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Abstract

Weed competition can decrease crop yield and profit. Herbicide is applied to reduce weed
populations, minimize crop loss, and mazimize profit. Traditional practice is to apply her-
bicides at a uniform rate over an entire field. Complete knowledge of the weed distribution
and appropriate instrumentation on the spraying equipment would allow the farm manager
to apply the “correct” locally varying herbicide application rate. The locally variable rate
would be greater in areas of high weed density and less where there are few weeds. A locally
varying treatment would have both economic and environmental advantages.

A major problem facing farm managers is the unavoidable uncertainty in the spatial dis-
tribution of weeds in any particular field. This uncertainty in weed distribution influences
the uncertainty in an optimal locally varying herbicide rate. This paper presents mathemat-
ical models that establish optimal herbicide application rates using geostatistical models of
uncertainty in weed density combined with principles from decision making.

Weed data from a 34 ha field near Saskatoon, Saskatchewan, Canada illustrates the
application of these tools. The models achieved a significant reduction in total herbicide
use.

Introduction

Weeds reduce crop yield and profit (Thomas et al. 1998). Herbicides are important to
control weeds and increase yield. In western Canada, herbicides represent up to 30% of the
cost of crop production and are applied to more than 60% of cropped acres. Herbicides
control weeds but are expensive and can also adversely affect the environment. Spatially
selective application of herbicides would increase profitability and reduce environmental
impact.

The prospect of increased profit and reduced environmental impact has sparked interest
in precision farming techniques. Advances in technologies such as global positioning systems
(GPS), computer integrated farm equipment, and numerical modeling including geostatis-
tics offer the potential for site specific and locally varying weed management. The work
presented here illustrates a method for risk qualified and optimal locally varying herbicide
application rates. The proposed method has the following steps (1) sample the field for
weed density, (2) create maps of weed density and related uncertainty over the entire field,
(3) generate optimal application rate maps, and (4) download the optimal application rate
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maps to computer integrated farm equipment. The computer integrated farm equipment
would apply the optimal herbicide rate throughout the field using GPS.

Weeds do not have a homogeneous spatial distribution; they are often said to be “patchy”
(Mortensen et al. 1993; Dieleman & Mortensen 1998; Mortensen et al. 1998; Clay et al.
1999), thus amenable to site specific and locally varying herbicide application rates.

Many farm managers apply herbicides at a “uniform” rate over an entire field, and
locations with low weed density receive the same amount of herbicide as those with high weed
density. A uniform application rate is usually based on a visual assessment of weed density
prior to application, but there is no procedure to balance the risks associated with under-
and over-spraying. The result is a subjective assessment of weed density, and uncertainty
in both weed density and optimal application rate.

Crop yield losses increase with increasing weed density (Carlson et al. 1981; Cousens
1985; O’Donovan et al. 1985; Cousens et al. 1987; Cousens & Mortimer, 1995). Avena fatua
L. (wild oat) competition reduced spring wheat (Triticum aestivum L.) yields up to 68%
compared to weed-free controls (Carlson et al. 1981). Similarly, 50 A. fatua m~2 resulted in
a 25% yield loss in spring wheat while 300 A. fatua m~? resulted in a 67% yield loss when
weed and crop emerged at the same time (Cousens et al. 1987). In a survey of 17 farm
fields, average yield loss due to Setaria viridis (L.) Beav. (green foxtail) competition in
wheat and barley (Hordeum vulgare L.) crops was about 10% while Polygonum convolvulus
L. (wild buckwheat) caused a 14% yield reduction (Friesen & Shebeski 1960). Spring wheat
yield loss due to P. convolvulus and Thlapsi arvense L. (stinkweed) was found to be 2.6%
when growing degree days were included in a multiple regression equation (Hume 1989).
Percentage canola (Brassica rapa) yield loss for each Fagopyrum tataricum (L.)Gaertn.
(tartary buckwheat) plant varied from 0.14 to 0.31 over 3 years (O’Donovan 1994). Cirsium
arvense (L.) Scop. (Canada thistle) density of 10 shoots m~? is predicted to cause canola
yield losses of 11% using a linear model of yield loss.

Herbicide application rate can be adjusted to account for variations in the spatial dis-
tribution of weed density. This assumes that weed control is complete, no crop damage
occurs and weed density is a satisfactory measure of weed competition (Auld et al. 1987).
A critical assumption in this research is that the optimal application rate is proportional to
weed density, that is, areas with high weed density should receive more herbicide and areas
with low weed density should receive less herbicide for effective control (Holm et al. 2000;
Zhang et al. 2000). For example, a 50% reduction in difenzoquat rate controlled 78% of
the A. fatua compared to the label rate of 1.0 kg a.i. ha™! (Wilson 1979). A seed density
in the soil of 15 seeds m™2 of Alopecurus myosuroides in winter wheat at a half rate of
chlorotoluron could result in an increase in weed density (Ulf-Hansen 1989,(see Cousens &
Mortimer 1995 p. 205)). Application of 0.1, 0.3 and 1.0 times the recommended field rate
of diclofop to a susceptible A. fatua biotype resulted in dry matter responses of 20 to 80 %
of the control (Seefeldt et al. 1994).

Low herbicide doses kill weeds at a low density, however when this same dose is applied
on a weed patch at a high density, the herbicide dose received per plant is the same. Two
rates of barban, recommended and 50% of recommended and difenzoquat at recommended
and 33% of recommended were applied in spring barley to control A. fatua (Cussans &
Taylor 1976). Both rates resulted in an 80% or higher reduction of A. fatua seed suggesting
that low doses of herbicide can provide adequate control. Number of spray drops cm™? was



calculated for these 2 rates of herbicide. Rate did not affect A. fatua control indicating that
a sufficient number of drops contacted A. fatua leaves at either dose. Although A. fatua
density was not mentioned, it is likely that densities were different in each of the 5 fields.
Thus, herbicide dose is independent of weed density.

Why do we apply a higher herbicide dose to a high density patch? The motivation is
to enhance a crop’s competitive status with respect to the weeds. For example, when a
high, initial weed density occurs in a field, less weed-free crop yield results compared to
a low, initial weed density. This is illustrated in Figure 1 where (I’) represents an area
with a initial, low weed density while (II’) represents a high, initial weed density. When
herbicide is applied, the initial density is changed to (I'") as a result of weed kill resulting in a
small change in the percentage of weed-free crop yield (I¥-1’). For a high weed density, I1F,
herbicide application will result in a significant decline in weed population and a large change
in weed-free crop yield (II”-II’). The economic benefit of this change in crop yield will be
small at the low weed density and may not exceed the costs of herbicide and application.
However, at a high weed density, the change in crop yield will be substantial and may be
economically beneficial to apply herbicide. Weed-free crop yield response will dictate the
herbicide rate that is economically beneficial to apply and in areas of high weed density,
high rates of herbicide will ensure that the crop is competitive and has the potential to
yield more.

Varying the herbicide application rate from the recommended rate is unsupported by
manufacturers because there is a legal liability guaranteed by the herbicide label. Herbicide
performance testing is conducted on a range of crop varieties, weed densities and species,
soil types and weather conditions. The recommended application rate is established for this
diversity of conditions; however, the recommended rate could be modified to account for
local conditions. The optimal application rate strikes a balance between cost, control and
crop yield loss.

The local optimal herbicide application rate scheme requires that the weed density be
known prior to application. It is unrealistic to exhaustively sample a field to establish the
unique true weed density over the entire field. A more efficient method is to strategically
sample the field and construct numerical models of weed density that are based on the
sample data and that reflect significant physical and biological features of the weed species.
Strategically sampling needs to account for scale and provide a complete picture of the
spatial and biological relationships of weeds. Then, a model of uncertainty in weed density
addresses the limitations of sparse sampling. Thus, a numerical model’s predictive ability
is significantly enhanced.

Geostatistics, a branch of applied statistics, has tools for mapping an attribute value and
characterizing the uncertainty in weed density at unsampled locations. These techniques are
systematically applied in other disciplines such as petroleum reservoirs (Deutsch & Journel
1998), mining (Journel & Huijbregts 1979; Isaaks & Srivastava 1989), and natural resources
(Goovaerts 1997). Major decisions are made in the presence of unavoidable uncertainty in
these related disciplines. Deciding on locally varying herbicide application rate can be done
in light of uncertainty in spatial weed density.

The objective of this paper is to develop a method for mapping locally varying herbicide
application rate in presence of uncertainty in weed density. An increased rate will be
recommended in areas of high weed density to achieve optimal control and increased yield;
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Figure 1: Weed density, plants m~2, decreases % weed-free crop yield at both a low (I is 40)
and high (II” is 300) weed density to 75% and 5% respectively. When herbicide treatment
occurs, weed-free crop yield increases to 95% and 85% for low (I is 15) and high (IT¥ is
25) weed density, respectively. The change in weed-free crop yield for low (I¥-1') and high
(ITF-117) weed density can be used to determine whether it is economic to apply herbicide.



a decreased rate will be recommended in areas of low weed density. The optimal locally
varying herbicide rate can be determined mathematically with a satisfactory model.

Details of Model

The optimal locally varying herbicide application rate is the rate that leads to maximum
profit. The following development assumes knowledge of (1) herbicide efficacy at a given
application rate, (2) the competitive relationship between weeds and crops, and (3) the
cost of applying herbicide. The notion of optimal locally varying herbicide rates will be
derived for known weed density and then uncertainty in weed density will be introduced.
Finally, the optimal risk-qualified rate is calculated in presence of uncertainty in weed den-
sity. Risk-qualified requires multiple realizations of weed density in order to define a space
of uncertainty. This uncertainty allows an assessment of risk for decision-making.

Optimal Rate with Determanistic Parameters

To begin, geographic location is denoted by the vector variable u that consists of east and
north coordinates. The herbicide application rate for location u is denoted by a(u) which
is measured in litres ha=—! . The optimal local herbicide application rate for location u is
denoted aqp(u).

Weed density w(u) is defined as the number of weeds m~2 at location u. This variable
is nominally categorical taking values from 0 to some maximum number of weeds that could
simultaneously grow in a square meter. In general, there are numerous weed species present
in a field, but we only consider those weeds being sprayed for, such as broad-leaved weeds
when spraying.

The farm manager cannot spray a different rate on each square meter of the field. We
must consider a selective spraying area (SSA) denoted v. This area is probably 20-35 m
wide (depending on spray boom length and electronic controls built into the sprayer) and
1-2 m deep because of the potential drift of herbicide. The SSA can be customized for site
specific conditions given the fact that sprayer boom sections are being developed that apply
herbicide over smaller SSA. The weed density must be averaged from the sampling area,
m~2, to the SSA:

wy(u) = L/w(u')du' (1)
v

v(u)

Weed density is informed by (1) samples of weed density, perhaps over a small area with
relatively great spatial detail, and (2) scouting or remotely sensed data, likely over a large
area with less spatial detail. The numerical tools of geostatistics are used to model the
weed density at the correct SSA areal size (Journel & Huijbregts 1979; Isaaks & Srivastava
1989; Goovaerts 1997; Deutsch & Journel 1998). Next, weed density is averaged from a
sampling area to correspond to a SSA that is relevant to the limitations of the application
equipment.

The first required input is the mazimum attainable weed-free yield, or yo(u). This
maximum attainable yield yo(u) is in units of tonnes ha™' and yo(u) depends on location
u in the field. Historical information and recent environmental and weather conditions will
provide an approximation of yo(u) over the entire field.



The second required input is the fractional yield loss due to non-zero weed density, or
L(w). This fractional yield loss is a function of weed density. When weed density is high,
high yield loss can be expected, while a low yield loss is expected when weed density is low.
Yield loss starts at zero, that is, L(w) = 0 at w = 0 and may increase to its maximum
value, 100%, depending on the competitive ability of the weed as its density increases.
Experimental data are required to establish this function however yield loss values due to
different weed densities were fitted from values provided in the literature (Carlson et al.
1981; Cousens 1985; Cousens et al. 1987). A family of fitted curves from a lookup table of
a hyperbolic type are used to model L(w). The curves represent fractional yield losses due
to weeds under different cropping, weed and environmental conditions.

The third critical piece of information is the fractional weed control as a function of
the herbicide application rate, or We(a), where a is the herbicide application rate in litres
ha~!. Herbicide manufacturers likely have very good data on this function We(a); however,
these data may not be publicly available. Model parameters and bounds of this function
were based on values from the literature (Anonymous 1998; Cousens 1985; Cousens &
Mortimer, 1995). Where these were unavailable, parameters were hypothesized from our
understanding of weed control. Nevertheless, much is known about this function: (1) it is
bounded between 0 and 100%, (2) there is zero weed control at zero application rate, (3)
there will be 80% or more control at the recommended application rate (Anonymous 1998),
and (4) full control, We = 100%, will be reached asymptotically as a increases (Cousens
1985; Cousens & Mortimer, 1995). Experimental data or a fitted hyperbolic or exponential
type function could be used to model We(a) (Cousens & Mortimer, 1995; Swanton et al.
1999). There may be a different We(a) curve for herbicides with different formulations as
illustrated by weed response for parallel dose-response curves (Streibig 1984; Streibig 1988).

Other price and cost inputs are required. The net price or net value of the crop, np, in
the units of dollars tonne™! must be known. The cost of the herbicide, ¢, in dollars litre™!
must also be known.

Using the input variables described above, it is possible to calculate the incremental
revenue for a specific application rate, a:

r(a;u) = [L (wy(u)) — L (wy(u) - (1 = We(a)))] - yo(u) - np (2)

where the units of 7(a) are dollars ha~!. The variable, r(a; u), represents a non-decreasing
function of the herbicide application rate a at location u; see the top figure in Figure 2. Of
course, the cost of applying herbicide must also be considered.

Yield loss and herbicide application each have associated costs. Increasing herbicide
application rate costs money due to increased product consumption. Decreasing herbicide
application decreases this consumption but increases yield loss. This is shown in the bottom
figure of Figure 2 where the 3 curves represent the sum of the cost of applying herbicide
and the cost of crop loss.

There are fixed costs for equipment ownership, depreciation, interest, insurance and so
on. These fixed costs are not considered in the equation below since it is assumed that
it is economical to spray; the goal is to determine the optimal application rate. Clearly,
there are cases of low weed densities where the fixed costs exceed the total revenues and the
correct decision is not to spray at all. Given that spraying will occur, the cost of applying
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herbicide application rates as a % of the manufacturer’s recommended rate are obtained.



herbicide at rate a is given by:
cla) =—c-a (3)

where the units of ¢(a) are in dollars ha~!. A typical approach for optimal application rate
is to determine a value function for each decision, then choose the maximum. For a loss
function, the idea is to determine the optimal application rate in presence of uncertainty
for which the loss is minimized (Goovaerts 1997). This is the reason for the negative c¢. The
incremental profit of spraying at rate o is simply the sum of r(a) and ¢(a):

pla;u) = r(a;u) +c(a) (4)

The optimal rate a,p;(u) maximizes this incremental profit.

The optimal application rate and profit for a given location, u, will be affected by several
factors. Areas having a low weed density will have a low optimal herbicide application rate
while areas having a high weed density will have high application rates; see Figure 2. Thus,
fields with a patchy weed distribution will be the most amenable to locally varying herbicide
application rates. Two additional comments on p(a;u) and determination of the optimal
rate aop(u):

e The incremental revenue r(a;u) curve flattens as a increases since the weed control,
We(a), and fractional yield loss response, L(w), curves flatten off. The cost of her-
bicide ¢(a), on the other hand, continues to decrease linearly since a constant per
litre cost is used and as herbicide rate increases, so does its cost. Thus, the optimal
application rate aqp:(u) is always finite.

e The optimal rate will be zero if the herbicide is very expensive (c large), there are
few weeds (wy(u) low) and the weeds are poor competitors, and there is moderate
response to the herbicide (We(a) rises slowly).

The function p(a; u) may be maximized by any classical technique. The p(a;u) function is
well behaved and evaluation of p(a;u) is extremely fast; therefore, almost any optimization
technique can be considered. For example, simple Newton iterations which is a well known
method to optimize a nonlinear function are suitable (Householder 1970).

There are two parameters that depend on location: the weed density w,(u) and the
maximum attainable weed-free yield yo(u). Knowledge of these two parameters permits
calculation of the optimal rate for each location.

An important feature of field-scale weed treatment is that the weed density is not pre-
cisely known at each location. There is uncertainty in the weed density for each SSA to
be sprayed; see Figure 3. The optimal herbicide application rate must account for this
uncertainty.

Accounting for Uncertainty

The consequence of uncertainty is that we have to calculate an ezpected profit instead of
the actual profit. In presence of uncertainty, we must calculate the expected profit:

pla;u) = E{[L (wy(u)) = L (wy(u) - (1 = We(a)))] - yo(u) -np —c- a} (5)
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The optimal rate, aqp(u), maximizes the expected incremental profit at location u, that
is, maz{p(a;u)}. The expected value operator is a probability weighted average p =
ffooo pf(p)dp. In practice, this continuous integral is solved by creating a large number,
N, of equal probability values. In the context of expected profit, there are N pairs for weed

density and maximum weed-free yield, {wq(,i)(u),yg(u)(i),i =1,...,N} and {L(wq(,z)(u))},
respectively. The expected value is then approximated as:

1 N

plasu) = = S {[L (wo(@)?) = L (wo () - (1 = We(a)] - yo(w)? -np —c-a}  (6)

The amount of computer work for this added calculation is reasonable. The result is the
same: a map of optimal locally varying herbicide application rate for use in computer
integrated, GPS-guided, herbicide application equipment.

Model Validation

Weed density data used in this research are taken from a 34 ha field near Saskatoon,
Saskatchewan, Canada which was seeded to spring wheat field in 1995 and canola in 1996.
All weed species were identified and counted at the 3-4 leaf stage in both years with a 50
m by 50 m grid. In 1996, two 100 point sampling grids with a 10 m by 10 m spacing were
established in areas of high weed density. Weeds were counted by species in four (1995) and
nine (1996) 50 by 50 cm quadrats at each sampling point in the fields prior to post emergent
herbicide application. The various weed species were categorized as either broad-leaved or
grass weeds. Fourteen broadleaf species were recorded in 1995 while 15 were identified in
1996. The frequency of occurrence which represents the percentage of total sampling points
for which a species appeared for the three most abundant weeds was 51% to 99% for P.
convolvulus; 54% to 91% for A. fatua; and 99% to 100% for T. arvense. Other weed species
identified at this site with a frequency of occurrence less than 25% included C. arvense
and Tarazacum officinale Weber in Wiggers (dandelion). The results analyzed here are
for broad-leaved weeds only which were present at 100% and 93% of the sampling sites in
1995 and 1996, respectively. A histogram for the 137 sample locations in 1995 indicated
a broadleaf weed density of 1 to 408 broad-leaved weeds m~2 with a mean of 70.8 m~2 in
Figure 4.

A map showing the sampling points for the weed data in 1995 and 1996 is displayed in
Figure 4. Increasing greyscale indicates increasing weed density so white is no weeds present
while black represents over 250 broadleaf weeds m—2. Note the significant variability in weed
density throughout the field.

The directional, spherical variograms shown in Figure 5 quantify semi-variance versus
distance for the 1995 broad-leaved data in Figure 4. The dashed lines show the experimen-
tal variogram calculated from normal score transformed data while the solid lines are the
spherical model fit to the experimental variogram. The total variability explained by these
spherical models was calculated with GSLIB software (Deutsch & Journel 1998) using the
nugget and three nested structures for 1995 and 1996 data. The top experimental variogram
and model are for the north-south direction (N0°E) while the bottom variogram and model
are for the east-west direction (N90°FE). Due to limited short scale data from 1995, short
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Figure 5: A semivariogram using the 1995 broad-leaved weed density data from the 34 ha
experimental field. The dashed lines represent the experimental variograms while the solid
lines are the modeled variograms. The top experimental and model variogram are for the
NQ°FE direction while the bottom variogram and model are for the N90°E direction.

scale data from 1996 were used to infer the nugget effect. This assumes weed density does
not change over time at the short scale. A stationarity decision such as this involves consid-
eration for what data can be averaged over time and space for the experimental field. The
model variogram has a moderate nugget effect of 0.05 and a range of 275 m in the direction
of maximal continuity (N90°F) and 160 m in the direction of minimal continuity (N0°FE).
A waterway crosses the S45°FE corner of the field (see bottom right corner of the sampling
point map in Figure 4) and it may have influenced the anisotropy of the broadleaf weed
distribution.

The variogram shown in Figure 5 was used for kriging a 1 by 1 m? grid. Kriging
is a classical geostatistical technique for estimation at unsampled locations (Journel &
Huijbregts 1979; Isaaks & Srivastava 1989; Goovaerts 1997; Deutsch & Journel 1998). A
known limitation of kriging is “smoothing”; low values are typically overestimated, and
high values are typically underestimated. A kriged map of weed density data is shown in
Figure 6.

Conditional simulation was initially developed to correct the smoothing effect of kriging
by creating maps that reproduce the histogram and variogram. It involves creating multiple,
equally probable realizations that are conditional if the realization represents the data at
their location. Each realization should reproduce the local data at correct scale, the global
histogram and variogram. Many techniques can be used to draw these realizations however
more recently sequential Gaussian simulation has gained widespread popularity due to its
simplicity and flexibility (Deutsch & Journel 1998; Journel & Huijbregts 1979).

Multiple simulated realizations are used to quantify uncertainty in this data using GSLIB

12
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software (Deutsch & Journel 1998). One hundred and one realizations were created using
sequential Gaussian simulation. Three realizations, and the average map of all 101 realiza-
tions are shown in Figure 7. Note that the three realizations are “noisier” than the kriged
map. This is a reflection of the true variability in the weed distribution at small scale using
the 1996 small grid data. Despite the variation, the simulated maps reflect the histogram
and variogram. Also note that the average map of all 101 realizations is nearly identical to
the kriged map in Figure 6.

Fractional yield loss as a function of weed density was derived from fitted curves of a
hyperbolic or exponential-type for L(w) such as:

_L- w(u) - W (u)

(7)
1+%W(”(“)

Y(l)(u)

where Y is the yield loss in percent for realization [ at location u, L is the percent yield
loss per unit weed density as density approaches zero, w is the weed density at location u,
W® is the fraction of weeds controlled by herbicide at location u, and A is the maximum
crop loss due to weed competition as weed density approaches infinity. The idea for crop
yield loss in a mixed stand of weeds is representing the loss with a family of curves. The
experimental field had broadleaf weeds in which 2 species were dominant in each year.
Fractional yield loss was determined for each realization and averaged to the SSA over the
101 realizations at a location while the kriged fractional yield loss map was averaged to the
SSA for one map. This relationship is an example from the literature (Cousens 1985).

Other assumptions were made when preparing a map of optimal locally varying herbicide
application rates:

e yp(u) grain yield = 3.0 t/ha,

13
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(np) net selling price of grain = $100/t,

We(a) herbicide costs = $50/ha which includes herbicide product at $40/ha and
$10/ha for application cost at the recommended application rate,

e A maximum crop yield loss = 40%, and

e maximum permissible application rate is 200% of manufacturers’ recommended her-
bicide application rate. The maximum permissible application rate exceeds the man-
ufacturer’s recommended rate which is illegal. However, it was allowed in the model
to determine if there are areas in the field where the weed density warrants additional
control measures at a future time.

Environmental and soil variability influence weeds and this variability is characterized by
the uncertainty of weed density at each location. A map of optimal locally varying herbicide
application rates is shown in Figure 8. Increasing greyscale indicates increasing herbicide
application rate. The distribution of optimal application rates is shown in the bottom figure
of Figure 8. We predict greater than 100% of the manufacturers’ recommended application
rate at some locations, while at other locations the optimal application rate is predicted
to be zero. The average optimal rate is 50.4 % per SSA of the recommended rate, with a
minimum and maximum rate of 0% and 116%, respectively. In this case, the overall optimal
rate is not the manufacturers’ recommended application rate and some areas (< 1%) will
need extra control treatments. The herbicide cost for this optimal application rate is $793
for the whole field. A uniform application at the manufacturer’s recommended rate would
cost $1575.

A map of the expected cost of crop yield loss using our calculated optimal locally vary-
ing herbicide application rate is compared to the expected cost when a uniform herbicide
application rate of 50% is applied to the experimental field in Figure 9. Since the average
optimal herbicide rate was 50.4%, a uniform rate of 50% was chosen as a comparison to
it. The cost histogram for the 50% application rate illustrates a wider, flatter distribution
of costs compared to the optimal cost histogram. Cost of herbicide consumption is the
same for either application rate; however, some areas receive too much and others too little
with the 50% rate. Expected cost of the yield loss is more than 4% greater with a uniform
application rate compared to the optimal herbicide application rate.

Discussion

Spatial distribution of weeds can be characterized using weed density data collected at
locations in a field. Different weed-mapping techniques may be used to build different
maps of weed density; however what technique should be applied under what conditions?
The chosen technique will depend on the goals of the weed study. Here we have utilized
discrete sampling with quadrats. Our goal was to assess and provide a local measure of
uncertainty conditioned to neighboring data values for decision making. Other goals may
include quantifying the weed density over an entire field for a global average to direct
sampling efforts or visualize the variability. Alternatively, the sampling strategy may be
utilized to show large-scale trends and provide a visual overview of a weed distribution on a
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field basis for exploratory purposes, or to integrate multiple sources of data. For each goal
to be implemented, the question of appropriate scale for cost effectiveness and usefulness of
information is a significant consideration (Rew & Cousens 2001).

An outstanding question from this study is the appropriate sample spacing that balances
time and labour costs with required local precision in the description of the spatial distri-
bution of weeds. Discrete data are generated from quadrats and estimates are interpolated
between sampling points with spatial statistics. The kriged map in this study illustrated
its limitation where low weed numbers are typically overestimated, and high weed numbers
are typically underestimated. This can be a problem in optimizing herbicide application
rates.

Other techniques can be used to collect weed data on a continuous basis such as weed
surveying using an all terrain vehicle and digital elevation maps. A visual rating of weed
numbers using an all terrain vehicle provides a qualitative description for analysis (Hall &
Faechner 1999). The time required to collect data and its accuracy are challenges facing
it’s application. Similarly, digital elevation maps are extremely useful if they have a high
conditional expectation with weed density (Faechner et al. 2000). A review of sampling
strategies for arable crops highlighted some of the challenges facing weed scientists in site
specific weed management (Rew & Cousens 2001).

The effects of a mixed weed species infestation on crop yield poses a challenge for being
incorporated into crop yield loss equations. Two species models of crop and weed where
the yield and density per plant are a function of both species have been developed. They
have not been extended to mixtures of more than two species (Doyle 1991). However, a
competitive index has been established for weeds in soybean based on a ranking according
to their degree of competitiveness in relation to the crop (Wilkerson et al. 1991). This
competitiveness index could be expanded to include some of the major weeds which reduce
canola and spring wheat yields.

Dose response curves that quantify a herbicide’s effect on weeds and crop have been
described by Streibig 1988. Optimizing herbicide doses depends on knowledge of those
response curves. There are studies from the literature that provide data for some grass and
broadleaf herbicides however it is limited. More research effort needs to be devoted to this
area to increase our understanding of how weeds react to herbicide rates.

A quadrat used for counting weeds is scaled up to a SSA. The SSA represents the volume
over which herbicide equipment can apply a spray. As electronics advance for spraying
equipment, the SSA can decrease in volume. Consequently, the change in spatial resolution
with decreasing SSA will result in further optimization of herbicide use. Wallinga et al.
1998 found that herbicide use could be reduced by 26% when changing spatial resolution
from 4 to 2 m. Alternatively, since we are changing spatial resolution from 1 m~2 to 100
m 2, there is a possibility that savings in herbicide use may be minimal. This is due to a
reduction in variance as spatial resolution of weed density data are increased.

We describe a method for establishing optimal locally varying herbicide application
rates. The method requires geostatistical models of uncertainty in the weed density and a
model of the weed response for different application rates. This method has the potential
to reduce weed control costs. Practical application requires calibration to a particular crop,
weed, and herbicide.

Our example considered studies published in the literature for the required weed re-
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sponse to herbicide rate. This must be verified under specific environmental and cropping
conditions. Such variable rate information is limited.

Spatial statistics are useful to characterize the heterogeneity of weed distributions as well
as quantify the uncertainty due to incomplete data. The proposed methodology accounts
for risk along with uncertainty in the spatial distribution of weeds. Such local precision
and optimality is a worthy goal in light of economic and environmental concerns related to
herbicide application.
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