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Abstract
Sequential simulation requires that subsequent point/block locations be conditioned to previously
simulated values. A simulation path or order of simulation must be chosen. Conventional
wisdom is to use a random path. There are two alternatives that are occasionally brought up: (1)
a row-by-row regular path that would require less computer resources because of a regular
kriging configuration and (2) a path that spirals away from original sample data that may more
correctly honor sample data. The problems with these two alternatives are documented in this
short note. Conventional wisdom is justified in the recommendation of a random path.

Introduction

In the sequential simulation approach, subsequent point/block locations are simulated according
to a random path. A random path can be created with the use of any valid random number
generator. First, a random number is assigned to each simulation location; the simulation
locations are then sorted such that the assigned random numbers are in an ascending/descending
order. The path defined by visiting the simulation points/blocks in this order is random. Figure 1
illustrates this random path implementation for a 3x3 block setting. Sorting large arrays of
numbers can be time consuming and the limited period length of linear congruential random
number generators could also be used (Srivastava, 1988).

At each point/block location, an attribute value is drawn from a local conditional cumulative
distribution function (ccdf). The ccdfs are modeled using some flavor of kriging that considers
original sample data and previously simulated grid nodes. In practical implementation, the
number of conditioning data retained is restricted due to limited computer resources and our
desire for fast results. Doubling the number of conditioning data retained leads to four-fold and
eight-fold increases in computer memory and CPU demand, respectively. Nearby conditioning
data are selected according to closest variogram distance until either a pre-defined maximum
number of conditioning data are retained or the boundary of a pre-defined search neighborhood
(often the variogram range) is reached.

Searching for nearby conditioning data is a recurrent process that needs to be optimized. If the
data are configured irregularly within the simulation grid, we can simply compute and sort the
variogram distance between close conditioning data and the location to be simulated; however, if
the conditioning data occupy a regular grid, a more efficient spiral search can be implemented.
Optimum search parameters will often involve using a combination of both search routines; the
first to search for irregularly spaced sample data, and the second to search for regularly spaced
previously simulated grid nodes.

As sequential simulation progresses, the distances between conditioning data and the simulation
locations decrease relative to the variogram range. As a consequence, reproduction of long-range
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variogram structure can be poor. To attenuate this, a multiple grid search is implemented. A
multiple grid search simulates in several stages. In each subsequent stage, simulation is
performed on a finer grid covering the same area (or volume) and conditioned to values simulated
at the previous stage, Tran (1994). This continues until the final grid density is simulated. Long-
range variogram structure is honored in the early stages while short-range variogram structure is
honored in the later stages. Improved variogram reproduction using a multiple grid search routine
comes at no cost to CPU speed or computer memory.

Variogram reproduction depends on the simulation parameters used, some of which include the
simulation grid density, the overall field size, the span of the search neighborhood, the number of
conditioning data retained and weather or not a multiple grid search is used. A small experiment
was performed using various combinations of these parameters to better understand their
relationship. Using the “sgsim” program from GSLIB, 100 unconditional Guassian simulations
were constructed for each combination. All input variogram models had a single spherical
structure with a 10% relative nugget effect. For each combination, the 100 exhaustive variograms
were calculated and, to nullify ergodicity, averaged. The results are shown in Figure 2. Variogram
reproduction improves as the simulation grid density becomes coarser, the field size expands, the
search neighborhood increases (up to the variogram range), the number of conditioning data
retained escalates and a multiple grid search is implemented.

Practitioners understand the effect that different simulation parameters have on variogram
reproduction. Due attention to practical advice results in consistent and successful variogram
reproduction; however, there is an increasing anxiety among geostatisticians to accept the high
computer resources and unrealistic simulated features manifested from current simulation
algorithms. Regular and spiral simulation paths are considered to be possible solutions to the
aforementioned problems, but they have yet to be well researched and documented.

A regular simulation path is described as simulating subsequent point/block locations according
to a row-by-row sequence. The first location simulated will populate a corner of the 2-D/3-D
simulation grid. A location perpendicular to and directly beside the first would be simulated next.
Simulation continues along this direction until the last location in the row is simulated.
Subsequent rows parallel and directly beside previously simulated rows are then visited similarly.
If the final simulation grid is 3-D, the row-by-row sequence will only simulate the first of
multiple layers and will need to be repeated for all subsequent layers parallel and directly beside
previously simulated layers.

A regular simulation path ensures that the majority of subsequent locations are modeled using the
same arrangement of conditioning data. As a result, the CPU time required to solve the necessary
kriging matrices and the memory allocation needed for previously simulated nodes significantly
decreases.

A spiral simulation path considers subsequent point/block locations according to their closeness
to the original sample data. Based on calculated variogram distance, a predefined maximum
number of conditioning data and a predefined search neighborhood, the sample data closest to
each simulation location are retained; the simulation locations are sorted so that these distances
are in an ascending order. The path defined by following the simulation locations in such order
will simultaneously spiral away from all the original sample data.

It is a common perception that if simulation were to begin at locations close to the sample data
and continue for locations increasingly farther away, the original data would be more faithfully



3

honored and the resulting simulated maps would be more realistic, that is, absent of any simulated
features.

Although a regular and spiral simulation path would relieve computer demand and might generate
more realistic grade distributions, respectively, the validity of each must be assessed before they
can be implemented in practice. Both paths should, above all, sufficiently reproduce the
input/model variogram, be absent of any artifacts and accurately reproduce the true local ccdfs.
Both the regular and spiral simulation path will be shown to fail to meet any of these criteria. The
regular and spiral paths will be described in more detail and implemented in various simulation
settings.

Regular Path

The Path. Consider the n x l x q block simulation setting in Figure 3 where n, l and q are the
block indices. Reference X-Y-Z directions are orientated so that n cycles from 1 to N in the
positive X direction, l cycles from 1 to L in the positive Y direction and q cycles from 1 to Q in
the positive Z direction (Q = 1 in 2-D). Each possible n-l-q combination refers to a block location,
e.g., block 1-2-3 corresponds to the location where n = 1, l = 2 and q = 3. The order in which a
regular path could visit the N x L x 1 layer of blocks (shaded in 3-D and shown in plan view in 2-
D) is shown. The first and second blocks visited are located at 1-1-1 and 2-1-1 and labeled as “1”
and “2”, respectively. The path continues in the positive X direction until the l = 1 rows’ last
block location (N-1-1, labeled as “N”) is visited. The l = 2 row (1-2-1, 2-2-1, …, N-2-1, labeled
as “N +1, N + 2, … 2N”) parallel and directly beside the l = 1 row is simulated next. This process
of cycling through the n index with l constant and q = 1 is then repeated for l = 3, …, L until the
layers’ final block location (N-L-1, labeled as “L x N”) is visited. In 3-D, we would need to repeat
this process of cycling the n index within the slower cycling l index for q = 1, …, Q until the final
block location (N-L-Q) in the model is visited. There are other possible regular paths. We specify
a regular path by writing the indices in a particular order, e.g., an nlq regular path implies visiting
the block locations according to the l index cycling faster than the q index and slower than the n
index. In total, there are two possible regular paths in 2-D and six possible regular paths in 3-D.

Advantage. Consider unconditionally simulating 10,000 block locations with N = L = 100
according to a regular nl path (n cycles faster than l) within the square 2-D (Q = 1) field shown in
Figure 4. The regular nl path (versus a random path) simplifies the matrix computations and
reduces the memory allocation needed to simulate the field. For a maximum of 25 previously
simulated blocks retained to condition the ccdfs, the shaded region (drawn to scale) would
contain 8,832 of the 10,000 possible block locations to which the exact same arrangement of
conditioning data is retained. This corresponds to solving a single matrix for a single set of
kriging weights applicable to 88.3% of the block locations (see bottom of Figure 4).

If a grid of simulation locations is visited according to a random path, the conditioning data
configuration and corresponding set of kriging weights could be different for each simulation
location; however, visiting the simulation locations according to a regular path allows a template
of kriging weights to be applied to the majority of the simulation field. Since CPU speed
increases as the number of matrices to be solved decreases, the same number of simulation
locations could be simulated significantly faster using a regular path in place of a random path.
Also, random simulation paths require the allocation of enough memory to hold a simulated value
at each simulation location. This is necessary because it is possible for any previously simulated
location to be recalled for conditioning subsequent randomly visited locations. The field of
simulated values is written to the output file only after the last location is simulated. Using a
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regular path, however, the number of previously simulated values that have no chance to be used
as conditioning data would continually increase, that is, because a regular path retains the same
conditioning data configuration for the majority of locations, it becomes impossible for an
increasing number of previously simulated locations to be recalled within the dominating
conditioning data configuration template. Such values could be continually written to the output
file during the simulation, sparing significant initial memory allocation.

The Problem. Despite the advantages of a regular simulation path, it has yet to be implemented
in practice – it is ill-famed due to suspicions that artificially created spatial structures, such as a
spread of artifacts along rows, would result in poor variogram reproductions. All suspicion aside,
if the same conditioning data configuration is used to simulate the majority of subsequent
simulation locations, we cannot expect the input variogram to be reproduced for distances outside
the span of this dominating data configuration. There is a lack of enough implementation or
documentation, however, to prove/disprove these expectations and help support using a regular
path in practice.

Implementation. We now implement a regular simulation path in 2-D and 3-D (see figure 5).
There are 2,500 blocks in 2-D with N = L = 50 (Q = 1) and 421,875 blocks in 3-D with N = L =
Q = 75 to be simulated. The X-Y-Z directions are orientated so that the n-l-q indices cycle in the
Easting-Elevation-Northing directions, respectively. The blocks measure 2m a side. The model
variogram has a 10% relative nugget effect with isotopic ranges of 10 and 15m in 2-D and 3-D,
respectively. All possible regular paths in 2-D and 3-D were implemented without conditioning
data. To attenuate the effect of ergodic fluctuations, 100 realizations were generated for each
possible path and the 100 corresponding calculated variograms were averaged. This process was
repeated for a random simulation path. The results are summarized in Figure 5. All possible
regular simulation paths unsatisfactorily reproduce the model variograms, but, as expected, the
random simulation path successfully reproduces the variogram models.

Discussion. A characteristic feature of all the calculated regular path variograms is a substantial
amount of added correlation in the direction where the slowest cycling index resides. Neither the
input variogram model nor the average random path variogram predicts this imparted anisotropy
– it is an artifact of the regular simulation path. A representative illustration of this artifact is
presented in Figure 6. The average Northing direction variograms, calculated from the 100
random path realizations and the 100 nlq regular path (q is the slowest cycling index in the
Northing direction) realizations, are shown. Also, a central Northing-Easting cross-section
through one of the 100 random path realizations and one of the 100 regular path realizations are
shown. The artifact is clearly visible. There is added correlation in the Northing direction nlq
regular path variogram and cross-section, inconsistent with both the model.

The six regular 3-D simulation paths (refer to Figure 5) were initially implemented without
conditioning data, by retaining a maximum of 25 previously simulated nodes and using a grid
density of 75x75x75, an overall field size of 150x150x150m and an isotopic range and search
radius of 15m. Changing these parameters will mitigate, but not remove, the regular path artifact.
Various combinations of these parameters were considered and the six regular simulation paths
were re-implemented for each combination. Although conditioning data mollified the artifact,
using fewer previously simulated values, coarser grid densities, smaller field sizes and smaller
search neighborhoods amplified the artifact. A similar re-implementation and result was obtained
in 2-D.

For the same reason a regular path simulation is less demanding of CPU time and computer
memory, it is not suitable for practical implementation. The same arrangement of conditioning
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data is used to simulate the majority of locations; therefore, variogram reproduction is only
satisfactory for distances up to the span of the dominating conditioning data configuration.

The exact manner in which the regular path variogram deviates from the model variogram for
distances past the span of the dominating data configuration is not easily explained. It is
reasonable to assume, however, that the artifact originates from the relative influence given to the
dominating conditioning data configuration, that is, the template of kriging weights (refer to
Figure 5). The artifact could be predicted by somehow propagating the template of kriging
weights to varying distances and directions. Further analysis of possible propagation techniques
and results would be needed to be able to predict the artifact for all distances and directions.

Spiral Path

The Path. Consider the 2-D point simulation setting in the top of Figure 7. The dark boxes are
sample data and the points to be simulated (shown as dots) populate a regular grid. A spiral path
through the simulation locations is to be established. Centered on a particular sample datum, the
shaded region is enlarged to show its surrounding simulation locations (shaded circles). The
distances between the simulation locations and the central sample datum are calculated as d-1, d-
2, d-3, …, d-n, where n is the number of different distances. These calculated distances could
then be summarized as being the radii of a family of circles centered on that particular sample
datum. Each circle intersects a set of point locations to be simulated. The same procedure is
repeated for all sample data, i.e. there are as many sets of simulation locations intersected by the
circle of radius d-1 (or any radius), as there are sample data. The order of simulation is then
defined by simulating groups of locations according to an ascending radii order: the first group of
locations simulated intersect the circles of radius d-1, the next group intersect the circles of radius
d-2 and so on until the group of locations intersected by the circles of radius d-n are simulated.
Simulation locations equidistant from sample data are visited randomly. In 3-D, a spiral path is
established with the same procedure, except the distances would be summarized as spheres
instead of circles.

Possible Advantage. There is a common suspicion among some practicing geostatisticians that if
hard (sample) data were somehow more influential than previously simulated values, the resulting
simulated maps would be more realistic and absent of any “simulated features”. The theme here is
that sample data, compared to simulated data, should be more faithfully honored in conditioning
the local ccdfs. A spiral simulation path can put this theme into practice via simulating locations
as close and as long as possible to the original sample data.

The Problem. The problem with a spiral simulation path is similar to the problem of a regular
simulation path. The search routine would systematically retain conditioning data configurations
that span small distances relative to the variogram range and variogram reproduction can only be
expected to be satisfactory for distances up to the span of the conditioning data configuration.
Further, proper implementation and documentation of the spiral path has yet to be performed to
warrant its use or rejection in practice.

Implementation. The spiral simulation path is implemented in 2-D for various sample data
configurations. There are 50x50 (2,500) block locations measuring 1m a side to be simulated. The
model variogram has a 10% relative nugget effect with an isotopic range of 10m. The averages of
100 variograms from 100 spiral path realizations and 100 random path realizations are calculated
and compared relative to each other and the input variogram model. Figure 8 shows the results for
(1) a single centrally located sample (2) four samples roughly equidistant from each other and the
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50x50m field border and (3) 29 exploration samples (“data.dat” from GSLIB). The spiral path
variograms all deviate from the model variogram. The random path variograms all satisfactorily
reproduce the model.

Discussion. The results are not surprising. An arrangement of conditioning data spanning
distances less than the variogram range is constantly retained for the local ccdf models, thus,
satisfactory variogram reproduction for distances exceeding this span is not expected.

Just as we did for the regular simulation path, we re-implemented the spiral simulation path with
different combinations of simulation parameters. As expected, using more previously simulated
values, coarser grid densities, larger field sizes and a large search neighborhood improves
variogram reproduction. We also tried different amounts and arrangements of original sample
data configurations, from which it seems variogram reproduction improvement and number of
original sample data are positively correlated (this can also be seen in Figure 8 by the relative size
of the broken-line circles).

The spiral simulation path approach seems to work decently, that is, with enough conditioning
data, e.g. “data.dat” (Figure 8), there are minor, yet noticeable, deviations from the model.
However, this path offers no computer resource advantages and does not appear to “value” or
“weight” the original sample data any more than a random simulation path does.

The regular and spiral simulation paths are similar in that they fail to reproduce long-range
variogram structure, yet different by the manner in which they do so. Both regular and spiral
simulation paths constantly retain conditioning data configurations spanning smaller distances
than the model variogram range; however, a regular simulation path fails to retain conditioning
data from the particular direction in which the slowest cycling index resides (refer to Figure 4),
whereas a spiral simulation path retains conditioning data from all previously simulated
directions. So, although the mutual result is unsatisfactory variogram reproduction from both
paths, a regular path variogram exhibits added correlation in the direction for which the slowest
cycling index exists whereas a spiral path variogram exhibits added correlation unbiased in
direction (compare Figures 6 and 8).

Local Conditional Cumulative Distribution Functions (ccdfs)

Other than what has already been presented, the validity of a regular and spiral simulation path
could be assessed via a local conditional cumulative distribution function (ccdf) analysis: the
local ccdf means and variances created from either of these paths should agree with the true ccdf
means and variances (created from simple kriging). Consider the example in Figure 9. There are
121 (11x11) 1x1m blocks to be simulated. There is a central sample with a normal score deviate
of +2.0. The variogram model is a single spherical structure with an isotopic range of 10m; notice
that even the four corner blocks, located ~ 7.8m away, are within the 10m range of the model
variogram. The true mean and variance of the 121 local ccdfs are calculated using simple kriging,
then derived from the average of 1000 random path realizations, the average of 1000 regular path
realizations and the average of 1000 spiral path realizations. The result of comparing the averaged
ccdf means and variances to the true mean and variance at each of the 121 locations is
summarized in Figure 9. As expected, the average random path ccdfs are perfectly correlated to
the true ccdfs; however, the average regular path ccdfs are not as well correlated (0.84 versus
1.00 and 0.90 versus 0.99 for the means and variances, respectively). The average spiral path
ccdfs seem to be well correlated to the true ccdfs, but deviate from the true ccdfs in a specific
manner: for locations far away (near the corners), the spiral path ccdf means and variances
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underestimate and overestimate the true ccdf means and variances, respectively – a pattern not
predicted by the random path. The example and results re-emphasize the notion that regular and
spiral paths are unsuitable for practical implementation.

Conclusion

Although regular and spiral simulation paths could significantly improve the efficiency and
quality of simulation algorithms, both force only close conditioning data to be retained resulting
in poor variogram reproduction. The conventional random path using the multiple grid option is
recommended in practice.
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Figure 1 – Random Path. An illustration of the procedure to establish a random path for a 3x3 block
simulation setting. The 9 block locations (not according to GSLIB convention), the random number
assigned to each block, the sorted list of block locations (in terms of an ascending random number order)
and the resulting random simulation path is shown.
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Figure 2 – Simulation Parameters and Variogram Reproduction. An illustration of the effect different
simulation parameters have on variogram reproduction. An average variogram is calculated for various
combinations of simulation parameters and shown as either a heavy broken line or heavy solid line. In each
of the five plots, the varied parameter is indicated by the title and the inscribed variogram legend, the
constant parameters are listed to the right and the model variogram is shown as a thin line. Variogram
reproduction improves as the simulation grid density becomes coarser, the field size expands, the search
neighborhood increases, the number of conditioning data retained escalates and a multiple grid search is
implemented.
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Figure 3 – Regular Path. Reference X-Y-Z directions are orientated so that the n index cycles from 1 to N
in the positive X direction, the l index cycles from 1 to L in the positive Y direction and the q index cycles
from 1 to Q in the positive Z direction. The order in which a regular path could visit the N x L x 1 (q = 1)
layer of blocks, shaded in 3-D and shown in plan view in 2-D, is established by cycling the n index slower
than the l index with q = 1. The corresponding regular path in 3-D would repeat this procedure, as in 2-D,
within the slowest cycling q index.
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Figure 4 – Regular Path Data Configuration. An illustration of the mechanism that makes a regular
simulation path more efficient than a random path. The square field (top) bounds 10,000 possible
simulation locations. If a maximum of 25 conditioning data were to be retained per ccdf model, the shaded
region would contain 88.3% (8,832) of the block locations where the exact same 25 conditioning data
configuration would be used. This 25 data configuration and corresponding template of kriging weights is
shown (bottom).
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Figure 5 – Regular Path Simulation Results. A summary illustration of the regular path implementation
and results. Reference X-Y-Z directions are orientated so that the n-l-q indices cycle in the Easting-
Elevation-Northing directions, respectively. N = L = 50 (Q = 1) in 2-D and N = L = Q = 75 in 3-D. The
variogram has a 10% relative nugget effect and isotopic ranges of 10 and 15m in 2-D and 3-D, respectively.
All possible regular paths yield unsatisfactory variogram reproduction; however, the random simulation
path yields satisfactory variogram reproduction.



13

Figure 6 – Regular Path Artifact. An illustration of the regular path artifact via the previously
implemented nlq regular path. The average random and regular path Northing variograms are shown as
solid dots; the dark solid line is the model. A central Northing-Easting slice through one of the 100 random
and regular path realizations are also shown. There is a substantial amount of correlation added to the
Northing direction for which the input variogram does not predict.
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Figure 7 – Spiral Path. An illustration of the procedure to establish a spiral simulation path. A blown up
version of the shaded area shows a central sample datum surrounded by some of its locations to be
simulated. The distances between the sample datum and the point locations are calculated and summarized
by the family of circles of radii d-1, d-2, d-3, …, d-n shown, where n is the number of different distances.
The order of a spiral simulation path is defined by simulating groups of point locations according to an
ascending radii order. A spiral path in 3-D would be constructed similarly, except the distances would be
summarized as spheres.
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Figure 8 – Spiral Path Simulation Results. The results of implementing the spiral path for three different
sample data configurations. The average of 100 variograms from 100 random path and 100 spiral path
realizations are calculated (shown as solid dots) and compared relative to each other and the model (solid
line). In all cases, the spiral path variogram departs from the model variogram (see the points enclosed by
the broken-lined circles) while the random path variograms all satisfactorily reproduce the model.
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Figure 9 – Local Conditional Cumulative Distribution Functions (ccdfs). An illustration of a local ccdf
analysis for regular and spiral simulation path implementations. The 121 (11x11) 1x1m block locations are
to be simulated with an isotopic spherical variogram of range 10m (top right) and a centrally located
sample with a normal score deviate of +2.0. The ccdf means and variances created from the average of
1000 random, regular and spiral path realizations are paired with the true means and variances created by
simple kriging. Compared to a random path, the regular path ccdfs are less correlated to the true ccdf means
and variances. The spiral path ccdfs shift lower and become wider (the means and variances are
underestimated and overestimated, respectively) for locations further away from the central sample. The
results re-emphasize the notion of not using a regular or spiral simulation path for practical implementation.


