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Improved Variogram Models for More Realistic Estimation 
and Simulation 
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Geostatistical models often require a variogram or covariance model for kriging and kriging-
based simulation.  Next to the initial decision of stationarity, the choice of an appropriate 
variogram model is the most important decision in a geostatistical study.  Common practice 
consists of fitting experimental variograms with a nested combination of proven models such 
as the spherical, exponential, and Gaussian models.  These models work well in most cases; 
however, there are some “shapes” found in practice that are difficult to fit.  Greater flexibility 
is available through the application of geometric and spectral corrected variogram models. 

We introduce a family of variogram models that are based on geometric shapes, analogous to 
the spherical variogram, that are known to be positive definite and that provide additional 
flexibility to fit variograms encountered in practice.  The positive definiteness of these models 
is established. 

Fitting variograms with analytical models can be tedious and restrictive.  There are many 
smooth functions that could be used for the variogram; however, arbitrary interpolation of the 
variogram will almost certainly create an invalid non-positive definite function.  The idea of 
spectral correction, that is, taking the Fourier transform of the corresponding covariance 
values, resetting all negative terms to zero, standardizing the spectrum to sum to the sill, and 
inverse transforming the result has been proposed by numerous authors.  This paper addresses 
some important implementation details. 
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Introduction 
 
There have been recent developments in the application of multipoint statistics.  These 
methods will ultimately complement the more humble two-point variogram calculated 
from actual data.  While these methodologies have potential, practical geostatistics 
continues to be driven by the variogram, because of (1) a lack of demonstrated case 
studies and procedures with multiple point statistics and (2) in many cases the variogram 
represents the limit of statistics that may be reliably extracted from the available data.  
Multiple point statistics beyond the variogram may require an assumption of stationarity 
with respect to a training image.  This decision may be questionable if the training image 
over constrains the space of uncertainty or imparts artifacts non-representative features 

                                                 
1 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada 
e-mail: mpyrcz@ualberta.ca 
2 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada  
e-mail: cdeutsch@ualberta.ca 
 



 2 

from the training image.  For these reasons, the variogram will remain significant into the 
foreseeable future.  
 

The random function paradigm of geostatistics involves three main steps: (1) definition of 
the variable and the stationary domain for the variable {Z(u), u ∈ A}, which involves the 
definition of rock types/facies and large scale trends, (2) establish a variogram model for 
the variable, γ(h), that is valid for all distances and directions found in the domain A, and 
(3) make inferences with kriging and Monte Carlo simulation.  The reasonableness of the 
inferences depends on the first two steps.  The expert site-specific decision of a stationary 
domain is arguably the most important; however, the calculation and fitting of a 
variogram model is also very important.  The inference step is largely automatic once the 
first two steps are taken.  This paper is aimed at the second step of establishing a valid 
variogram model.  The conventional method of modeling variograms by nested structures 
is reviewed.  While this method guarantees a variogram model that is positive definite in 
all directions, it may be viewed as restrictive. A suite of geometric variograms is 
introduced and the procedures required to apply spectral corrected fitted variogram 
models is outlined.  These alternative methods allow for greater flexibility in the 
generation of permissible variogram models.   

 

Conventional Variogram Modeling  
 
The variogram of traditional geostatistics characterizes heterogeneity or predictability of 
the variable under consideration.  Variogram models must be positive definite.  This 
property ensures that the variogram is an appropriate measure of distance and that all 
resulting variances will be non-negative for all possible configurations of conditioning 
data (Journel and Huijbregts, 1978, p. 35). 

 

Experimental variogram points are calculated in the principal directions allowing for 
some distance and direction tolerance to find sufficient pairs.  The experimental points 
are fitted with a sum of nested structures.   
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where nst is the number of nested structures, 0=i  is commonly reserved for the nugget 
effect, and )(hiΓ  functions are valid variogram functions defined by a shape (spherical, 
exponential, etc.), rotation angles to allow h  to be represented in the principal directions 
of continuity ( 321 ,, hhh ), and range parameters to account for anisotropy.  A geometric 
transformation is applied to convert the 3-D distance vector, h, to a scalar distance h 
[Eq.(2)].  
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Variogram modeling has relied on fitting known positive definite functions such as 
spherical, exponential and Gaussian models.   Some additional flexibility is available 
since linear combinations and products of positive definite covariance models are known 
to be positive definite (Deutsch and Journel, 1998, p. 24).  While this provides a 
workable mechanism for modeling continuity, there are some cases that are not well fit 
with this framework (see Figure 1 for an example structure commonly observed in 
experimental variograms). 

 

The application of more flexible variogram modeling is inhibited by the difficulty in 
ensuring positive definiteness.  There is a largely unexplored suite of positive definite 
models known as geometric variograms that provides some additional flexibility.  They 
are genetically guaranteed to be positive definite and therefore avoid the burden of proof 
required by arbitrary variogram functions.   

 
Geometric Variograms 
 
Any covariance model based on a moving average of a generalized Poisson process is 
positive definite (Matérn, 1960, p. 28).  Geometric variograms result from the special 
case of averaging where the weighting function is reduced to a Dirac function of the 
form: 
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This amounts to the volume of intersection )(hvK of any geometric object with itself 
offset by a lag vector, h .  Where )0(vK , the volume of the geometric object, is 
analogous to the sill, )0(C , of the covariance model.  The construction of a geometric 
variogram is illustrated in Figure 2.  A positive definite model in n-D is valid in any less 
or equal dimensional space; for example the spherical variogram is valid in 3, 2 and 1 
dimensions. 
 
In some cases analytical equations may be available for the volumes of intersection. 
Numerical integration can always be used for complicated geometric objects. The volume 
of intersection could be efficiently calculated as: 
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where ),,( zyxi uuu  and ),,( zzyyxxi huhuhu +++  are indicators set to 1 if within the 
object and 0 if without the object and ),,( zyxvK hhh is the volume of intersection given 
the lag vectors zyx hhh ,, .  The result is a discrete covariance model for kriging. 
 
Isotropic Geometric Variogram Models 
 
Isotropic geometric variogram models result from isotropic geometric objects.  This is 
limited to lines (1-D), circles (2-D), spheres (3-D) and hyperspheres (n-D, n > 3).  These 
geometric models account for anisotropy by scaling the component vectors [Eq. (2)].  
 
 
 
 
Spherical Variogram 
 
This variogram model is very commonly used.  The spherical model is based on the 
standardized volume of intersection of two spheres separated by a lag vector (h) as 
defined (Serra, 1967).  
 

totalvolume
volume int)(1)( hh −=γ               (5) 

 
Analogous to the spherical variogram model in 3-D is the circular and triangular 
variogram models that are positive definite in 2-D and 1-D, respectively. 
 
Hollowed Spherical Variograms 
 
A variety of other isotropic geometric variogram models may be calculated by hollowing 
of the geometric object.  For example the circle in 2-D may be changed to an annular 
region or the sphere to a hollowed sphere.  The hollowed sphere results in a novel series 
of positive definite 3-D variogram models parameterized by the inner radius (r1) or 
fraction of hollowing.  A series of hollowed spherical variogram models are shown in 
Figure 3. 
 
In the limiting cases this variogram is equivalent to the spherical model when r1 equals 
0.0 (the sphere is not hollowed) and approaches the nugget effect as r1  r2.  The 
difference between the hollowed spherical variogram and the spherical variogram is 
equivalent to the volume of intersection lost due to the hollowed inner sphere (Figure 4).  
An example hollowed sphere (fraction hollowed 0.75) raster image and covariance table 
is shown in Figure 5. 
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Anisotropic Geometric Variogram Models 
 
Any geometric shape in any dimension leads to a valid variogram model.  Slices through 
an approximated shape of a point bar inclined heterolithic strata (IHS) are shown on the 
top of Figure 6.  The covariance table was calculated for this object and is shown on the 
bottom of Figure 6.  This complicated anisotropic geometric object has resulted in a 
complicated anisotropic covariance table. 
 
There are a variety of geologic geometries that may be applied to calculate variogram 
models.  For example, characteristic geometries of architectural elements from fluvial 
depositional settings such as lateral accretion, downstream accretion, channel fills etc. 
(Miall, 1999, p. 93) may be suitable. 
 
There is a limit on the information that geometry may provide with respect to the 
variogram model.  For example, the randomly positioned spheres result in the bombing 
variogram model not the spherical variogram model.  Yet the geometry may provide 
information with respect to the general variogram shape and anisotropy.   While the 
variogram can be tailored to the geometry of the underlying phenomenon, in the absence 
of insight into geometry of the underlying phenomenon, the determination of the 
appropriate geometric shape to fit a complicated variogram is an intractable inverse 
problem.  
 
While the application of geometric variogram models may improve variogram modeling 
flexibility, greater flexibility is possible by application of spectral correction to fitted 
variogram models. 

 
Spectral Corrected Variogram Models 
 
Fitting an arbitrary function to experimental variogram points, )(hγ , will not lead to a 
valid positive definite model for subsequent estimation and simulation.  Spectral 
correction offers an efficient means to correct arbitrary fitted variogram to be positive 
definite.   
 
Positive Definiteness 
 
We switch to the covariance, )(hC , that is related to the variogram when the underlying 
random function is second order stationary by: 
 

)()0()( hh γ−= CC                                                        (6) 
 

The covariance is commonly used instead of the variogram to solve for kriging weights 
due to convenience in the matrix solution. 
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Positive definiteness, or more precisely non-negative definiteness, is a constraint that all 
possible variances must be non-negative.  Given that the estimate is the result of a finite 
linear combination: 
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This constraint may be expressed as: 
 

∑∑ ≥=
i j

jijik C 0),(}{2 uuu λλσ     (8) 

 
where )(2 ukσ  is the estimation variance that is minimized by the kriging equations.  Also 
positive definiteness ensures that the all covariance matrices calculated with the 
covariance function will be positive definite.  Proving this constraint [Eq. (8)] for a 
specific covariance model, )(hC , amounts to proving that all possible weights, resulting 
from all possible data settings, will result in non-negative variances.  This procedure is 
not directly possible since all possible data configurations cannot be explored.  The 
application of Bochner’s theorem to remap a covariance model to a spectrum 
representation is required to correct for positive definiteness (Bochner, 1949).  
 
Review of Spectral Methods 
 
Bochner’s theorem defines the general form of a positive definite function C(h), 
continuous in h = 0 (without nugget effect), as: 
 

∫
∞

∞−
⋅= )()cos()( ωω dShC h      (9) 

 

under the constraints that 0)( >ωdS and ∞<=∫
∞

∞−
)0()( CdS ω .  )(ωS  is the spectral 

cumulative distribution function. 
 
The practical result of the link between the spectrum and covariance models is an 
efficient method to check for positive definiteness and to correct for positive definiteness 
in discrete, tabulated, covariance models.  A positive definite check of the spectrum 
representation amounts to checking if all real components are greater than 0.0 and that 
they sum to the variance ( )0(C ).  A discrete covariance model is corrected by enforcing 
these constraints by setting all negative real components to 0.0 and then standardizing all 
spectrum to sum to the variance. 
 
Proposed Flexible Variogram Modeling Procedure  
 
A new methodology for flexible variogram modeling is proposed.  This methodology 
requires the following steps: (1) model the variogram in the principal directions, (2) 
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construct a consistent covariance table from variograms in the principal directions and (3) 
correct these covariance tables for positive definiteness.  The corrected covariance tables 
may be loaded directly into kriging or simulation. 
 
Model the Variogram in the Principal Directions   
 
These directional models may be regression fits of the experimental variogram points, or 
even hand drawn.   The key is to build models that integrate geologic information.   
 
Calculate a Consistent Covariance Table 
 
From the arbitrary variogram models in the principal directions a consistent covariance 
table is inferred.  The covariance table must have the same dimensionality and scale as 
the random function model to which it will be applied.  The table is set large enough that 
the variogram to fully characterize the spatial continuity.  Also, the size of the table is set 
to a power of 2 [Eq. (11)]. 
 

zyxi
zyxncells ,,2,, =                                                    (11) 
 

where ix,y,z  is an integer.  This is required by the numerical recipes multidimensional 
discrete Fast Fourier Transform (FFT) subroutine (fourn.for) (Press, W.H. et. al., 1992, p. 
499). 
 
The traditionally applied linear model of regionalization requires that the variogram is 
inferred for directions other than the principals by applying geometric anisotropy [Eq. 
(2)] (Isaaks and Srivastava, 1989, p. 377).  This method requires the directional 
variograms to be constructed from a common set of nested structures.  Each nested 
structure must be effective over all directions.  Since we have not applied a common set 
of nested structures, we require a new method to infer the variogram in the non-principal 
directions. 
 
A new method of interpolating the variogram values in the off-diagonal directions is 
introduced based on variable geometric anisotropy. This method is limited by the 
assumptions (1) the variogram is provided in the principal directions and (2) the 
variogram models are monotonically increasing (no cyclicity or hole effect).  
 
Variable geometric anisotropy is applied as follows: (1) the variogram model is binned 
by equal variance contributions, (2) the ranges in the principal directions are tabulated for 
each bin.  These ranges parameterize nested ellipsoids that define the variogram in all 
directions with variable geometric anisotropy.  These ellipsoids are demonstrated in 
Figure 8 and are represented by the following: 
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where ))(( 1 lca xx
−γ , ))(( 1 lca yy

−γ and ))(( 1 lca zz
−γ  are the distance ranges in the principle 

directions defined by the fitted directional variogram models, for each contribution bin, 
lc , where L,...,1=l . 

 
The variogram is inferred in off-diagonal directions by the following procedure; for all 
locations within the covariance table, the covariance value associated with the closest 
ellipsoid to the location is assigned.  This is calculated quickly by solving Equation 12 for 
each ellipsoid proceeding from the smallest to the largest.  The application of many bins 
results in a smooth interpolation of the off-diagonal variogram.   
 
The application of nested ellipsoids for inferring the off-diagonal variogram is 
demonstrated for a 2-D example in Figure 9.  The example 2-D covariance table was 
calculated from variogram models in the principal directions defined by flexible fit 
models.  The variogram model in Figure 9 would not be possible with conventional 
variogram modeling techniques.  Of course, there is no guarantee that the resulting 
variogram model in Figure 9 is positive definite.  This will be dealt with in the next 
section. 
 
Correct the Covariance Table for Positive Definiteness 
 
The previously outlined method of applying constraints in the spectrum representation is 
applied to correct for positive definiteness.  The practical steps include (1) translate the 
covariance table so that the origin is located at the table corners, (2) apply the discrete 
FFT to the table, (3) correct the spectrum by constraints 1 and 2 [Eq. (9)] and then (4) 
perform the inverse FFT and (5) translate the corrected covariance table origin back to 
the center of the table.  These steps are demonstrated for the example covariance table 
(Figure 9) in Figure 10. 
 
For the example covariance table the magnitude of correction is characterized by a plot of 
the difference between the original and the corrected covariance table and the histogram 
of the difference (Figure 11).  Maximum change in this case is about 5% of the sill.  The 
original and corrected variogram models are shown for the principal and two off-diagonal 
directions along with the corrected covariance table (Figure 12). 
 
This method has some similarities to the methodology proposed by Yao and Journel 
(1998).  The key difference is in the construction of the covariance tables.  Our method 
focuses on the integration of geologic information through the flexible design of 
variogram models in the principal directions and the construction of a consistent 
covariance table.  The Yao and Journel (1998) method automatically constructs the 
covariance table directly from the available sample data and then applies a preliminary 
smoothing to remove noise due to sparse data.  The resulting smoothed covariance map is 
then corrected in spectrum for positive definiteness as outlined previously [Eq. (9)].  
While this method streamlines the variogram modeling process, it may remove the 
opportunity to inject geologic information with respect to the heterogeneity and 
anisotropy and risks the possibility of over fitting noisy experimental data. 
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An Example of the Flexible Variogram Modeling Method 
 
An example 2-D data set is shown in Figure 13.  Variograms were calculated in the X and 
Y directions.  The resulting variograms fitted by (1) traditional method of nested positive 
definite models and (2) flexible variogram modeling method as shown in Figure 14.  The 
flexible variogram modeling method resulted in a positive definite variogram model that 
closely characterizes the directional experimental variograms. 
 
There is no significant difference between the original and corrected variograms.  The 
spectral corrected variogram model is better able to fit the experimental variogram. The 
corrected covariance table was applied to generate 10 sequential Gaussian simulation 
realizations and the resulting variograms are shown in Figure 15.  Sequential Gaussian 
simulation is a common simulation algorithm that proceeds in Gaussian space and 
reproduces inputs statistics such as the histogram and variogram within statistical 
fluctuations.  The variogram is reproduced within expected statistical fluctuations. 

 
Conclusion 
 
The choice of variogram model has a major affect on kriging and kriging-based 
simulation.  These models have been limited to nested combinations of proven models.  
Geometric variogram models provide a suite of positive definite models for improved 
variogram modeling flexibility.  Difficulties still remain in utilizing these geometric 
models due to the intractable inverse problem of assessing the geometric object to match 
a required continuity structure; however, knowledge of a geologically based shape could 
provide a more reasonable basis to start modeling from. 
 
Spectral corrected models offer an efficient methodology for improving variogram 
modeling.  This technique allows variograms to be modeled with greater emphasis on 
geologic continuity information as opposed to limits imposed by the traditional method of 
nested structures.  In practice the corrected variogram models are not so different from 
the uncorrected shapes.  Many practitioners would like to fit directional variograms 
independently and then reconcile them in software.  This provides a very practical 
solution. 
 
The required computer code is straightforward and mostly available in the public domain.  
All variogram models proposed here are guaranteed to be positive definite; therefore, 
there are no issues with implementation.  Fitting experimental variograms more closely 
leads to improved predictions.  Numerous case studies are required to document this with 
sufficient backup. 
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Figure 1 - An example variogram that is not well fit by nested sets of traditional 
variogram models. 

 
 

 
Figure 2 – An example geometric object and the resulting geometric variogram in 
the horizontal direction.  Note that the variogram model will be anisotropic. 
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Hollowed Sphere Variogram Models
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Figure 3 - A series of hollowed sphere variogram models.  The sphere radius, r2, is 
set to 1.0 and the radius of the hollowing is varied. 

 
 

 
 
Figure 4 - Volumes v1, v2 and v3 (A, B and C): a traditional spherical variogram 
model is equal to standardized v1 subtracted from the contribution.  The hollowed 
sphere model is equal to the spherical minus v2 plus v3. 
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Figure 5 - Center slices through the rasterized geometric object and the resulting 
covariance table for the hollow spherical model with a hollowed fraction of 0.75. 

 

 
Figure 6 - Center slices through the raster geometric object and the resulting 
covariance table for a possible IHS point bar variogram. 
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Figure 7 - The example 2D data set, the experimental variograms, a variogram 
model fitted with 2 nested spherical structures and a variogram model fitted with 
the hollowed spherical variogram model. 

 

 
Figure 8 - Variable geometric anisotropy:  the anisotropy ratios are allowed to vary 
with respect to variogram contribution.  This results in the ability to consistently 
infer the variogram model in off-diagonal directions when the principal directions 
are not modeled by nested structures that exist in all directions.  In this example the 
variogram is strongly anisotropic for the short range and then becomes more 
isotropic over the long range. 
 

 
Figure 9 – The variogram models for the principal directions and the resulting 
covariance table.  The covariance table is inferred with variable anisotropy. 
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Figure 10 - The steps to correct the A, covariance table. (1) translate the covariance 
table so that the origin is located at the table corners, B, (2) apply the discrete FFT 
to the table, C , (3) correct the spectrum, D, and then (4) perform the inverse FFT, 
E, and (5) translate the corrected covariance table origin back to the center of the 
table, F. 
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Figure 11 – The difference in the covariance table due to correction (corrected – 
original). 

 

 
Figure 12 – A comparison of directional variograms from the original and corrected 
covariance tables. 

 

 
Figure 13 – An example 2D exhaustive data set. 
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Figure 14 – The experimental variograms and the fit models based on the (1) 
traditional method of nested positive definite models and (2) flexible variogram 
modeling method.  The variogram is modeled to the sill since the model will be 
applied in sequential Gaussian simulation. 

 

 
 

Figure 15 – The variogram model in the principal directions and the variograms 
calculated from 10 realizations.  Over multiple realizations the important short 
range is closely reproduced.  The significant inflection in the Y direction would not 
be reproduced with traditional variogram modeling. 

 


