+ (nz-over)*zsiz-over*zsiz 7} to account for overlapping
NXyz=nx*ny*nz %
end if %

(b) Simulate the piece:

call sgsim_pw(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MAXCTZ,
+ MAXSBX,MAXSBY,MAXSBZ,ipie,nover)

(c) Keep the nodes in the overlapping zone:

do iover=1,nover
tover (iover)=sim(nxyz-nover+iover)
end do

(d) End loop over pieces.

8. End loop over realizations.

Changes in definition of variables and input parameters

The readparm routine reads the new parameters added to the parameter file (see below). Three
new parameters were added:

e ratio: refers to the ratio of nodes in the dense grid over nodes in the coarse grid in one
direction. That means that if the dense grid has nz nodes in z, then the coarse grid has -2&

ratio
nodes. Overall, the coarse grid has *=2£3% nodes.

e npie: defines the number of pieces that the large model is divided into. Each piece should
be small enough so that it does not exceed the maximum size that the RAM memory can
handle. The overlapping grid must be included in this calculation.

e over: Defines how many levels in z are to be overlapped, that is, to be used for the next
piece.

A few variables were added to store the coarse grid and overlapping simulated nodes:
e tover(:): Stores the overlapping nodes.
e coarse(:): Stores the coarse grid to load it into the data array.

Maximum sizes of arrays were changed to account only for pieces and overlapping, and not the
entire dense grid:

e Maximum size on the 2z direction:

if(nz/ratio.gt.nz/npiet+over) then 7

MAXZ = nz/ratio A
else % Set as maximum possible case
MAXZ = nz/npie+over %
end if A
MXYZ = MAXX * MAXY * MAXZ % Reset size of simulated arrays
e Size of the overlapping array:
MXYZ0 = MAXX * MAXY * over
e Size of data arrays:

MAXDAT = MAXDAT + nx*ny#*nz/ratio**3

e Dynamic memory was assigned to the new variables:

— coarse(MAXDAT)
— tover(MXY ZO)

Define maximum size of coarse grid and data array:

nxc=1
nyc=1
nzc=1

if(nx.ne.1) nxc=int(nx/ratio)
if(ny.ne.1) nyc=int(ny/ratio)
if(nz.ne.1) nzc=int(nz/ratio)

MAXCOARSE = nxc*nyc*nzc

MAXDAT = MAXDAT + MAXCOARSE

Changes to the routine sgsim

As mentioned above, the loop over realizations was taken out of the original sgsim routine. The
overlapping nodes were handled as follows:

e When assigning data to nodes, the nodes outside the grid were not considered:

call getindx(nx,xmn,xsiz,x(id),ix,testind)
if (.not.testind) goto 77
call getindx(ny,ymn,ysiz,y(id),iy,testind)
if(.not.testind) goto 77
call getindx(nz,zmn,zsiz,z(id),iz,testind)
if(.not.testind) goto 77

e Overlapping nodes from the previous piece were entered into the new array of simulated
nodes:

if(ipie.gt.1) then
do iover=1,nover
sim(iover)=tover(iover)
end do
end if

e The simulated values are entirely written to the output file only if the piece number is one.
Otherwise, only the nodes that do not overlap are written out. The parameter ntmp is set so
nodes of the coarse grid are stored into the array coarse(). If ipie is different than 0, which
corresponds to the coarse grid, the simulated nodes are read in two steps:

— The first nover nodes are read first and those are written out only if it is the first piece.

— The remaining nxyz — nover nodes are written out in all cases.

This is done with the following code:

% Set the value for ntmp
if(ipie.eq.0) then
ntmp=nxyz
else
ntmp=nover
end if

% Write out the first piece or save the coarse grid
% If it is not the first piece those nodes are overlapped,
% so do not write them out.
do ind=1,ntmp
simval = sim(ind)
if(simval.gt.-9.0.and.simval.1t.9.0) then
ne = ne + 1
av = av + simval
ss = ss + simval*simval
end if
if (ipie.eq.0)then
coarse(ind)=simval
end if
if(itrans.eq.1l.and.simval.gt.(UNEST+EPSLON)) then
simval = backtr(simval,ntr,vrtr,vrgtr,zmin,
+ zmax,ltail,ltpar,utail,utpar)
if(simval.lt.zmin) simval = zmin
if(simval.gt.zmax) simval = zmax
end if
if (ipie.eq.1)then
write(lout,’(f12.4)’) simval
end if
end do

% Write out the other pieces or remaining coarse grid nodes.
do ind=ntmp+1,nxyz
simval = sim(ind)
if(simval.gt.-9.0.and.simval.1t.9.0) then
ne = ne + 1
av = av + simval
ss = ss + simval*simval
end if
if (ipie.eq.0)then
coarse(ind)=simval

end if

if(itrans.eq.1l.and.simval.gt.(UNEST+EPSLON)) then
simval = backtr(simval,ntr,vrtr,vrgtr,zmin,

+ zmax,ltail,ltpar,utail,utpar)

if (simval.lt.zmin) simval = zmin
if(simval.gt.zmax) simval = zmax

end if

if (ipie.ne.0)then
write(lout,’(£12.4)’) simval

end if
end do
av = av / max(real(ne),1.0)
ss =(ss / max(real(ne),1.0)) - av * av
write(x*, 111) isim,ne,ipie,av,ss
write(ldbg,111) isim,ne,ipie,av,ss
111 format(/,’ Realization ’,i3,’: number = ’,i8,/,
+ ’ Piece ’,i3,/,
+ ’ mean = ’,f12.4,
+ > (close to 0.07)°,/,
+ ’ variance = ’,f12.4,
+ > (close to gammabar(V,V)? approx. 1.0)’,/)
Examples

Example 1: Two Dimensional Grid with Short Variogram Range

A two dimensional unconditional realization of a 500 by 1000 nodes grid was done using both
sgsim_pw and sgsim to check for possible artifacts due to the separation of the model into smaller
pieces. The histogram, map and variogram reproduction were checked (Figure 2). The result is
very satisfactory. The parameters used in sgsim_pw were:

e Ratio for coarse grid: 10. That is, 5000 nodes are simulated in the coarse grid.
e Number of pieces: 10. The first piece has 50000 nodes.

e Levels to overlap: 5. The pieces 2 to 10 have 50000 + 2500 = 52500 nodes.

e Variogram range: 10.

In this case, the overlapping zone was chosen so it covers half the range of correlation given by
the variogram. The spacing for the coarse grid was 10, that means that it is not really helping to
reproduce the variogram. It may not be necessary in some cases to use it, particularly, when the
range of the variogram is short and can be covered mostly using the overlapping zone. With large
ranges of correlation, the coarse grid should play a more important role.

Example 2: Two Dimensional Grid with Large Variogram Range

A second two dimensional example with large range gave the results presented in Figure 3. In
this case, the parameters used in sgsim_pw were:

e Ratio for coarse grid: 10. That is, 5000 nodes are simulated in the coarse grid.
e Number of pieces: 10. The first piece has 50000 nodes.

e Levels to overlap: 5. The pieces 2 to 10 have 50000 + 2500 = 52500 nodes.

1000.00|

2.000 2,000
1.000 1.000

< <

S s

k-l 0 k] 0

g g

o K

w w
-1.000 -1.000
-2.000 -2.000

sgsim_pw realization sgsim realization
-0800 — Number of Data 500000 .0800 7 — Number of Data 500000
] | mean .021 E = mean -.005
10700] - std. dev. 1.001 std. dev. .998
] 1 coef. of var undefined coef. of var undefined
0600 3 _ - maximum 4.239 - maximum 4.399
R — upper quartile 686 -0600 7 upper quartile .659
] median 022 median -.004
0500 lower quartile -.654 lower quartile -.672
- minimum -4.849 > minimum -5.011
g] 2
S 04007 El
z] 3
L E 2
i E i
.0300 7
102007
01001
00003 NN | 0000 ARSI | |
-3.00 -2.00 -1.00 .00 1.00 2.00 3.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00
value value
1.20_Sgsim_pw realization 1.20_Sgsim realization

<

.40

Distance Distance

Figure 2: Histogram, map and variogram for a single short range realization done with sgsim pw and sgsim.

e Variogram range: 100.

In this example, most of the variogram reproduction is due to the coarse grid. The overlapping
zone only helps to get a smooth transition between pieces, without any artifact. Again the result is
satisfactory. The variogram reproduction is not as good for long range. This may be due to ergodic
fluctuations only.

Example 3: Two Dimensional Grid - Multiple Realizations

To check the variogram reproduction, 10 realizations of the same grid -500 by 1000 nodes- were
generated using both algorithms, for a shorter variogram range. Figure 4 shows the better perfor-
mance of sgsim_pw compared with sgsim in reproducing the variogram. It can be concluded that
the new algorithm does not have problems reproducing the variogram. The parameters used in the
piece-wise algorithm are:

e Ratio for coarse grid: 10. That is, 5000 nodes are simulated in the coarse grid.
e Number of pieces: 10. The first piece has 50000 nodes.
e Levels to overlap: 5. The pieces 2 to 10 have 50000 + 2500 = 52500 nodes.

e Variogram range: 50.

Example 4: Two Dimensional Grid with Anisotropic Variogram

Anisotropy in the vertical direction was used to test sgsim pw. A variogram with range of 50 units
in the direction East with dip 30°, and 25 units in the perpendicular direction was used to generate
10 realizations. The same parameters than in the previous example were used for the piece-wise
construction of the model. Results are shown in Figure 5.

Example 5: Two Dimensional Grid with Conditioning Data

The program was also tested using conditioning data. The database red.dat was used to test in
two-dimensions data reproduction. A 600 by 1200 nodes grid was used to simulate in a very fine
grid (0.5 by 0.5 units). 10 realizations using sgsim pw and sgsim were generated. Histogram and
variogram reproduction were checked. The data were honored by all realizations.

Example 6: Three Dimensional Grid

Finally, a three dimensional realization was generated using conditioning data. The grid size was
400 by 600 by 200 nodes, i.e. 48 million nodes. The output honors the conditioning data. A slice
was taken to show the map and histogram (Figure 7).

Testing Performance

The performance of both sgsim pw and sgsim was tested, by running several models and checking
the time to accomplish the task.

sgsim runs about 10% faster than sgsim_pw, which is due to the simulation of the coarse grid
at the beginning of the simulation.

10

sgsim_pw realization

2.000 2.000

1.000 1.000

< <
2 S
k-l 0 k] 0
s s
o o
w w
-1.000 -1.000
-2.000 -2.000
500.000
sgsim_pw realization gsim realization
] — Number of Data 500000] P Number of Data 500000
.0700_ e mean -.031 0700 7] [mean -.096
] . std. dev. 1.057] std. dev. 1.060
0600] M coef. of var undefined E | - coef. of var undefined
e — [maximum - 3.906 06007 maximum 4.169
b - upper quartile .705] — M upper quartile 626
10500 median -.064 05007 median -.089
= lower quartile -.765 et lower quartile -.813
=] minimum -4.141 Ny E minimum -4.413
3 3 E
£ .0400_ § 04007
3] E]
z] 3 3
8 E g E
L 03007 L 0300
10200 0200]
.0100_] .0100]
-0000= ———— ——— -0000] ————— ————
-3.00 -2.00 -1.00 .00 1.00 2.00 3.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00
value value
1.20_Sgsim_pw realization 1.20_Sgsim realization
1.00_] 1.00_]
80_]| .80_]
y .60_] y .60_]
40_] 40
20 20
0] T T T T 1 00 : T T T T 1
0. 20. 40. 60. 80. 100. 0. 20. 40. 60. 80. 100.
Distance Distance

Figure 3: Histogram, map and variogram for single realizations with large range done with sgsim_pw and
sgsim.

11

=
=3
3
s
2
w

_sgsim_pw 10 realizations

Frequency

2.000

1.000

-1.000

-2.000

Number of Data

mean
std. dev.
coef. of var

maximum

upper quartile
median

lower quartile
minimum

5000000
-.006
1995
undefined
5.071
740
-.024
-.667
-4.853

sgsim_pw 10 realizations

.00

Figure 4: Joint histogram of 10 realizations, map of the fifth realization and variograms showing reproduc-

tion using sgsim pw and sgsim.

Distance

12

Frequency

<
E=3
K]
s
K]
w

sgsim 10 realizations

-2.000

0800 — Number of Data 5000000
B = mean .017
0700 1 i std. dev. 1.003
E coef. of var undefined
E | maximum 4.831
0600 upper quartile .767
] median -.002
E lower quartile -.646
0500 minimum -5.426
0400 1
0300 7
0200 7
0100 1
0000 NN I ‘
300 200 -1.00 00 100 200 300
value
1.20_Sgsim 10 realizations

Distance

1000.

0]

sgsim_pw realization 5
= ——

T~

2.000

1.000

-1.000

-2.000

sgsim realization
-

e

Elevation

2.000

1.000

-1.000

-2.000

500.000

o East

sgsim_pw 10 realizations sgsim 10 realizations
.0800] —_— Number of Data 5000000 .0800] - Number of Data 5000000
E M mean .001 E = mean 012
E L std. dev. .994 E L std. dev. 1.000
0700 m coef. of var undefined 0700 I coef. of var undefined
E | L maximum 5.296 E | [maximum 4.897
-0600 7 upper quartile 747 06003 upper quartile 762
E median -.015 E median -.003
B lower quartile -.660 B lower quartile -652
L, 0500 minimum -4.586 L, 0500 minimum -5.275
3 E 3 E
H E H E
] E] E
3 0400 3 04005
2 3 14 3
i E i E
20300] 0300
102001 0200 7
10100 7 0100
00005 - 0000c -
300 -200 -1.00 .00 1.00 2.00 3.00 300 -2.00 1.00 0 1.00 2.00 3.00
value value
1.20_Sgsim_pw 10 realizations 1.20_Sgsim 10 realizations
1.00_] 1.00_]
80_] 80_]
y 60_] 60_]
40 40
20 20
0] T T T T T T T 0] T T T T T T T
100 200 300 400 500 600 70.0 100 200 300 400 500 600 700
Distance Distance

Figure 5: Joint histogram of 10 realizations, map of the fifth realization and variograms showing reproduc-
tion for an anisotropic model using sgsim pw and sgsim.

13

sgsim_pw with conditioning data sgsim with conditioning data
0| » O[¥R " |

5.000

4.000

3.000

Elevation

2.000

1.000

20100.00 East 20400.00 20100.00 East 20400.00

sgsim_pw 10 realizations sgsim 10 realizations
L -

B Number of Data 7200000 Number of Data 7200000
] mean 2.147 1 mean 2.139
] std. dev. 3.543 200_] std. dev. 3.540
200_] coef. of var 1.650 0 coef. of var 1.655
b maximum 24.999] maximum 25.000
b upper quartile 2.584] upper quartile 2558
b median 578] median 596
1501 .150_]
>] >
3 3
g] g
g]
g]]
z =
g B g
& 100 T
.050_]
.000_]
00 1.00 2.00 3.00 4.00 5.00
value value
1.20_sgsim_pw 10 realizations 1.20_sgsim 10 realizations
1.00 1.00
80_] 80_]
y 60_]| y 60_]
.40 .40_]
20_]
0 : T T T T 1 00 : T T 1
0 10.0 200 30.0 40.0 50.0 0 10.0 20.0 300 40.0 50.0
Distance Distance

Figure 6: Joint histogram of 10 realizations, map of the fifth realization and variograms showing reproduc-
tion using sgsim pw and sgsim, and the conditioning database red.dat.

14

sgsim_pw 1slice

5.000 i

sgsim_pw with conditioning data
9 P s 9 - 4.000 120_|

200.000]

3.000

Frequency

-

"““@-“f%

Elevation

2.000

i
A
T

°

g

il

u!' i 3 1.000 R
0 East 400.000 B

Number of Data 80000
mean 917

std. dev. 524

coef. of var 572
maximum 7.180
upper quartile 1.180
median 800

lower quartile 530
minimum 121

Figure 7: Map and histogram of a slice of a large realization done using
conditioned by the dataset datal.dat.

T
3.00 4.00 5.00

value

sgsim pw. This realization ins

model size sgsim_pw sgsim
(nodes) npie | ratio | nover | time(minutes) | time(minutes)
1M = 100 x 100 x 100 10 10 5 2 2
8M = 200 x 200 x 200 10 10 5 19 18
27M = 300 x 300 x 300 20 20 5 59 —
64M = 400 x 400 x 400 40 20 5 136 —
125M = 500 x 500 x 500 50 20 5 228 —

Table 1: Performance of sgsim_pw and sgsim for different grid sizes.

Handling Large Files

Since large numerical models occupy large amounts of memory when stored, a binary outputting
has been implemented. The program sgsim_pwb writes the output file in binary format. It is
therefore not possible to read the file directly, so a utility program has been prepared to extract
from the large output file the realizations. This program allows the user to chose between extracting
all realizations or just picking one. The output is a standard ASCII file.

The parameter file of the program getsim is very straightforward (Figure 8).

Additionally, since most programs in GSLIB will store the entire realization before performing

the operation required (e.g. pixelplt), a program called

t getslice is provided, that allows the user to output a given slice into an ASCII file, reducing the
size of the array and speeding up subsequent programs. The parameter file is also simple (Figure

9).

Parameters for GETSIM
ook Kok ok o ok ok ok o kK Kok ok ok kK K

START OF PARAMETERS:

sgsim_pw.out -binary file with simulated realizations
0 -extract all realizations(l=yes,0=no)

1 - realization to extract (if 0)
getsim.out -ascii file to output realization

Figure 8: Parameter file for getsim.

15

Parameters for getslice
ok sk ook sk ok ok sk ko ok ok ok ok

START OF PARAMETERS:

sgsim_pw.out - Input file with realizations

1 - column for variable

10 - number of realizations in file

100 100 100 - nx, ny, nz

1 - realization number

1 - slice orientation: 1=XY, 2=XZ, 3=YZ
1 - slice number

getslice.out - Output file with slice

Figure 9: Parameter file for getslice

Discussion

Large numerical models can now be constructed with a few, conceptually simple, modifications to
the code of sgsim. The new program, sgsim_pw can handle larger models. Models up to 125 million
nodes have been tested. There is also an improvement in storing these models, by outputting in
binary mode using sgsim_pwb.

The performance was tested showing that the new algorithm is slightly slower than the original
version, because of the simulation of a coarse grid to improve variogram reproduction.

Some problems for larger models remain: heap space exceeded appeared a few times. This issue
should be thoroughly investigated.

16

