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Abstract

Trend modelling is an important part of natural resource characterization. A common ap-
proach to account for a variable with a trend is to decompose it into a relatively smoothly
varying trend and a more variable residual component. Then, the residuals are stochasti-
cally modelled independent of the trend. This decomposition can result in values outside the
plausible range of variability, such as grades below zero or ratios that exceed 1.0.

We transform the residuals conditional to the trend component to explicitly remove these
complex features prior to geostatistical modelling. Back transformation of the modelled
residual values allows the complex relations to be reproduced. Mining and petroleum related
applications show the robustness of the proposed transformation.

Introduction

Geostatistics is increasingly popular for natural resource characterization. The tools pro-
vide the ability to construct geologically realistic models. These tools, however, rely on
some basic assumptions to permit inference of the spatial statistics at unsampled locations.
Geostatistical models depend on a decision of stationarity that assumes invariance of the
multivariate cumulative distributon function (cdf) over the domain, that is

FZ(u1),...,Z(uN )(z(u1), . . . , z(uN )) = FZ(u1+h),...,Z(uN+h)(z(u1 + h), . . . , z(uN + h)),∀h

For practical purposes, second order stationarity is assumed explicitly for geostatistical in-
ference, that is E{Z(u)} = µ and Cov{Z(u)·Z(u+h)} = C(h),∀h and u ∈ A. Multivariate
stationarity is implicit to the particular geostatistical implementation.

For most practical problems, spatial trends violate this assumption and the application
of geostatistical methods is no longer straightforward. Real data often exhibit spatial trends
in the first and/or second moment. For example, it is common to have regions of low and
high grades within a mineral deposit. Further, the variability within these regions may
change depending on the grades. Direct application of common geostatistical tools may
inappropriately spread (or smear) spatial features across different areas; trend modelling
becomes an integral component to the geostatistical work flow.

A further complication is the subjectivity of trend detection and modelling. There is
no “objective” way to determine that there is a trend. The existence of a trend and how
to model it is very much dependent on the practitioner. Trends depend on many factors,
including the data available and the scale of observation. Although it is common for most
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trends to be modelled arbitrarily by a decomposition approach, the practitioner’s experience
with similar deposits/reservoirs may also affect the trend model.

This paper discusses some of the methods to detect and model a trend, but will focus
primarily on the additive decomposition of the random variable into a mean and residual.
Common problems associated to this decomposition will be addressed, and a transformation
to handle these problems will be presented.

Detecting Trends

In some cases where the depositional environment is well understood, trends can be detected
by geological knowledge of the site of interest. In most cases, however, the data are the
source for trend detection. Large scale spatial features can be detected during several stages
of data analysis and modelling. Sometimes a simple crossplot of the data against elevation
may show a trend (Figure 1). To visualize trends, a moving window average of the data
can be calculated to determine if local means and/or variances are indeed stationary. The
size of these “windows” will depend on the number of data available. Also, if few data are
available, then these windows may overlap so as to permit more reliable calculation of the
local statistics [4, 6]. If there are notable changes in the local mean and variance within the
domain, the practitioner may decide that there is a spatial trend.

Although the identification of a trend is subjective, it is widely accepted that the trend
is essentially deterministic and should not have short scale variability. Any features that
are not significantly larger than the data spacing should probably be left for stochastic
modelling.

One further step is to examine the data for a proportional effect, that is, whether the
local variance is dependent on the local mean. In general, a crossplot of the local mean
and the local variance can show this phenomenon. In the presence of a proportional effect,
the relation between the local mean and variance is often quadratic. Our proposal consists
of transforming the residuals to be independent of the mean. This correction will often
account for the proportional effect; however, some basic checks during model construction
can be used to see if further steps are required.

Another stage of the modelling process where spatial trends may be evident is during
variography. The experimental variogram may show a trend in any one or more of the
principal directions. This is easily identified as the experimental variogram continues to
increase above the variance of the random variable as the lag distance, h, increases (Figure
2). This usually indicates that the practitioner should revisit their decision of stationarity
and consider whether the domain should be subdivided or a trend considered.

Common Trend Modelling Approaches

The most common and straightforward approach is to separate the RV into two components
- the trend and the residual:

Z(u) = m(u) + R(u) (1)

where Z is the original RV, m is the trend or mean component, R is the residual RV, and u
denotes the location, commonly representative of Cartesian coordinates (x, y, z). This type
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well 1 well 2

Figure 1: Example of vertical trend as indicated by two well logs. (Source: Deutsch, 2002)

of decomposition correspondingly leads to a decomposition of the total variability of the
original RV:

σ2
Z = σ2

m + σ2
R + 2C(R,m) (2)

where σ2
Z is the variance of the original RV, σ2

R is the variance of the residual RV, and
C(R,m) is the covariance between the residual and the mean components. This covariance
can be either negative or positive; however, if this value is close to zero, fewer artifacts
associated to the decomposition are expected [2].

The mean component is defined at all locations via a 3D trend model, while the residual
values are only defined at data locations [2]. Geostatistical modelling is then only performed
on the residuals that are considered to be stationary. Multiple realizations of the residuals
are generated and added back to the single trend model to produce multiple realizations of
the original RV.

The problem remains as to how the trend should be “modelled” so as to obtain a sta-
tionary residual random function (RF) for geostatistics. The idea is to obtain a model
that accounts for large scale variability; small scale variability is accounted for in geosta-
tistical modelling of the residuals. As a result, trend models are typically smooth models
constructed through interpolation and extrapolation of the trend data. In areas of interpo-
lation or within the range of the data, there may be no need for a trend model - the model
values will be influenced and/or controlled by the data.

There are several trend modelling approaches that have gained popularity in practice,
mainly as a result of their ease of application:

1. Hand contouring of geologic sections accounting for drillhole data and analogue infor-
mation.
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Figure 2: Example of porosity log (left) and corresponding vertical variogram (right) show-
ing existence of a vertical trend.

2. Calculate moving window averages at each location and use this smooth map as a
trend map.

3. Apply common robust estimation algorithms such as ordinary kriging to generate a
smooth trend map.

Universal kriging [5] or intrinsic random functions of order k (IRF-k) could also be
considered for automatic modelling of the trend. Typically a low order (≤ 2) polynomial
function is used to model the trend (a polynomial of order 0 amounts to ordinary kriging
with an unknown local mean) [6]. Automatic fitting of the trend using polynomials is
generally not recommended as extrapolation of the trend may give rise to unrealistic grades
or petrophysical properties. The use of these methods in simulation is problematic and not
implemented in most software.

Another common approach to constructing a 3-D trend model is to develop a 1-D and
a 2-D trend model and integrate these into a consistent 3-D trend model. A 1-D vertical
trend could be developed to capture the trend within drillholes. A 2-D trend map in the
horizontal plane could be used to capture any areal trends that may exist between the
drillholes. There is no unique way to integrate these two trends into a consistent 3-D trend
model [2]; however, one such approach is to scale the areal trend by the proportion of the
vertical trend to the global mean:

4



R
es

id
ua

l

Trend

Example of Heteroscedastic Behaviour

.50 1.00 1.50 2.00 2.50

-2.00

-1.00

.00

1.00

2.00

3.00

4.00

5.00

6.00

R
es

id
ua

l

Trend

Example of Constrained Behaviour

.00 .20 .40 .60 .80 1.00

-1.00

.00

1.00

2.00

3.00

Figure 3: Example of heteroscedastic variance of residuals (left), and linear constraint on
residuals (right).

m(x, y, z) = mglobal ·
(

m(z)
mglobal

)
·
(

m(x, y)
mglobal

)
(3)

This is straightforward and well adapted to practice where limited data may make it difficult
to infer a full 3-D trend model. Inherent in Equation 3 is an assumption of conditional
independence of the vertical trend component within the horizontal plane and the horizontal
trend component in the vertical direction.

Problems in Trend Decomposition

Given this common approach of decomposing the RV, the term “trend modelling” has come
to be synonymous with the modelling of the local mean. Unfortunately, this is a rather lim-
ited view in the sense that trends may exist in both the mean and/or the variance. Common
geostatistical estimation and simulation tools, with the exception of indicator approaches,
implicitly assume homoscedasticity. Figure 3 (left) shows an example of a heteroscedastic
relationship between the trend and the residuals. Straightforward application of geosta-
tistical modelling does not account for these departures from stationarity; these must be
explicitly handled in the construction of the numerical model of the residual random variable
(RV).

The second problem arises as a consequence of the simple decomposition of the RV
Z(u) in Equation 1. Inevitably, this dissociation results in some constrained bivariate
relationship between the trend component, m(u), and the residual component, R(u). For
a non-negative RV Z(u), the residual component must be greater than or equal to the
negative trend component, that is, R(u) ≥ −m(u). Figure 3 (right) shows an example of
this type of constraint for a copper deposit for which a 3D trend model was constructed.

The problem arises in the reproduction of this constraint feature after the residuals have
been modelled and the trend must be added back to obtain the modelled value of Z(u).
A simple addition provides no assurance that Z(u) will be non-negative at unsampled
locations.
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These two problems of trend modelling must be addressed in order to achieve the initial
objectives of constructing numerical models that are geologically realistic and physically
plausible.

Proposed Methodology

TThe idea is to complement the current practice of trend modelling by a transformation
that accounts for both heteroscedastic and constraint behaviour.

The proposed transformation is a normal score transform of the residual data condi-
tional to its trend component. Based on the probability class of the trend component, the
corresponding residuals can be conditionally transformed:

YR(u) = G−1[F{R(u) | ym(u)}] (4)

The result is a transformed residual distribution that is standard Gaussian. This transform
effectively removes any heteroscedastic or constraint features that may be problematic in
the modelling of the residual component.

Figure 4 shows a schematic illustration of this proposed transformation sequence. For
practical purposes, mean values are partitioned into classes. Although the schematic shows
only 3 classes, the number of classes should be at least 10 to 20 classes in practice. The
minimum number of data should be large enough to give reliable conditional distributions.

Much like the forward transformation, the back transformation of the modelled residual
values must be conditioned to its collocated trend value. Complex bivariate features are
reproduced by way of the back transformation that respects the shape of the multiple
conditional distributions.

Application

Implementation of the forward and backward transformation is straightforward. Two pro-
grams, nscore t and backtr t, were developed that are consistent with GSLIB convention
[3].

Mining Example

The data used in this application was taken from a copper mine. Figure 5 shows the location
map of the available drillholes alongside the crosssplot of Cu grade against elevation, which
shows evidence of a vertical trend. The location map in Figure 5 also indicates a trend
of high values in the northern half of the map. The trend model is constructed by first
calculating a vertical trend. Secondly, a horizontal trend map must be generated to give a
2D trend. This involves calculating vertical averages across the horizontal domain from the
data. Using these vertical averages, a 2D trend map can be generated by any of the common
methods previously mentioned. For this data, the horizontal trend map will be created by
kriging; Figure 6 shows the vertically averaged Cu data that is used as conditioning data
in kriging alongside the resulting kriged map.
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Figure 4: Normal score transform of residuals conditioned to trend component: (a) partition
residuals into classes based on its trend component, (b) normal score transform each residual
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to show bivariate distribution with homoscedasticity and approximately zero correlation.
Note that the marginal distribution of YR(u) is Gaussian.
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Figure 5: Location map of available drillholes (left) and crossplot of elevation vs. Cu to
illustrate 1-D trend in the vertical direction (right).
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Figure 6: Location map of vertically averaged Cu data (left), and resulting kriged map
using this data (right).
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Figure 7: Required 1D trend (left) and 2D trend (middle) for integration to obtain 3D trend
(right).

Regardless of the method chosen to create a 2D trend map, these lower dimension trends
must still be integrated into a consistent 3D trend model. Using the 1D and 2D trends shown
in Figures 5 and 6, Equation 3 was used to obtain a 3D trend model (see Figure 7).

Using the 3D trend model, the residuals are calculated using Equation 1. The resulting
relation between the trend and the residual is captured in a crossplot shown in Figure 8.
Clearly, a constraint is imposed on the residual values as a consequence of the trend model
and non-negative grade values. Modelling the residual values to obtain a 3D residual model
must reproduce this constraint relationship with the trend in order to obtain non-negative
model values of the Cu grade.

To simulate the residuals, sequential Gaussian simulation will be used. Applying the
conventional normal score transform to the residuals yields the crossplot shown in Figure
9. Figure 9 clearly shows the transference of the linear constraint in original space (see
Figure 8) to an almost linear constraint in normal space. The correlation between the
mean and transformed residual is -0.305, significant enough to indicate that the two RVs
should be modelled in a dependent fashion. Further, the use of popular Gaussian simulation
techniques would not be able to reproduce this type of constraint, regardless of whether
kriging or cokriging is used.

The conditional normal score transformation of the residuals is then performed, and the
corresponding histograms and crossplot are shown in Figure 10. The transformed residuals
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Figure 11: Comparison of trend model (left) and simulated realization of Cu (right), after
adding the trend back to the simulated residuals.

are univariate Gaussian, and the constraint features have been removed. Further, the zero
correlation combined with homoscedasticity of the resulting bivariate distribution permits
independent simulation of the transformed residuals.

Variography and simulation of the conditionally transformed residuals are then per-
formed. Following simulation, the simulated residuals are back transformed. Then, the
trend model shown in Figure 7 is added to each of the residual realizations to obtain mul-
tiple realizations of Cu. One simulated realization of Cu is shown in Figure 11.

Figure 12 shows the comparison of the distribution of the first realization of simulated
Cu and the declustered histogram of the original Cu data. The summary statistics are
comparable, as is the shape of the distribution; however, negative values are apparent in
the distribution of the simulated Cu.

Negative grades in the simulated Cu values must also be examined. In the first real-
ization, 37 444 of the 817 400 blocks simulated yielded slightly negative Cu grades after
the trend and residuals models were added due to imprecision in the classes. This amounts
to 4.6 % of the modelled blocks. In comparison, the conventional normal score approach
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Figure 13: Comparison of original trend-residual crossplot and modelled trend - simulated
residual crossplot. Notice that the linear constraint from the original crossplot is reproduced.

yielded 250 856 negative valued blocks or 30.7 %. The conditional transformation approach
provides an obvious improvement from the conventional approach. In fact, all 37 444 neg-
ative values fall within the last probability class as specified by a trend value of 0.62. This
is consistent with the small group of points in the bottom right corner of Figure 13 of the
simulated values (right figure).

The real test in this exercise is actually the reproduction of the bivariate relation between
the residual and its collocated trend value. This is shown by plotting a single realization
of the residuals with the 3D trend model; Figure 13 reveals that the linear constraint is
reproduced. In contrast, the standard normal score approach produced the crossplot shown
in Figure 14. Clearly the linear constraint is not reproduced by the conventional transform.

Petroleum Example

Figure 15 shows the location map of the available 63 wells and the 1D vertical trend in the
well log porosity. Note that for this example, an exaggerated 100:1 stratigraphic coordinate
is used.
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Figure 14: Crossplot of the modelled trend vs. simulated residuals from applying the
conventional normal score transform. The linear constraint from the original crossplot is
not reproduced.
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to illustrate 1-D trend in the vertical direction (right). Note that a 100:1 exaggerated
vertical scale is applied.
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Figure 16: Location map of vertically averaged porosity data (left) and resulting areal trend
map using this data (right).

Similar to the previous mining example, the data are averaged vertically at each well
location to yield 63 conditioning data. These data are input to a 2D kriging to give an areal
trend model (Figure 16).

Equation 3 is implemented to integrate the 1D and 2D trends from Figures 15 and 16
into a consistent 3D trend model (Figure 17).

Using this trend model, the residuals are calculated. A crossplot between these residuals
and the collocated trend values shows the resulting non-linear relationship (Figure 18). Note
that although the correlation coefficient is close to zero (0.019), this value only refers to the
linear relationship and does not adequately reflect any non-linear features.

The proposed transformation is applied and the resulting histogram of the transformed
residuals and its relation to the transformed trend component are shown in Figure 19. These
transformed residuals are then simulated and back transformed. The 3D trend model is
then added to the resulting realizations to obtain multiple realizations of porosity. Figure
20 provides a comparison of the 3D trend model and one realization of simulated porosity.
It shows the reproduction of the large scale features captured by the trend model.

Finally, the histogram of the simulated porosity and the crossplot of the trend and the
residual can be compared. Figure 21 shows the histogram reproduction of porosity. Figure
22 shows the comparison between the crossplot using the available data and the crossplot
resulting from the simulated residuals and the trend model. There is good reproduction of
both the univariate distribution and the complex bivariate non-linear features.

Conclusions

Trend modelling is an integral part of characterizing natural resources. Geostatistical meth-
ods rely on stationary statistics, which is counter-intuitive to most real reservoirs, mines or
other naturally varying phenomena. Although common practices have been developed in
the modelling of trends, none of these methods explicitly control the relation between the
trend component and its collocated residual. This poses a problem since complex constraint,
non-linear and heteroscedastic relations are common.
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Figure 17: Required 1D vertical trend (top left) and 2D areal trend (top right) used to
construct a 3D porosity trend (bottom).
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15



F
re

qu
en

cy

Transformed Residual

-5.0 -3.0 -1.0 1.0 3.0 5.0

.000

.050

.100

.150

.200 Transformed Residuals

mean .00
std. dev. .99

T
ra

ns
fo

rm
ed

 R
es

id
ua

l

Trend

Transformed Residuals vs. Trend

.0 4.0 8.0 12.0

-4.0

-3.0

-2.0

-1.0

.0

1.0

2.0

3.0

4.0

ρ = .001

Figure 19: Histogram of transformed residual (left),and crossplot of normal score trans-
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residual crossplot. Notice that the non-linear features are reproduced.

A modified normal score transform for the residual is proposed that permits the applica-
tion of Gaussian techniques, with the added advantage of reproducing complex relationships
between the trend and the residuals. Applications to a Cu deposit and a petroleum reservoir
are used to illustrate the robustness of the transform for detrended data.
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