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Abstract

This note provides a synopsis of models of coregionalization that are common in geostatistical
practice. Theoretical development is shown for most analytical models and brief discussions
are given for heuristic models developed from simplifying multivariate statistical techniques.

Introduction

In practice, we are often interested in modelling more than one property and/or secondary
data are often available as additional information for the modelling of a primary variable.
Multivariate geostatistical techniques must be applied to capitalize on the available informa-
tion. A longstanding challenge in multivariate geostatistics is the inference of a statistical
model of coregionalization that permits simultaneous consideration of multiple variables.

Models such as the linear model of coregionalization (LMC) and the Markov Model
are common in practice. Other analytical and heuristic models exist that are also useful
in certain circumstances. This note provides an overview of some analytical and heuristic
models of coregionalization for multivariate geostatistics.

Notation. To avoid confusion, the following mathematical notation is adopted. Random
variables are defined with a subscript index to specify the data type, that is,

Zi(ua),i=1,...,Pa=1,...,N

where
a = index that specifies location in domain A,
N = total number of locations in domain A
1 = index that specifies the data type,
P = total number of different data types,

A particular outcome of the random variable is defined with a lower case z replacing
the upper case Z. Furthermore, where reference is made to some arbitrary location in the
domain A, the subscript a will be dropped for simplicity. The number of data locations is
n where n < N.

The first and second order moments of the RF are denoted as:

1. Mean:

E{Z;(u)} = pi(u)



2. Covariance:

Cov{Z;i(u) - Zj(u+ h)} = Cz-j(u,u—i- h), i,;=1,...,P

For geostatistical inference, a decision of stationarity is required. For practical purposes,
second order stationarity is often sufficient, that is,

E{Zz(u)} = u;,Vue A
Cov{Zij(u)-Zj(u+h)} = C;j(h),Yi,j,handue A

Analytical Models

Consider a multivariate data set consisting of P types of data. Explicit characterization of
the spatial relationship between the P variables requires a matrix of stationary covariance
functions Cjj(h),i,7 =1,...,P:

Cii(h) -+ Cyip(h)
C(h) = : : ,Vh
Cpi(h) --- Cpp(h)
This covariance matrix is often assumed to be symmetric (ie. Cj;j(h) = Cj(h)). To

ensure that all variances are non-negative, the covariance matrix must be positive semi-
definite, that is all leading principal minor determinants of order k must be non-negative,
k=1,...,P:

P
det C(h) =Y " (—1)""/ det U;;(h) > 0
i=1
where det U;;(h) is a minor determinant of order (P —1) of the P x P covariance matrix C,
with the indices ¢ and j denoting the row and column of C removed in order to form the
(P —1) x (P —1) matrix [5]. For the simple case of a second order covariance matrix, the
positive semi-definite constraint requires that

Cii(h) > 0
Cjj(h) > 0
Cii(h)Cjj(h) > Cjj(h)Cj;(h), Vi, j,h

Linear Model of Coregionalization

Consider P stationary random functions, Z = {Z;,...,Zp}. Suppose that each random
function Z;,7 = 1,..., P can be expressed as a linear combination of K independent second-
order stationary random functions, Y,k = 1,..., K, each with zero mean and covariance

function Ci(h) :



K
u) =Y apYi(u) + p (1)

where

E{Z(w)} = p
E{Yi(w)} = 0
C{Yi(u),Yp(u+h)} = Ci(h),ifk=k 2)

= 0, otherwise

Note that the RFs Y;,k = 1,..., K are underlying and unknown (latent variables in
statistical jargon). If the RFs Yy, k = 1,..., K are grouped by those RFs Y}, with the same
direct covariances Ci(h), then Equation 1 can be written as:

L
Z Z aly Yy (u) + p; (3)
1=0

k=1

with

C{Y}(u), Y (u+h)} = C'(h),ifk =4 andl="1 (4)

= 0, otherwise

where L + 1 is the number of groups with different direct covariances, and n; is the number

of RFs with the same covariance in group /. Based on Equation 3, the cross covariance of
two RVs Z;(u) and Z;(u+ h) is

L ny Ly

Cij(h) = E {( > alYi(u ) (Z 3 dYih(u+ h))}
1=0 k=1 k=1

ny

L L
= > Z Y- alyal C{Y}(w)Y}i (u + h)} (5)

I=00'=0k=1k'=1

Using the covariance in Equation 4 simplifies Equation 5 to

~

Cij(h) = Zzazka +C{Y{(u)Y}(u+h)}
1=0 k=1

= > aldyCl(h) (6)

=0 k=1

=~



From Equation 6, the sill of the I"* covariance structure, C!(h), is given by Sy aékaé-k.
Defining b!

ij>tJ =1,..., P such that
! o
bz'j = Z Qi Qj
k=1
simplifies Equation 6 to
L
Cij(h) = Y bj;C'(h) (7)
1=0

It only remains to determine C!(h),l = 0,...,L and the (L + 1) - P? parameters béj SO
that covariances are jointly positive definite. If the covariance models C'(h),l = 0,...,L
are chosen to be known positive semi-definite models, this amounts to requiring that the
L + 1 matrices of bﬁ-j coefficients are also positive semi-definite [2, 4, 6, 8]. For 2 variables,
this constraint requires that

Il Lol gy s
In practice, this requires that for P variables, a total of P(P + 1)/2 licit variograms
are required to be modelled simultaneously to ensure positive definiteness. Consequences
of a non-positive semi-definite covariance matrix are singular kriging systems and negative
estimation errors.

Markov Models

Two models exist under this heading: Markov Model I and Markov Model II. The former
is the more common Markov assumption used in most collocated co-kriging applications,
while the latter is a variation of the original model for cases where the volume support of
the secondary data is much larger than that of the primary data.

Markov Model I. Modelling direct and cross-variograms is a complex and tedious task.
A Markov-type model of coregionalization simplifies this process. Consider two standard
jointly Gaussian RVs, Z;(u) and Z;(u),4 # j, which are the primary and secondary variable,
respectively. The Markov-type assumption states that collocated hard data will screen the
influence of other hard data that is further away [1, 15], i.e.

E{Zj(w)|Zi(u) = 2, Zi(u + h) = 2'} = B{Z;(u)|Zi(u) = 2} (8)
Derivation of the Markov cross covariance model is based on determining the covariance

of Z;(u) given Z;(u) = z and Z;(u +h) = 2/, where fyn(z,2') is the bivariate pdf of Z;(u)
and Z;(u + h):



Cij(h) = E{Zj(u)- (u +h)}
= //E{Z (u+h)|Z;(n) =2, Z;(u+h) =2} fu(z, 2 )dzd2'
_ / / 2 E{Z;()|Zi(u) = 2, Zi(u + h) = '} fu(z, 2')dzd2'
= //z'E{Zj(u)|Zi(u) = 2) fu(z, 2')dzdz’ based on the Markov assumption

Since the two RVs are jointly Gaussian, the regression of Z; on Z; is

E{Zj)|Zi(u) =z) = p;;(0)- =

where p;;(0) is the correlation between Z;(u) and Z;(u) (i.e. collocated). This result gives
the Markov cross covariance model:

Cij(h) = pij(O)-//z'th(z,z')dzdz'
= pij(0) - Cy(h),Vh (9)

For standardized variables, that is, random variables with unit variance, Equation 9 becomes

pij(h) = pi;(0) - psi(h), Vh (10)

The Markov model only requires that the covariance function of the primary variable be
modelled. The cross covariance between the primary and secondary variable is approximated
using the relation in Equations 9 or 10. Use of only the collocated secondary data means
that the covariance function of the secondary data is not required [1, 15].

One situation in which the Markov approximation is a poor assumption is the integration
of data of significantly different volume supports. For example, suppose there is seismic and
core data available at location u. The small scale data from the core sample cannot screen
the seismic data that informs a much larger volume although both data are centered at the
same location.

Markov Model II. For the case when the secondary variable Z;(u) is defined on a
much larger support than the primary variable Z;(u), Journel introduced a variation of the
Markov assumption referred to as Markov Model II [7]. Simply stated, Markov Model II
assumes that collocated secondary data will screen the influence of other secondary data
that is further away [7], i.e.

B{Zi(w)|Zj(w) = 2, Z;j(u + h) = 2} = B{Zi(u)|Z;(u) = 2} (11)

The corresponding cross covariance model is



Cij(h) = C;;(0) - Cj;(h),Vh (12)

Derivation of 12 follows from the derivation of Markov Model I. Unlike the more popular
Markov Model I which requires only modelling of the covariance model of the primary
variable, Cj;(h) to define the cross covariance, Markov Model 11 requires that the covariance
model of the secondary variable, Cj;(h) be modelled. The resulting cross-covariance is
obtained via relation 12. Further, the Markov Model II defines the primary covariance as a
function of the secondary covariance and a residual covariance, Cr(h) [7, 12]:

Cii(h) = C3(0) - Cy;(h) + (1 — C%(0)) - Cr(h),Yh (13)

Since Markov Model II requires modelling of the secondary covariance, from which
subsequent definition of the primary and cross covariance is possible, the resulting model
of coregionalization must be checked to ensure the model is positive semi-definite.

Markov-Bayes

Use of the LMC and the Markov models of coregionalization in traditional Gaussian al-
gorithms only allows for transfer of linear, homoscedastic correlation. The Markov-Bayes
model aims to account for the entire conditional distribution, not only the parameters that
define the conditional distribution but also the shape of the distribution at each location u
[9, 16]. This model was developed for the purpose of improving non-parametric geostatistics,
specifically indicator simulation.

Suppose Z; is the sparsely sampled primary variable, and Z; is the densely sampled sec-
ondary variable. The primary data are considered “hard” data and are coded as indicators:

oo )1, ifz(u) <z
i(u;2) = { 0, otherwise

where z;(u) is the primary data value at location u. By convention the indicator random
variable is denoted I(u; z) with outcome i(u; z), which is not to be confused with the variable
index “” for the primary variable.

Secondary data Z;(u) are used to define a “local prior” distribution of Z;(u). Secondary
data are coded as probabilities or Y data:

y(u; z) = prob{Z;(u) < z|related information}

where y(u;z) € [0,1] and # Fi(z). For locations where hard data exists (i.e. z(u) is
known), the local prior cdf becomes

(w2) = 1, for all z < z;(u)
YWZI=9 0, forall z > zi(u)
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Figure 1: Graphical Interpretation of Calibration Parameter B(z) of Soft Data in Markov-
Bayes Updating. Source: Journel and Zhu, 1990

Secondary information can also be coded as a constraint interval or a continuous interval
based on calibration to a bivariate distribution representing correlation between primary
and secondary data [9, 16].

This model requires (1) a Markov-type assumption to simplify modelling of cross co-
variance models between I(u;z) and Y (u;z), and (2) use of Bayes theorem to update local
prior distributions and obtain posterior conditional distributions, given that direct and cross
covariances are known.

Based on the Markov approximation, the direct and cross covariances are calibrated by
B(z) (see Figure 1) [9, 16]:

Cry(h;z) = B(z)- Ci(h;z) Vh
B?(z) - Cr(h;2z), Yh>0

CY(h; Z) = { |B(z)| -C[(h; Z), h—

where

B(z) = ml(z) —m’(2)
m'(z) = B{Y(u;2)[I(u;2) =1}
m®(z) = E{Y(u;2)|I(u;2) =0}

Zhu and Journel (1990,1993) interpret the parameters m'(z) and m"(z) as a measure of
accuracy of the local prior distributions of y(u;z) in predicting Z;(u) < z and Z;(u) >



z, respectively. The value of B(z) is then indicative of the accuracy of inference using
soft data [9, 16]. A calibration of B(z) = 1 is considered the best in terms of accuracy
since this means that the primary and secondary RV are perfectly spatially correlated, i.e.
Cy(h;z) = Cr(h;z) and Cry(h;z) = Cr(h;2z)Vh. Conversely, B(z) = —1 is interpreted
as perfect “error” where the event Z;(u;z) < z is actually assigned the probability of
Zi(u;z) > z. The worst case occurs when B(z) = 0 which indicates that soft information
Y (u; z) does not help in predicting the value of the indicator I(u; z).

Once the calibration parameter B(z) is established, the model of coregionalization is
fully defined. The Markov approximation along with Bayesian updating requires only the
direct covariance of the primary variable or hard data be modelled. As this model is
dependent on a Markov assumption, it is also a poor approximation when conditioning to
data of significantly different supports.

Empirical Models

Contrary to the previous models of coregionalization, those discussed in this section are not
easily defined analytically. The models that fall within this group are those that result from
transformation techniques applied to simplify multivariate (geo)statistics.

Principal Component Analysis. The objective of this multivariate transformation is
to reduce the dimensionality of the data by identifying new variables that are linear combi-
nations of the original variables. It produces new variables that are uncorrelated with each
other. Reducing the dimension of the problem relieves the effort required to infer a model of
coregionalization. Orthogonality of the new variables is assumed to extend to spatial coor-
dinates. In practice, this assumption is verified by visual inspection of the cross-covariance
models between pairs of variables [13, 14].

Goovaerts explored the relation between the covariance of the principal components and
the covariance of the actual regionalized variables in greater detail for the cases of intrinsic
correlation, and for two and three basic structures with a nugget effect [3].

Stepwise Conditional Transform. This technique is a multivariate transformation
technique that produces independent multiGaussian variables at h = 0, with the added
possibility of independent simulation [10, 11]. Secondary variables are conditionally trans-
formed to standard normal distributions based on the probability classes of previously
transformed primary variables. The result is a set of transformed secondary variables that
are a combination of multiple variables; the corresponding covariance model for these vari-
ables reflects the mixture of both primary and secondary variables, i.e. the direct and
cross covariance models of the transformed variables are a function of the direct and cross
covariances at all lower levels [10].

Leuangthong and Deutsch explored the model of coregionalization that results from
applying this transformation, with specific results given for the intrinsic correlation scenario
[10].



Remarks

Regardless of the model that is adopted, the matrix of covariances must be checked to
ensure that the system is indeed positive semi-definite so as to guarantee non-negative
kriging variances. Once the model is verified, we have all the information required in order
to solve the kriging equations for conventional multivariate geostatistics.
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