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Geostatistical simulation aims at reproducing the variability of the real underlying phe-
nomena. When non linear features or large range connectivity are present, the traditional
variogram-based simulation approaches do not provide good reproduction of those features.
Connectivity of high and low values is often critical for grades in a mineral deposit. Multiple-
point statistics can help to characterize these features.

The use of multiple-point statistics in geostatistical simulation was proposed more than
ten years ago, based on the use of training images to extract the statistics. This paper
proposes the use of multiple-point statistics extracted from actual data.

A method is developed to simulate continuous variables. The indicator kriging proba-
bilities used in sequential indicator simulation are modified by probabilities extracted from
multiple-point configurations. The correction is done under the permanence of ratios as-
sumption.

The practical implementation of the method is illustrated with data from a porphyry
copper mine.

KEYWORDS: geostatistics, multiple-point statistics inference, sequential indicator simula-
tion, permanence of ratios.

Introduction

Geostatistical realizations permit the calculation of joint uncertainty, that is, the uncer-
tainty over arbitrary large volumes. For example, the probability and grades of selective
mining units above specified cutoffs can be obtained from a suite of simulated realizations.
Estimates can be obtained from multiple realizations under any measure of goodness, not
only the minimization of the mean squared estimation error (Deutsch, 2002; Journel, 1989).

Conventional simulation techniques account only for two-point statistics through a co-
variance (or variogram) model. The use of multiple-point statistics was proposed more than
ten years ago (Deutsch, 1992; Guardiano and Srivastava, 1993), however, all developments
have been based on the use of training images for extracting the multiple-point statistics.
These methods have limited applicability in the mining industry.

After a brief review of the attempts at using multiple-point statistics in simulation,
we propose a method to integrate the indicator kriging probability with a multiple-point
probability. This probability could be obtained from a training image or extracted from
data. We propose the use of production (blasthole) data to infer multiple-point statistics.
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Attempts at Multiple-Point Geostatistics

Indicator algorithms allow different characterization of the continuity at different thresholds,
which cannot be controlled by Gaussian methods (Journel, 1983). Some novel applications
of conventional simulation techniques show improvements over typical applications, by in-
corporating local directions of anisotropy (Deutsch and Lewis, 1992) or by correcting the
variogram range to account for the additional connectivity not captured by the variogram
(Deutsch and Gringarten, 2000). Connectivity of extremes can also be controlled by defining
a bivariate law in a framework similar to disjunctive kriging (Emery, 2002). These methods
do not directly use multiple-point statistics into simulation. Algorithms that only account
for two-point statistics cannot reproduce some features that are captured by higher-order
statistics.

Object-based methods are used to characterize large curvilinear or connected features
first and then conventional two-point statistics could be used to simulate the petrophysical
variable inside the different objects (Deutsch and Wang, 1996; Georgsen and Omre, 1993;
Haldorsen and MacDonald, 1987). Inference of the parameters to define the orientation
and shape of these objects, and conditioning the models to data are two challenges of
object-based methods.

The direct use of multiple-point statistics in simulation has been addressed several times.
Guardiano and Srivastava introduced the generalization of the indicator algorithm and use
of the extended normal equations (Guardiano and Srivastava, 1993; Journel, 1993). The
implementation of this technique was improved by Strebelle and Journel, by using a search
tree to find the frequencies of the multiple-point events in the training image (Strebelle and
Journel, 2000). Deutsch applied simulated annealing for constructing reservoir models with
multiple-point statistics (Deutsch, 1992). The difficult setting of the annealing schedule and
high computational cost of this technique makes it unappealing to practitioners. Another
interesting implementation of simulated annealing was proposed by Srivastava to simulate
using change of support statistics, indirectly accounting for multiple-point statistics (Sri-
vastava, 1994). Another iterative technique was proposed by Caers that is based on the use
of neural networks to model the conditional distribution function in a non-linear fashion
(Caers, 1998).

Most previous proposals were aimed at petroleum applications. All implementations
assume that multiple-point statistics are available. In petroleum applications, few local data
are available, hence training images are considered for inferring multiple-point statistics.
One concern is the reproduction of features that belong to the training image, but not
to the underlying process that is being simulated. We may want to reproduce the general
appearance of the training image but not all its details. Caers proposed to split the training
data into a training set and a validation set. Then, the validation set can be used to
detect when the training of the neural network is overfitting the training set (Caers, 1998).
However, the question of which features should be extracted from the training image is
difficult and unavoidably subjective. Furthermore, transferring statistics from the training
image to the realization is a problem. The univariate and bivariate statistics of the training
image may not be exactly the same as those of the study area.

We propose a method to integrate multiple-point statistics into geostatistical simulation.
The method is general and could be applied in petroleum or mining. We demonstrate the
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implementation of the proposed method with a mining case study, where the multiple-point
statistics are extracted from production data, rather than a training image. Data come from
deemed representative mined out areas. The more statistics we can reliably infer from the
data and pass into the simulated realizations, the better the performance of the numerical
models.

Statistical Inference of Multiple-Point Statistics

The probabilities of multiple-point events can be estimated by their relative frequencies
found in a dataset. Of course, inference will only be possible if multiple replications of an
event are available to calculate its frequency. In practice most of the samples are taken at
drillholes as almost linear strings. The frequencies of low-order statistics (three to five point
configurations), such as the indicator values for strings of multiple composites in the vertical
direction may be calculated. It would be difficult to use drillhole data to infer curvilinear
features. Closely spaced blasthole data may be useful.

Stationarity must be assumed. The decision must be made to pool data together for
inference. The simulated realizations may not perform well if the data are not representative
of the domain under study. Of course, the resulting simulated models will also be unreliable
if there are not enough data to infer the required statistics.

The application of conventional kriging-based geostatistical simulation requires consis-
tent or positive-definite statistics. We propose an updating approach that removes the need
for positive-definiteness of the models. Any inconsistency will be reflected as order relations
in the final conditional distributions, as it occurs in indicator kriging-based methods.

Updating the Indicator Kriging Probability with Multiple-
Point Statistics

We are interested in calculating the probability of a variable Z not to exceed a threshold
zk at location u, which we will call event A. We have a number of events R that inform
this location, noted as B1, ...,BR, to calculate the conditional probability of A at u. These
R events may correspond to any arrangement of any number of data at any volume sup-
port. They can be disjoint or have elements in common. They can be considered as sets
of elements, such as the samples used in kriging to estimate the value at an unsampled
location, or they can be considered as a joint event, such as a multiple-point event, that is,
a configuration of multiple samples.

Consider the case where information from several different sources is used to estimate
the conditional probability of event A. Bayes’ law gives a formalism to calculate this condi-
tional probability. These different sources of information can be integrated to estimate the
posterior conditional probability of A:

P (A|B1, ...,BR) =
P (A,B1, ...,BR)
P (B1, ...,BR)

(1)

3



This expression requires the knowledge of the joint distribution of the events B1, ...,BR

with event A, that is, P (A,B1, ...,BR), and the joint distribution of the events informing
A, P (B1, ...,BR). These multivariate distributions are difficult to infer.

Recursive application of Bayes’ law permits Equation 1 to be rewritten as:

P (A|B1, ...,BR) =
P (BR|A,B1, ...,BR−1) · P (BR−1|A,B1, ...,BR−2) · · ·P (B1|A) · P (A)

P (B1, ...,BR)
(2)

This expression can be simplified under assumptions of conditional independence, which
will allow the calculation of the numerator. If two expressions with the same denominator
are considered, the expression in the denominator does not need to be known, since it can
be removed by taking a ratio between them.

Permanence of Ratios Assumption

The assumption of permanence of ratios is a way around the problem of knowing the joint
probabilities of B1, ...,BR and A,B1, ...,BR (Journel, 1993; Journel, 2002). Conditional
independence between the events Bi, i = 1, ..., R given A is assumed. This corresponds to
the same assumption of the Naive-Bayes model in statistical classification and it is usually
depicted as a Bayesian network (Figure 1) (Frank and others, 2000; Friedman, 1997;
Friedman and others, 1997; Ramoni and Sebastiani, 2001).

A

B
1

B
2

B
R

Figure 1: Bayesian network representing the Naive Bayes classifier with attributes
B1,B2, ...,BR. The conditional independence assumption is shown as no connectors be-
tween the attributes.

This assumption basically states that the incremental information provided by one event
Bi before and after knowing the others is constant. It originates from the assumption of
conditional independence between the sources of information, given the event A:

P (BR|A,B1, ...,BR−1) = P (BR|A)
P (BR−1|A,B1, ...,BR−2) = P (BR−1|A)
...
P (B2|A,B1) = P (B2|A)

The conditional probability in Equation 2 can now be written:
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P (A|B1, ...,BR) =
P (BR|A) · P (BR−1|A) · · ·P (B1|A) · P (A)

P (B1, ...,BR)
(3)

We can also write the expression for the conditional probability of A not occurring (the
complement of A, which we will denote Ā). Under a similar assumption of conditional
independence, we have:

P (Ā|B1, ...,BR) =
P (BR|Ā) · P (BR−1|Ā) · · ·P (B1|Ā) · P (Ā)

P (B1, ...,BR)
(4)

And taking the ratio between Equations 4 and 3, we get rid of the joint probability of
the conditioning events B1, ...,BR:

P (Ā|B1, ...,BR)
P (A|B1, ...,BR)

=
P (BR|Ā) · P (BR−1|Ā) · · ·P (B1|Ā) · P (Ā)
P (BR|A) · P (BR−1|A) · · ·P (B1|A) · P (A)

(5)

Equation 5 can be rewritten as:

P (Ā|B1, ...,BR)
P (A|B1, ...,BR)

=
P (Ā|BR)·P (BR)

P (Ā)
· P (Ā|BR−1)·P (BR−1)

P (Ā)
· · · P (Ā|B1)·P (B1)

P (Ā)
· P (Ā)

P (A|BR)·P (BR)
P (A) · P (A|BR−1)·P (BR−1)

P (A) · · · P (A|B1)·P (B1)
P (A) · P (A)

(6)

since,

P (Bi|A) =
P (A,Bi)

P (A)
=

P (A|Bi) · P (Bi)
P (A)

We can simplify Equation 6 to write the general expression for the permanence of
ratios assumption to integrate information from several sources:

P (A|B1, ...,BR) =

(
P (Ā)
P (A)

)R−1

(
P (Ā)
P (A)

)R−1

+
∏R

i=1
P (Ā|Bi)
P (A|Bi)

(7)

This expression does not require a prior knowledge of the relationships between the
events Bi, i = 1, ..., R, that is, all conditional relationships are built based on the assumption
that the incremental information provided by the event Bi regarding the event A is constant
regardless of the other conditioning events. The permanence of ratios assumption greatly
simplifies the calculation of the conditional probability.

Methodology

Sequential indicator simulation works by discretizing the conditional distributions by a set
of probabilities calculated for some threshold values. The probabilities assigned to each
threshold are calculated by simple indicator kriging the data and previously simulated indi-
cator values. The estimated indicator value is the conditional probability at that threshold,
that is, it corresponds to the probability for that unsampled location to have a value less
than or equal to the threshold value. Once these probabilities have been estimated for the
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set of thresholds, a simulated value is drawn by considering some interpolation between
the thresholds and extrapolation beyond the lowest and highest thresholds. Simple indi-
cator kriging does not ensure that the estimated probabilities for a given node will be a
non-decreasing function between 0 and 1, which is a necessary condition for a cumulative
conditional distribution. Order relation deviations are corrected to ensure that a valid cu-
mulative distribution is built at every location prior to simulating the value. Sequential
indicator simulation allows obtaining the conditional probability at an unsampled location
(event A), given the set of nB1 single-point events provided by the indicator coded sam-
ple data and previously simulated nodes. Together, these nB1 events define the event B1.
Indicator kriging provides the conditional probability P (A|B1), which only accounts for
two-point statistics: the indicator covariances between indicator coded samples and previ-
ously simulated nodes and between them and the location of interest.

The multiple-point set of nearby or adjacent samples is denoted B2. The conditional
probabilities of type P (A|B2) can be calibrated with multiple-point statistics obtained
from configurations of the conditioning information (indicator coded samples and previously
simulated nodes). These multiple-point statistics are estimated from the frequencies of a
fixed set of spatial configurations, extracted from production information from a set of mined
out benches. If informed, any arrangement of the four adjacent nodes to the one being
simulated can be considered to extract a probability of the indicator value at the location
of interest, given the indicator codes at the same threshold for the informed adjacent nodes.
The multiple-point event, formed in this case by nB−2 =2, 3, or 4 nodes, allows the inference
of P (A|B2).

The integration of both sources of information is made under the assumption of per-
manence of ratios, which allows the calculation of P (A|B1,B2) without requiring the joint
distribution of B1 and B2.

The general framework presented in the previous section is used to integrate information
from two sources to a dataset from an operating mine. The two sources of information are:
(1) exploration sample data and (2) production data. The methodology for integrating
these sources of information can be summarized as:

1. Estimate the indicator values for several thresholds by simple indicator kriging with
the exploration sample data.

2. Estimate the conditional probability given a set of multiple-point configurations from
blasthole data. These conditional probabilities are inferred from the frequency of
blasthole samples being below a threshold, given the values of surrounding blastholes.

3. Integrate the two conditional probabilities from indicator kriging and from the multiple-
point configuration by permanence of ratios.

A GSLIB-type program to calculate the conditional probabilities given multiple-point
information was prepared. The integration of the two sources of information under the
permanence of ratios assumption was performed with a modified version of the program
SISIM in GSLIB (Deutsch and Journel, 1997).

It is worth noticing that the assumption of permanence of ratios does not distinguish
between the two cases presented schematically in Figure 2. The two sources of information

6



are deemed independent of each other, when they are used to estimate A. Screening and
redundancy of the information from several sources is not explicit when assuming conditional
independence.

AB1 B2 A

B1

B2

Case 1 Case 2

Figure 2: The assumption of conditional independence of the sources of information given
the event of interest is highlighted in this schematic example. The assumption cannot
distinguish between Case 1 and Case 2. The redundancy between the events and possible
screening is not accounted for: data events B1 and B2 are more redundant in Case 2.

Case Study: Porphyry Copper Deposit

The objective of this case study is to show the implementation of the methodology presented
and discuss some of the details of integrating information from multiple sources. Conven-
tional sequential indicator simulation and the proposed method accounting for multiple-
point statistics are considered.

In this application, the event A is the probability of a given uninformed node at location
u to be below the current threshold zk, for K thresholds. Two sources of information are
available. We call B1 the set of single points found within a search neighborhood that
are used to estimate the probability at u (event A), by simple indicator kriging. They
correspond to individual drillhole composites. This means that P (A|B1) is the simple
indicator kriging estimate at u. A second source of information comes from the blasthole
dataset. We call B2 the event of having any multiple-point configuration depicted in Figure
3 around u. The conditional probability of the event A at location u is estimated based
on the availability of sample data or previously simulated nodes at the four nodes adjacent
to u. This multiple-point probability corresponds to P (A|B2). The proposed indicator
simulation method under the assumption of permanence of ratios provides an estimate for
the conditional probability at u based on both sources of information:

P (A|B1,B2) =
P (Ā)
P (A)

P (Ā)
P (A) + P (Ā|B1)

P (A|B1)
· P (Ā|B2)

P (A|B2)

(8)
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4 points

3 points

2 points

1 point

0 points

Figure 3: Multiple-point patterns with adjacent grid nodes. The gray node is the one being
estimated. The patterns correspond to the four adjacent nodes to the node of interest. The
probabilities are extracted from the blasthole dataset even when some of the nodes are not
informed, generating the three-, two-, one-, and zero-point patterns.

Data

Two datasets are available for this study. The data correspond to copper grades from
drillhole and blasthole samples for several benches of a porphyry copper deposit.

The drillhole database has 12m composites, that correspond to the bench height. Several
rock types are available, but only one homogeneous geological population is presented here.
A plan view of the drillhole data for one bench is presented in Figure 4. The average
spacing between drillholes is around 50 m.

Blastholes for several benches are available. Blastholes are drilled at the bench height.
A view of the blasthole information for one bench is presented in Figure 5. The samples
are regularly spaced on a 10 by 10 m. grid. Blastholes are more irregular in the perimeter
where damage control on the walls requires a closer spacing. Although the blastholes appear
like an exhaustive sampling, they represent less than 1/1000th of the rock mass and provide
little information on the heterogeneity at less than 10m spacing.

The blasthole information from the two lower benches is kept aside for the final com-
parison of performance of the methods.

Declustering is required to obtain a representative reference distribution for simulation.
A cell declustering procedure is applied to find the cell size that minimizes the mean. Given
the spacing of the data an anisotropic cell is used with a horizontal to vertical size ratio
of 4 to 1, since the vertical spacing of the samples is 12 m and the drillhole spacing is
approximately 50 m. A cell size of 120 × 120 × 30 m3 was chosen based on the summary
declustered mean versus cell size plot. The declustering weights are used to correct the
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Figure 4: Plan view showing the drillhole information for a particular bench.
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Figure 5: Plan view showing the blasthole information for a particular bench.

cumulative distribution function value below each threshold. The procedure generates a
distribution with a mean of 1.068 %Cu. The original value was 1.157 %Cu. The standard
deviation remained unchanged at 0.548 %Cu. The mean of the blasthole data used to infer
the variograms and multiple-point statistics is 1.249 %Cu with a standard deviation of 0.620
%Cu.
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Threshold number 1 2 3 4 5 6 7 8 9 10
Threshold value 0.58 0.73 0.84 0.95 1.08 1.22 1.36 1.56 1.91 2.18
Clustered quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
Declustered quantile 0.15 0.28 0.38 0.47 0.57 0.68 0.76 0.85 0.93 0.97

Table 1: Threshold definition for indicator variogram calculation and simulation.

Comparison of Datasets

The two datasets have been validated by the mine staff and are considered unbiased. Statis-
tics from the drillhole and blasthole datasets were compared. Paired samples from both
databases correlate quite well. The correlation between the two datasets can be reason-
ably extrapolated to 1.0 at h = 0, since a correlation coefficient ρ = 0.64 for pairs up to
10m apart is obtained and the relative nugget effect is 0.30. Trends show the same behav-
ior in the three principal directions for both datasets. Trends are not pronounced. Enough
conditioning information is available to control any local variation of the mean and variance.

Variogram Modelling

Ten thresholds are used to obtain an adequate discretization of the conditional distributions.
The selection of these 10 values calls for several considerations: the full distribution should
be adequately sampled by these values, that is, selecting values that are regularly spaced (in
terms of probabilities) is convenient because interpolation between thresholds is simplified;
the adequate characterization of high grades is required, hence additional thresholds are
located in the high tail of the distribution, however, variogram inference becomes more
difficult as the threshold is more extreme. The 10 threshold values correspond to the nine
deciles in the clustered distribution, and an additional threshold at the quantile 0.95. This
last value will help characterizing the high values, minimizing extrapolation problems due
to the skewness of the distribution. The proportions below the thresholds considering the
declustering weights are used within the indicator simulation.

Table 1 shows the threshold values, proportions that fall below that threshold in the
clustered distribution, and the proportions corrected to account for the clusters.

The main directions of anisotropy were found at N30oW, N60oE, and vertical. This is
consistent with the geology of the region, and with previous studies over this area.

Variogram modelling considers that variogram models for adjacent thresholds must be
consistent and will likely vary smoothly.

Table 2 shows the parameters for the models fitted to the experimental variograms.
Three structures are used to model the variogram: two spherical and one exponential. The
nugget effect is smaller for thresholds far from the median, opposite to what is obtained
using a multi-Gaussian method. Ranges tend to decrease as the cutoff increases, which is
consistent with the multi-Gaussian model.
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Direction Number Grid
of nodes spacing

Easting 50 10.0
Northing 80 10.0

Table 3: Grid definition for multiple-point inference and simulation.

Multiple-Point Statistics Inference

Blasthole data are used to infer multiple-point statistics. The scattered blasthole locations
are associated with the closest point on a regular 10m by 10m grid. The frequencies of
multiple-point configurations for all the patterns shown in Figure 3 are inferred. Again,
the two benches used for validation are not considered during the inference of multiple-point
statistics. Inference is made by simply counting how many times the central node of the
multiple-point configuration is below the threshold, given the indicator values of the four
adjacent nodes for that same threshold, if informed. This count is divided by the total
number of multiple-point events with the same configuration to approximate the frequency
of this event.

Figure 6 shows the indicator maps from the blasthole dataset for one bench considering
a regular two-dimensional grid defined by the parameters in Table 3.

Simulation must be done at the same resolution as the multiple-point information.

Sequential Indicator Simulation

One hundred realizations obtained by sequential indicator simulation (SIS) are generated
(Deutsch and Journel, 1997). Thresholds and corrected proportions presented in Table
1 are used. The conditioning data corresponds to the drillhole samples. Interpolation
between thresholds is done linearly, while for the tails, the shape of the global declustered
distribution is re-scaled for extrapolation, considering a minimum copper grade of 0.0 %
and a maximum of 7.5 %. The grid specification is as defined in Table 3. Two benches
are simulated. These are the same ones where blasthole information is held for validation.
The search parameters are presented in Table 4.
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Max. data and prev. sim. nodes for kriging 24
Multiple-grid search levels 3
Maximum search radius horiz. 300 m
Maximum search radius vertical 150 m

Table 4: Simulation parameters.

Maps of the two benches for the first two realizations obtained by sequential indicator
simulation are presented in Figure 7.
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Figure 7: Maps of the two simulated benches for the first two realizations by SIS.

Validation of Results

Realization are checked for data, histogram and indicator variogram reproduction. The
mean and the variance of each realization is calculated and plotted on histograms. The
reference values are shown as black dots underneath the histograms (Figure 8). This
graph shows the good reproduction of the histogram.

Order relation deviations occurred in around 52 % of the points simulated with an
average magnitude of less than 1.5 %. The maximum correction due to order relation was
20 %. These corrections are within the range that is commonly seen in practice (Deutsch
and Journel, 1997). Hence, they are deemed acceptable and should not affect considerably
the performance of the numerical models generated.

Sequential Indicator Simulation Accounting for Multiple-Point Statistics

The parameters used to update the indicator kriging probabilities with multiple-point statis-
tics under the assumption of permanence of ratios are the same as before (Table 4).
Multiple-point statistics are inferred from the two benches above the ones being simulated.
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Figure 8: Histograms of the means and variances of the realizations by SIS. The dots below
the histogram represent the corresponding reference values.

Validation of Results

The discrepancy between the mean of the drillhole data (1.068 %Cu) and the mean of
blastholes used to infer the multiple-point statistics (1.249 %Cu) is corrected by using P (A)
obtained from the blasthole grade distribution in Equation 8, that is, the proportions
for every threshold are calculated from the blasthole dataset. The corrected estimator is
unbiased and, as expected, the new implementation results in a much better reproduction
of the statistics. The tradeoff is an inflation of the variance of the realizations (Figure 9),
due to the larger variance of the blasthole data.
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Figure 9: Histograms of the means and variances of the realizations under the assumption of
permanence of ratios. The dots below the histogram represent the corresponding reference
values.

Maps of the first two realizations are shown in Figure 10. Comparing these maps with
the ones obtained by SIS (Figure 7), the higher connectivity of highs and lows can be
appreciated.

As before, the drillhole samples are assigned to the nodes in the grid. The same proce-
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Figure 10: Maps of the two simulated benches for the first two realizations accounting for
multiple-point statistics.

dure than in SIS is used and around 90 % of the samples are reproduced, with the other 10
% not assigned to a node because a closer sample was available.

The impact of adding multiple-point information to the models is reflected in the repro-
duction of the indicator variograms. A slightly larger range is seen in most cases, which is
consistent with results obtained by other researchers (Deutsch and Gringarten, 2000).

Order relation deviations are slightly higher than in SIS. Corrections are on average
smaller than 2.5 % (compare with .5 % for SIS), with maximums reaching up to 40 %
(compare with 20 % for SIS).

Comparison of Results

The average correlation of the simulated nodes with the validation data could be considered:
ρ = 0.30 for SISIM and ρ = 0.35 when multiple-point statistics are used; a significant
improvement. The quantity of metal above a cutoff grade of 1.0 %Cu can also be compared
to the blastholes kept back: 5.89 % less for SISIM and 2.89 % less when multiple-point
statistics are used; a significant improvement. Comparisons are notoriously difficult because
it is difficult to arrive at general results. Moreover, the performance of the competing
techniques can be very sensitive to many interdependent implementation decisions.

As a final note, we must emphasize that the multiple-point statistics are not honored
by the proposed method. However, some of the higher-order features are introduced into
the generated models, by locally modifying the probabilities obtained by indicator kriging.
The generated models still look like realizations from an indicator method.
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Conclusions

Incorporating multiple-point statistics in a Bayesian framework and under the assumption of
permanence of ratios between the sources of information can be performed by the proposed
indicator technique.

The theoretical framework has been presented for a general case, and the case study
showed the implementation details, advantages, and some of the problems that can be
encountered in practice.

Inconsistency between the different sources of information is reflected in the final models.
This problem was overcome by adjusting the “global” probabilities in the expression to
integrate two sources of information. The corrected method gave an unbiased estimate of
the conditional probability.

The problem of the resolution (grid spacing) of the multiple-point data and final numer-
ical model was not addressed and remains as a research area in multiple-point geostatistics.

The method could be applied to integrate multiple-point information from more than
one source. A straightforward application could be to use the frequencies of multiple-
point configurations for three or more adjacent samples in the drillholes in addition to
the two-dimensional configurations used in this case study, extracted from blasthole data.
This would integrate multiple-point information in three-dimensions to the conventional
sequential indicator simulation method.

Comparison of the performance of the models is difficult and deserves further investi-
gation. Historical mill data could be used to evaluate the impact of adding multiple-point
information to the models.
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