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Abstract

The idea of simulating indicators hierarchically in order to avoid order relations and to set a frame-
work suitable to incorporating multiple point statistics was proposed in last year’s report. The im-
plementation failed in that indicator variograms could not be reproduced for all thresholds. A loss
in freedom from one threshold to the next was misinterpreted. The randomness was coming from
random drawing of the nodes at high thresholds due to little difference between the probability of
informed and uninformed nodes. In this note we explore several ways to fix this problem. A hier-
archical implementation of sequential indicator simulation (SIS), along with methods that combine
the SIS paradigm and the hierarchical idea, are also presented. Although some of the techniques
give reasonable results, the problem remains largely unsolved from a theoretical point of view.

The original idea

The idea was to simulate one threshold at a time starting at the highest [3]. This can be seen as an
erosion algorithm, where all nodes start higher than the highest cutoff, and then they are pushed
down based on their probabilities of being below each threshold.

At a given threshold zk, the conditioning data are coded as indicators:

ooy )L it z(ue) <z,
H(ta; 2) = { 0, otherwise k=1.,K

where z(u,) is the value at the data location u,.

The idea is to calculate the probability of every node being lower than the current threshold.
This is done by simple kriging the indicators. The mean is the correct proportion from the global
distribution.

[i(w; )55 = [Prob{Z(u) < z|(n)}5x
= Yoot AN (W zp) - i(uas zg) + [1— 0y A5 (u; 2)]1F (2)

where the weights A5 (u; z;,) are the unique solution of the simple kriging system.
Y B MG (ws ) - Cr(ug — ua; 2) = Cr(u—ug; ) a=1,..,m

Notice that a covariance indicator function C7(u — ug;2k) (or, assuming stationarity, Cr(h;zy)),
has to be inferred for each threshold.

Once the probabilities are known for every node, a node is chosen by Monte Carlo simulation,
that is, a uniform random number between zero and one is drawn and the nodes are visited in
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Figure 1: Map showing the result for the original implementation of HISIM. Higher thresholds
present high nugget effect.

order until the sum of probabilities is higher than the random number multiplied by the total sum
of probabilities. In this manner, nodes with higher probability of being below the threshold, i.e.
with higher kriging estimates, will have a larger probability of being switched down or eroded.

The example shown on Figures 1 and 2 show that the variogram models are not reproduced
for higher thresholds, that is for the thresholds that were simulated first in the algorithm.

The initial idea of loosing freedom discussed in [3] from one threshold to the next was therefore
a misinterpretation of the results because the indicator variograms were not labelled correctly. The
proposed correction of using cokriging instead of kriging to calculate the probabilities did not work
since the cokriging estimate is the same than the kriging estimate at the first threshold (in the
unconditional case).

The nugget effect seen at the highest threshold is due to the small difference between the
probability of a node uninformed (p € [0.9 —1.0]) and a node that has been informed, i.e. switched
down (p = 1.0). This leads to a virtual random drawing of the nodes. This effect is less severe
when a lower threshold is being simulated, since the difference between a node uncorrelated with
the conditioning data and the others is larger, so the drawing in not random anymore. Although
a very high nugget effect is still present, some correlation can be observed.

Proposed Approaches

Modifying the mean in SK

The first proposal is to modify the mean for kriging the indicators. A simple example with one
threshold at the median is used to test this method. Although intuitively the mean used when
simple kriging should be F'(z;) = 0.5, where z; is the only cutoff, several means were used. The
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Figure 2: Variogram reproduction for the original implementation of HISIM.
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Figure 3: HISIM varying the simple kriging mean for a 1 threshold case (skmean varying from 0.01
to 0.9).

results are not encouraging, since, as seen in Figure 3, a decrease in nugget effect is accompanied
by an increase in the correlation range. Therefore, the variogram cannot be reproduced by simply
changing the simple kriging mean.

SIS hierarchical

The idea of eroding an initially high field is now replaced by the hierarchical application of SIS
(sequential indicator simulation). The idea is to perform SIS at the highest threshold and then use
the nodes simulated to be above that threshold as conditioning data for the following thresholds,
since it is known that if the node is above a threshold, it is also above all other lower thresholds. This
results in realizations that do not honor the proportions required, because of the bias introduced
by the conditioning data. They are heavily biased towards zero, since those are the only nodes
that can be used as conditioning data when proceeding from the highest threshold down. However,
variogram reproduction was reasonable, except for the sill that depends on the proportion of ones
and zeros (Figure 4).
This naturally leads to two ideas:

e To use an approach similar to the nested indicators proposed by Dagbert for kriging reserves

[1].
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Figure 4: SISIM applied hierarchically. The use of zeros from the higher thresholds biases the
conditioning data, generating realizations that do not honor the proportions. The histogram shows
that there are no nodes being assigned to the lower thresholds, since they have all already been
assigned to higher ones. The standardized variograms using the resulting proportions show that
the correlation is preserved.

e To modify the proportions used as input to obtain the desired ones in the output.

Nested indicator simulation

The first solution was implemented with relative success. The steps involved in its implementation

are:

1.

2.

7.
8.

At the highest threshold, the domain corresponds to all uninformed nodes.
An uninformed node is picked in the domain randomly.

The simple indicator kriging estimate at the current threshold is calculated given the nearby
data and previously simulated nodes.

A random number is drawn and a one is assigned to the node if this random number is lower
or equal than the simple indicator kriging estimate of the probability at that threshold, and
a zero otherwise.

Go back to 2 until all nodes in the domain have been visited.

If the value is above the threshold, that is a value of zero was assigned in the binary simulation,
then eliminate the node of the domain for the next threshold.

If the value is below the threshold include it in the domain for the next threshold.

Repeat for all thresholds.

In the end, a continuous value can be assigned at every node, since the class to which it belongs
is known. The usual interpolation and extrapolation beyond the discrete cumulative distribution
function used in SIS is required (see for example [2]).



One of the problems of this approach is that correlation between thresholds is not imposed,
therefore the result looks patchy, and it is common to find high values beside low values without
the appropriate transition in between. This algorithm has been fully developed. Refer to [4] for
further details and applications.

Correcting the proportions: Markov and empirical approaches

The second proposed solution attempts to account for the bias generated by the conditioning data.
The question is: How much do we have to change the input proportion to obtain the required
proportions?

After several attempts, a correction factor for the proportion used as a mean was applied.
This implies a non-linear additive correction to the estimated probabilities. Consider the original
estimate, using Prpe,, and the new estimate using Pgoopp-

[((W]iheo = =i gt (W) iua) +[1 = 0= ASK (W] - Praco
[i(u)]z’orr = Z:l AEK(U) : i(ua) + [1 - Z:l AEK(u)] ’ PCorr

The difference in the estimate is:

n

A= [1 - Z )\gK(u)] : (PC’orr - PTheo)

a=1

Next to a data location, this factor vanishes, since, the sum of the kriging weights approaches one.
On the other hand, far from data, this factor tends to its maximum, Py — Prpeo-

Notice also that the same type of correction would be possible using a cokriging approach.
The correlation between indicators at different thresholds does not need to be input. It can be
calculated, given the proportions of ones at the current threshold po, and the proportion of ones at
the previous (higher) threshold p;:

p2-(1—p1)

p1- (1 —p2)
We experimented also with this approach. Results showed that the proportions were not reproduced
either. Variograms showed a small increase on the nugget effect for lower thresholds, i.e. the last
ones being simulated. However, the range of correlation was preserved (Figure 5).

An empirical correction factor for the simple kriging mean was found that “updates” the mean
for every threshold. It is the ratio of the average probability expected for each node at the current
threshold, over the average probability calculated considering the conditioning data:

P2
U S

nr
where po is the proportion at the current threshold, nz is the total number of nodes, and ig; are
the simple kriging estimates of the probabilities of being below the threshold. The simple kriging
mean is then multiplied by this factor every time a new threshold is being simulated.

The results show a good reproduction of the histogram, but an increase in correlation for lower

thresholds, along with a decrease in nugget effect as the simulation proceeds (Figure 6).
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Figure 5: Hierarchical application of SIS using a Markov assumption for collocated cokriging of
the indicators using the value at the previous higher threshold. The histogram is not reproduced
(uniform distribution) and some increase in the nugget effect can be seen for lower thresholds.
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Figure 6: Empirical adjustment of the proportion to apply SIS hierarchically. Histogram reproduc-
tion is good, variograms show an increase in correlation and reduction in nugget effect.
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Figure 7: Illustration of median hierarchical indicator simulation. The nodes with a value higher
than the median are used as conditioning data for lower thresholds, and the nodes with values
below the median are used as conditioning data for all thresholds higher than the median.

Median Hierarchical Indicator Simulation

One last idea proposed is the use of SIS to simulate at the median, and then proceed up and down
using the original hierarchical idea, that is, eroding in both directions, keeping the nodes set below
the median when going to higher thresholds, or the nodes set above the median when going to
lower thresholds. This is illustrated in Figure 7.

This algorithm proceeds as follows:

e Simulate by SIS (or any other binary simulation method, such as truncated Gaussian simu-
lation) the median threshold. Every node is assigned a one or a zero, depending if they are
below or above the median value, respectively.

e For thresholds below the median:

Use the nodes set above the median, that is those coded with a zero, as conditioning
data.

— Calculate the simple indicator kriging estimates at every location.

— Select one location by Monte Carlo drawing, using the probabilities previously calculated
by simple indicator kriging.

Repeat until the right proportion of nodes has been set below the current threshold.

Set all the nodes that have not been switched as zero. Their values are between the
current cutoff and the higher threshold.

— Use all the nodes with zero values (the ones that have just been coded and those that were
coded in a previous threshold simulation) as conditioning data for the next threshold.

— Repeat until the lowest threshold has been simulated.
e For nodes above the median:

— Code the data above the median as ones and the nodes with values below the median
as zeros.

— Proceed as with the thresholds below the median, but working with the probability of
being above the cutoff, instead of below it.
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Figure 8: Tllustration of the case when drawing nodes by Monte Carlo simulation is virtually random
(top) and when the drawing is effective and accounts for the now larger differences in probabilities
(bottom).

The algorithm is symmetric with respect to the median. Results showed good reproduction of the
histogram: the number of nodes above and below the median presents ergodic fluctuations from
SIS or the algorithm used to generate this binary simulation. The proportions for other thresholds
is guaranteed by construction since the number of nodes to switch is defined by the proportions.
Variogram reproduction at the median is also obtained depending on the algorithm used to generate
the initial binary simulation. At other thresholds, variogram reproduction is obtained just as in the
original case, but here, the problem of having a small difference between the probability calculated
by simple kriging and the probability for nodes away from data is large, so the drawing of the nodes
to be switched is not random (Figure 8).

A first example is shown in Figure 9. Twenty realizations of a one dimensional array of 3000
nodes with intrinsically correlated indicators, that is the so called mosaic random function model,
was tested. Nine thresholds and a spherical variogram with a range of 10 units and a 10% of nugget
effect was used. The results are encouraging. Variogram reproduction is good, although a slight
increase in correlation can be seen for indicators far away from the median.

A second example with a multivariate Gaussian variable is also presented (Figure 10). In this
case variogram reproduction is poor at thresholds other than the median. However, the range of
correlation is preserved. Again histogram is reproduced by construction.

Finally, a non-Gaussian variable was used (Figure 10). The results are a mixture of the
previous two examples. Good reproduction of the indicator variograms at some thresholds and
poor reproduction at others.
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Figure 9: Application of Median Hierarchical Indicator simulation for an intrinsically correlated

variable or mosaic model.
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Figure 11: Application of Median Hierarchical Indicator simulation for a non-Gaussian variable.
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Conclusions

Simulating one threshold at a time is appealing since this avoids order relation deviations and
permits a useful framework for incorporating multiple-point statistics.

The original idea failed in that correlation could not be reproduced for high thresholds. Cor-
relation was recovered as the algorithm proceeded to the lower thresholds. The use of another
technique such as SIS for locking the realization at a given threshold was explored, however, var-
iogram reproduction was never achieved in a completely satisfactory way. Apparently, the biased
conditioning generates unavoidable bias in the covariance reproduction. This problem is difficult
to tackle, since we proceed sequentially, and this generates a constant change in the magnitude of
the bias. The idea of correcting while simulating could be a possible way to fix this problem.

Among all the techniques explored, the nested approach seems reasonable, because it rests in
the well known indicator approach. Research could focus on correcting for the increase in nugget
effect generated by not accounting for the zeros from the higher thresholds. The result would
be different than the one obtained through SIS, since the nested approach would generate a map
that truly resembles a mosaic, in the sense that patches of different classes would be randomly
distributed in the field.

As a final comment, the incorporation of multiple-point statistics could be approached separately
from this hierarchical algorithm. Runs could be drawn directly into a field without even considering
the two-point statistics.
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