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Geostatistical algorithms that consider multiple-point statistics are becoming 
increasingly popular.  These methods allow for the reproduction of complicated features 
beyond the commonly implemented two-point statistic: the covariance or semivariogram.  
In practice, it is not possible to infer many multiple-point statistics directly from the 
available data; therefore, it is common to borrow statistics from training images.  
Training images are exhaustive gridded numerical models that have spatial features 
deemed relevant to the site being characterized. 
 
A library of training images is developed for fluvial and deepwater depositional settings.  
These training images are based on marked point processes, fluvial and deepwater 
models.  The marked point process models are based on stochastically placed ellipsoids, 
bars and lobes.  The fluvial training images are based on the object based FLUVSIM 
algorithm and the bank retreat model.  The deepwater training images are based on a 
surface based model of compensational cycles of flow events within turbidite lobes.  The 
training images represent a range of net-to-gross fractions and an assortment a 
depositional styles.   
 
The associated code includes FORTRAN routines required to modify, format and tailor 
the training images and to extract multiple-point statistics.  This code allows the 
practitioner to match site specific features and to utilize this library in a variety of 
applications. 
 
There is a wide range of anticipated applications for this training image library beyond a 
source for multiple-point statistics.  This library may be utilized in comparative flow 
studies, as type-models for demonstration and training and to aid in scenario based 
uncertainty studies.  
 
Introduction 
 
Conventional geostatistics is limited to two-point statistics.  These techniques are unable 
to reproduce complicated geometries that are often present in reservoir geology.  The 
omission of these features may result in numerical reservoir models that misrepresent the 
reservoir response qualified by flow simulation.  This limitation has motivated research 
in geostatistical methods that integrate multiple-point statistics beyond the 
semivariogram. 
 
The development of geostatistical algorithms that account for multiple-point statistics is 
not new.  These techniques were pioneered by Journel and Alabert (1989) and applied in 
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simulated annealing by Deutsch (1992).   Strebelle (2002) provides a review of the 
evolution of these multiple-point geostatistical algorithms and a proposed efficient 
noniterative algorithm (SNESIM).  
 
While these techniques are able to reproduce complicated geometries, characterization of 
the required multiple-point statistics is often an impossible inference problem.  The 
number of categorical probabilities that must be inferred is NK  for a multiple-point 
histogram (where K is the number of categories and N is the number of points 
considered).  Note that multiple-point geostatistics is typically restricted to categorical 
random variables.  The a priori requirement of consistent or positive definite multiple-
point statistics is satisfied by borrowing these statistics from exhaustively gridded 
categorical training images.   
 
Training images contain geologic information on the geometries and interrelationships 
between geologic categories at the required scale.  These categories may represent 
lithofacies or truncated continuous petrophysical properties.   Training images may be 
constructed in a variety of ways, including outcrop mapping, conceptual models from 
professional geologic judgment and stochastic algorithms.  In the latter case the most 
efficient approach may be to apply of the stochastic algorithm in a conditional mode 
instead of conditioning by multiple-point methods. 
 
The training image library and associated code described below provide the required 
multiple-point statistical input that cannot be directly calculated from the data available.  
These borrowed statistics may be applied in traditional semivariogram based and 
multiple-point geostatistical algorithms.  The associated code may be applied to tailor the 
training images to a specific site and to format and extract the required multiple-point 
statistics.   
 
The Training Images 
 
The library includes training images from (1) marked point processes, (2) FLUVSIM 
(Deutsch and Wang, 1996; Deutsch and Tran, 2002) models, (3) surface based models 
and (4) bank retreat fluvial models.   Model parameters have been set to represent a 
variety of potential features.  For example, each model is generated with a net-to-gross of 
0.2, 0.4, 0.6, and 0.8 and channelized models include narrow, median and wide channels.  
Model parameters are discussed, but details of the algorithms are left in the original 
references.   
 
The training image scale was selected to be representative of nominal reservoir scale.  
The models represent a volume of about 4,000m x 4,000m x 20m.  It is anticipated that 
these models are relevant over a wide range of scales from 10% to 1,000% of this volume 
depending on the level of scale invariance in the specific depositional setting. 
 
The model resolution was chosen as a balance between adequately characterizing the 
simulated features for export of multiple-point statistics and portability, computation and 
storage requirements.   Additionally, the rapid increase in available computational power 
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was considered.  The models are discretized by 256x256x128 with resulting 8.6 million 
cells (see Figure 1).  A summary of the models in the training image library is provided in 
Table 1.  A total of 498 training images are provided. 
 
Marked Point Training Images  
 
These training images are based on concepts from stochastic geometry (Stoyan et al, 
1987).  A Poisson point process with or without stationary intensity may be applied to 
position germs.  Primary grains, or parameterized objects, are then positioned relative to 
the germs.   
 
The marked point training images are binary models with stationary intensity of germs 
and a variety of primary grains representing ellipsoids, bars and lobes.  Geometric 
templates characterize the primary grains (the associated geometries are shown in Figure 
2).   The germ locations are drawn from a uniform distribution of the training image 
space.  The associated orientation and scale are drawn from triangular distributions 
(illustrated in Figure 3).   

 
• Azimuth 0o +/- 30o 
• Dip 0o +/- 3o  
• Plunge 0o +/- 5o  
• Scale +/- 20% 

 
Primary grains are stochastically added until the net-to-gross ratio is met.  The results are 
smoothed by the maximum a-posteriori selection (MAPS) (Deutsch, 1998a) method to 
remove any discretization artifacts. 
 
FLUVSIM Training Images 
  
Interest in North Sea fluvial reservoirs led to the development of object based models for 
fluvial facies and geometries (Clemensten et al., 1990; Gundesø and Egeland, 1990; 
Omre, 1992; Stanley et al., 1990).  This initial work has been further refined by others 
(Georgsen and Omre, 1993; Hatløy, 1995; Hove et al., 1992; Tjelmeland and More, 1993; 
Tyler et al., 1992a and b).   
 
FLUVSIM is a convenient public domain fluvial object based algorithm. The algorithm 
generates stochastic channel streamlines and fits stochastic channel and related 
architectural element geometries to these streamlines.  The FLUVSIM geologic model is 
based on ribbon sandbodies from typically low net-to-gross systems with primary 
reservoir quality encountered in sinuous to straight channels and secondary reservoir rock 
based on levees and crevasse splays embedded in overbank fines (Galloway and Hobday, 
1996; Miall, 1996).  These ribbon sandbodies are commonly characterized by relatively 
low width to depth ratios (often <15) and ribbon thickness of less than ten meters 
(Colinson, 1996).   Training images with channel only, channel and levee and channel, 
levee and splay were calculated (see example training images in Figure 6). 
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A. Channel Only 
 
Ribbon sandbodies may be highly sinuous to straight.  A series of training images were 
simulated with FLUVSIM to span the scenarios listed in Table 3. 
 
B. Channel and Levee 
 
Significant net facies may be represented in levees (Miall, 1996, p. 172).   For the median 
channel thickness case ribbon sandbodies with levees were simulated.  These cases are 
shown in Table 4.  The levee fraction reported in the table is the fraction of the net facies.  
The levee size is determined by a calibration within the FLUVSIM program.   
 
C. Channel, Levee and Crevasse Splay 
 
Crevasse splay may represent a significant fraction of net facies.  For the median channel 
thickness case ribbon sandbodies with levees fraction the same as channel fraction a 
variety of scenarios were simulated with crevasse splays.  These cases are shown in Table 
5.  The crevasse splay fraction is the fraction of the net and the remaining net is divided 
evenly between channel and levee.  The levee and crevasse splay size is determined by a 
calibration within the FLUVSIM program.  
 
Sinuosity is not an input in the current FLUVSIM algorithm.  The inputs related to 
sinuosity are maximum channel deviation from channel axis and the correlation length of 
the 1D random function that characterizes channel deviation.  To characterize the 
relationship between sinuosity and these parameters the channel generation subroutine 
was iterated for a variety of deviations and deviation correlation lengths.  To remove the 
ergodic fluctuations the expected term was calculated over ten realizations. There is a 
clear relationship between sinuosity and the FLUVSIM channel parameters, deviation 
and deviation correlation length (see Figure 7).   
 
FLUVSIM was modified to more closely reproduce the net-to-gross ratio in the initial 
object seeding step and the initial temperature in the annealing schedule was set to 0.0, 
with the maximum iterations set to 20. 
 
Surface Based Training Image  
 
Surface based models are a variation of object based models, although they focus on the 
object skin or bounding surfaces.  These methods, pioneered by Deutsch and others 
(2001), are amenable to reproducing planar geometries and bed stacking patterns.    Pyrcz 
and Deutsch (2003) developed a surface based algorithm for modeling compensational 
cycles within turbidite lobes.  This model is applied to construct turbidite lobe training 
images with varying lobe size, net-to-gross fractions and surface irregularity (see Table 6 
and see example training images in Figure 8). 
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The surface correlation controls the regularity of the lobes, with high correlation leading 
to smooth lobes.  The surfaces enclosing the lobes are coded as shale and then the MAPS 
program is applied to correct the facies proportions to the specific net-to-gross ratio.   
 
Bank Retreat Training Images 
 
The bank retreat model shares the same geometries applied in FLUVSIM with the 
exception of (1) channel streamlines generated by the disturbed periodic model and fit to 
cubic splines that allow for high sinuosity features, (2) channel migration and the realistic 
generation of lateral accretion (point bar) deposits and (3) the formation of abandoned 
channels and oxbow lakes (see Figure 9).  This model is representative of mixed load to 
suspended load fluvial systems (Galloway and Hobday, p. 400, 1996; Miall, p. 484, 
1996).  Complete details on the bank retreat model are available in Howard (1992) and 
Sun and others (1996).   Training images with variable net-to-gross fraction, channel 
width to thickness ratio, initial sinuosity and degree of channel belt amalgamation were 
calculated (see Table 7 and see example training images in Figure 10). 
 
Correction of Global Category Proportions 
 
Due to ergodic fluctuations and limitations of the algorithms used to calculate the training 
images, the net-to-gross proportions are not precise in the training images.  The global 
proportions may be corrected to precisely match the representative statistics of the 
reservoir being modeled by applying the MAPS program. 
 
Selection of the Appropriate Training Image 
 
This library provides a set of training images with a wide variety of fluvial and deepwater 
features.  They may be tailored to represent the geologic features in a broad variety of 
reservoir settings.  The following are some example settings. 
 
Compensation cycles are ubiquitous in distal submarine lobes (Mutti and Sonnino, 1981).  
These features represent reservoir targets in significant exploration targets in the off shore 
Gulf of Mexico, West Africa and the North Sea.  The surface based training images may 
be applied represent these compensational features.  Post-processing by MAPS may be 
applied to correct to site specific net-to-gross ratio and the degree of 
compartmentalization.   
 
Significant resources are available in fluvial reservoirs in areas such as the North Sea 
(Clemetsen et al., 1990), and East Texas (Galloway and Hobday, 1996).   There are a 
variety of recognized settings.  Shoe-string sand bodies in a matrix of overbank and 
lateral accretion lenses with channel fill mud plugs have been identified in various forms.  
The FLUVSIM and bank retreat training images may be applied to represent these fluvial 
settings. 
 
Low to high sinuosity channels and levee complexes have been recognized in deepwater 
settings.  There are some differences between subaqueous and subareal channels.  For 
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example, deepwater channels decrease in width and depth toward the distal due to flow 
stripping (Flood and Damuth, 1987).   Yet, many of the same features are observed 
(Leeder, 1999).   The fluvial training images may be carefully applied to channelized 
deepwater settings as found in Gulf of Mexico, West Africa and North Sea.  
 
The marked point training images may be applied to a variety depositional settings.  This 
may include bars in coastal settings and lobes in deepwater settings.  These training 
images may be applied directly or may be merged into other training images.  For 
example, bars may be merged into the channel facies of a fluvial training image to 
represent down stream accretion macroforms (Miall, 1996). 
 
Programs 
 
FORTRAN programs are included to extract statistics from the training images, perform 
model operations for the tailoring of training images to specific sites. 
 
Extraction of Multiple-point Statistics from the Training Images 
 
A program called MPSTAT was written to extract multiple-point statistics from the 
training images.  The following statistics may be extracted; (1) multiple-point histograms, 
(2) transition probabilities, (3) distribution of runs and (4) connectivity functions.  Other 
statistics such as histograms and indicator semivariograms may be calculated with 
GSLIB programs (Deutsch and Journel, 1998). 
 
Multiple-point statistics are calculated over a specified multiple-point configuration.  
This configuration is defined by lag vectors, nhh ,...,1 , with 01 =h  by convention and is 
known as a template.  The selection of the appropriate template is a function of the 
available computational resources, and the character and scale of the salient features in 
the training image (Strebelle, 2002).   
 
A. Multiple Point Histogram 
 
The multiple-point histogram is a multiple-point probability density function (pdf) as 
defined below and represents the probability of a specific configuration of categories, 

K,...,1 , existing at the template locations, Nhh ,...,1 , when the template is scanned over the 
training image. 
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It is convenient to calculate an index representing as possible configurations of 
categories, )( iz hu + , for template locations, 1,…,N, that may take classes, K,...,1  
(Deutsch, 1992).  
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The multiple-point histogram may then be represented as a table of the frequency of each 
index when the template is scanned over the training image.  An example five-point 
template that may be applied to calculate a multiple-point histogram is shown in the top 
left of Figure 11. 
 
B. Transition Probability 
 
The transition probability is a subset of the multiple point histogram for the specific case 
of two points, where the two points are typically adjacent.  The transition probability 
from k1 to k2 for lag h is the probability that given )(uZ  is category k1 that )( hu +Z  is in 
category k2, for A∈u .   
 

))(,)((Prob),...,;( 11 NN kcategoryZkcateogryZkkf ∈+∈= huuh             (3) 
AKkk n ∈∀= u,,...,1,...,1  

 
This statistic is summarized as a K x K matrix.  This is an intuitive method for 
visualization of interrelationships of facies.  The matrix may not be symmetric due to the 
lag effect.  The transitions for )1,0(=h  are illustrated in the top right of Figure 11.   
 
C. Distribution of Runs 
 
For the categorical case, a run is defined as a sequence of locations with the same 
category.  A single run is parameterized by its length.  A specific lag vector, h identifies 
the configuration of 1D strings within the training image, )( hu ⋅+ mZ  for A∈u  and m is 
any integer such that Am ∈⋅+ hu .  All possible strings are extracted and the distribution 
of runs is calculated.  The associated probability may be shown as: 
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The statistic is summarized as table with the length of run and associated frequency.  The 
distribution of runs is illustrated for )1,0(=h  in the bottom right of Figure 11. 
 
D. Connectivity Function 
 
The connectivity function calculates geo-objects for the identified net categories.  The 
output is the original training image categories and the associated geo-object index, set as 
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null for non-net categories.  A fast algorithm is applied and the user specifies whether 
edges and corners allow for communication (Deutsch, 1998b). 
 
The parameter file associated with the MPSTATS program is shown in Figure 12 and a 
summary of the input parameters is included below. 
 

• Line 1 – input file.  The file should be in GEOEAS format. 
• Line 2 – column number with the associated categorical data. 
• Line 3 – trimming limits.  Data outside of these limits are omitted from the 

calculations. 
• Line 4 – size of the input model.   See Figure 1. 
• Line 5 – number of facies and the associated indices. 
• Line 6 – the number of pay facies and the associated indices.  This is only used for 

the calculation of the connectivity function. 
• Line 7 – the type of calculation: 

o Option #1 - multiple point histogram 
o Option #2 - transition probabilities 
o Option #3 - connectivity function and 
o Option #4 - distribution of runs 

• Line 8 – the number of cells in the template (option 1) or the lags (option 2 and 4).  
Note for multiple point histograms the locations 0 is assumed at 0,0,0; therefore, a 
template with 4 cells defines a 5 point histogram.  For transition probabilities and 
distribution of runs results are calculated for each lag separately. 

• Line 9 to 12 – the relative locations of the template nodes / lags.  These are 
integers representing number of cells relative to location 0. 

• Line 13 – logical switches for accounting for edge and corner connections.  This 
is only used for the calculation of the connectivity function. 

• Line 14 – the output file. 
 
Multiple-point histogram output is in GEOEAS format, with KN rows, and columns with 
the indices (see Equation 2), the categories at locations h1,…,hN, the frequency and the 
conditional probability of category z(h1) given z(h2),…,z(hN).  These conditional 
probabilities may be read directly into a multiple point simulation algorithm. 
 
The transition probabilities output is a K x K matrix with the probability of transition.  
This output may be applied directly to infer quantitative interrelationships as required by 
truncated Gaussian methods.  
 
The output for the connectivity function is the original training image with the connected 
object index number appended in GEOEAS format.  This index may be applied to 
visualize and quantify connected geo-objects.  This information may be applied to assess 
recovery factors and morphologies for object based simulation. 
 
The distribution of runs output is GEOEAS, with N rows (where N is the maximum run 
length), and columns with the length of run and the frequency.  This output may be 
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applied as soft information on connectivity or as input to simulation algorithms that 
consider the distribution of runs (Ortiz, 2003). 
 
Model Operations 
 
A program called MODELOPS is provided to tailor the training images to a specific site.  This 
program performs operations such as: (1) arithmetic operations on multiple models, (2) merging two 
models, (3) extracting subsets and (4) grouping facies.  The program reads in multiple models from 
any number of files and then performs model operations sequentially.  The output may represent the 
entire model or a subset of the model (see an example parameter file in  
Figure 13).   
 

• Line 1 – the number of input data files, number of operations to perform and the 
trimming limits.  If any data is trimmed then that model location is set as null for 
all output. 

• Line 2 to 5 – the input data files, the number of data from each file and the 
associated columns.  The input data are indexed in logical order, for example is 
there are two data files each with two data then: data1 and data2 are the first and 
second data from the first file and data3 and data4 are the first and second data 
from the second file.  

• Line 6 – the size of the input models 
• Line 7 and 8 – the list of operations, the format generally follows this format, 

data1
i operationi data2

i equals data3
i.  

o Operation #1: addition (d1+d2=d3) 
o Operation #2: subtraction (d1-d2=d3) 
o Operation #3: multiplication (d1×d2=d3) 
o Operation #4: division (d1/d2=d3) 
o Operation #5: exponent (d1

d2=d3) 
o Operation #6: merge two categories (d2 set to d1 if d2 = d3) 
o Operation #7: group (set cat1 and cat2 as cat1 in d3)  Note: for this 

operation the command is: cat1 cat2 op d3. 
• Line 9 – the output file. 
• Line 10 – the number of data to write out and a list of their indices 
• Line 11 to 13 – the output model size.  In this example the original model is 

written out.  This allows subsets to be written out. 
 
MODELOPS is illustrated for an example with two data files, with two data from the first 
file and one from the second.  The first selected column from file #1 is data1, the second 
selected column is data2 and the selected column from the second file is data3.  The 
following example operations are performed: 
 

• 2 1 7 3      - Operation#1: cat1, cat2, op, data1 
• 1 2 1 4      - Operation#2: data1, data2, op, data3 
• 3 4 3 5      - Operation#3: data1, data2, op, data3 
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Categories 1 and 2 are grouped as category 2 in data3.  Data1 and data2 are added together 
and become data4.  Product of data3 and data4 become data5.  Any combination of data1 
through data5 may be included in output file. 
 
Reformatting 
 
Coordinates may be added with the ADDCOORD program from GSLIB (Deutsch and 
Journel, 1998).  The ADDCOORD source may be modified to adjust the format and order 
for input to a variety of software packages. 
 
Anticipated Applications 
 
There is a wide variety of anticipated applications for the fluvial and deepwater training 
image library.  (1) Primarily, these training images may be applied to aid in the inference 
to input statistics for conventional semivariogram and multiple-point based geostatistical 
models.  (2) They may be utilized in comparative flow studies, for the calculation of 
recovery factors for reserves, to assess connectivity and to quantify geo-objects for input 
into object based simulation methods. (3) This library provides a documented set of 
“type-models” that demonstrate the capabilities and limits of geostatistical models and 
may be applied to help newcomers understand the techniques, tools and algorithms 
available in geostatistics.  (4) This library provides scenarios for uncertainty analysis that 
is especially useful in frontier reservoirs. 
 
Inference of Input Statistics 
 
The primary application of these training images is to aid in the inference of input 
statistics for conventional semivariogram based and multiple-point geostatistical models.  
Training images may be chosen from the existing library or tailored by merging a variety 
of training images, such that spatial features deemed relevant to the site being 
characterized are represented.   
 
The indicator semivariogram model is an important input for pixel based categorical 
geostatistical algorithms such as sequential indicator and truncated Gaussian simulation.  
The inference of the indicator semivariogram model is often problematic because of 
sparse data.  Analysis of the experimental indicator semivariograms from the appropriate 
training images may provide information on the nested structures, associated shapes and 
range of correlation, in the principal directions.  This information combined with the 
available experimental indicator semivariograms will result in improved indicator 
semivariogram model inference. 
 
The need for training images in multiple-point geostatistical algorithms has been 
discussed.  This training library provides a wide variety of high resolution training 
images and the tools to tailor them to a specific site and to extract the required consistent 
multiple-point statistics.  This library makes the application of multiple-point 
geostatistics more practical. 
 



 11 

Comparative Flow Studies 
 
In practice only a small fraction of reservoirs are subjected to full flow simulation 
studies.  In the absence of full flow simulation, these training images may be applied to 
aid in the inference of recovery factors and to quantify the connectivity, geometries and 
features that may constrain reservoir response. 
 
Recovery factors may represent an important parameter in the exploratory stage of 
reservoir development.  The training images may be applied to calculate the potential 
recovery factors given the recovery method and expected geologic features.  The 
resulting distribution of recovery factors may be applied to aid in reservoir management 
decisions. 
 
Connectivity and geometry may significantly constrain reservoir response.  The training 
images provide various models that contain characteristic fluvial and deepwater features 
that may be analyzed for the formation of barriers, baffles and conduits.  Connected geo-
objects may be calculated to assess the potential for compartmentalization.  In addition, 
the identified geo-objects may be quantified and integrated into an object based 
simulation algorithm. 
 
Documented “Type Models” 
 
These training images represent documented type models that demonstrate features that 
geostatistical models are able to reproduce and their associated limits.  The features 
reproduced in these training images, may be compared and contrasted with other spatial 
models, such as fractals, neural nets and other pattern recognition techniques and genetic 
algorithms and may aid in the integration of secondary data such as seismic and 
production data.  Also, these type models may be applied as training tools. 
 
All models have unique underlying assumptions that may significantly affect the 
simulated distribution of response variables after a transfer function.   For example, the 
multi-Gaussian (MG) distribution assumption results in maximum disorder of the 
extremes.  Models based on the MG distribution may result in exaggerated dispersive 
flow and may under represent the presence of conduits, barriers and baffles to flow.  The 
training image models may be compared with models generated by other algorithms to 
assess the impact of model assumptions after the application of a transfer function. 
 
Production data from well tests provide large scale information such as the permeability 
near the well and may aide in predicting the insitu resource and the limits of the reservoir.  
Seismic provides large scale structural information. This large scale data may be 
integrated into the reservoir model by choosing a training image based on its match with 
production and seismic data.  For example, production data and seismic information may 
indicate unconnected channelized sandbodies and this information may be applied to 
choose appropriate training images. 
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These training images represent a variety of object and surface based geostatistical 
algorithms.  These training images demonstrate a wide variety of input statistics and 
parameters that may be reproduced by geostatistical algorithms; therefore, they may be 
applied as a training tool for geologists, engineers, geophysicists and other professionals 
that are involved in reservoir characterization.  Some of these algorithms reproduce 
complicated geometries and interrelationships; this may inspire additional research into 
the integration of geologic information into geostatistical models. 
  
Library for Scenario Based Uncertainty Study 
 
There is often a high degree of uncertainty with respect to reservoir morphologies; with 
respect to the present geometries (e.g. lobes or channels), and their associated properties 
(large or small lobes or channels).  This uncertainty may be quantified through the 
assignment of scenarios with their associated probabilities based on the available data, 
analogue information and expert judgment. The uncertainty in reservoir morphologies 
may be modeled by calculating multiple realizations with training images drawn from the 
identified scenarios (Pyrcz et. al, 2003). 
 
An example scenario tree is shown in Figure 14.  For this example there is uncertainty 
with respect to the depositional setting, architectural elements and the scale of the 
sandbodies.  Conditional probabilities are assigned for each decision and the probability 
of each scenario is calculated.  Recall: 
 

Prob(A))|(Prob),|(Prob),,(Prob ⋅⋅= ABBACCBA            (5) 
 
Training images may be selected that meet these criteria. Then realizations based on a 
multiple point stochastic algorithm may be calculated with training images drawn from 
the selected scenarios. 
 
Summary 
 
The training image library includes object and surface based geostatistical algorithms for 
fluvial and deepwater settings.  The training images represent a variety of features.  Some 
depositional settings such as eolian and coastal are not directly represented.  Future work 
will address more clastic depositional settings and morphologies.  
 
The training images represent a variety of model parameters such as net-to-gross ratio, 
sinuosity, channel width and width to depth ratio and lobe size.  Storage constraints 
limited the number of scenarios considered and the number of parameters varied.   
 
The associated code aids the practitioner to tailor to the training images to a specific site 
and to calculate, extract and format multiple-point statistics.  Multiple models may be 
modified by arithmetic operations, merged by category to represent a hierarchy of 
heterogeneity and categories may be grouped.  There is no provision in the associated 
code for complicated operations such as operations on subsets, rotation and scaling.  
Future work may address more complicated model operations.  
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Multiple-point statistics may be extracted from the training images.  The large size of the 
models should result in interpretable statistics.  The calculation of statistics on these 
training images requires significant computational effort.  The training images may be 
down scaled or trimmed to smaller subsets to reduce computational effort. 
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Marked Point

Lobe 12 Object
Matrix

Ellipse 12

Bar 12

FLUVSIM

Channel 108 Channel
Levee

Channel and Levee 108 Splay
Overbank Fines

Channel, Levee and Splay 108

Surface Based

Compensational 36 Lobe
cycles of lobes Shale

Bank Retreat

Channel complex 108 Abandoned Channel
Point Bar

Levee
Crevasse Splay
Overbank Fines

SchematicCategoriesNumber of ModelsModel Type

 
Table 1 – summary table of the training image library with schematic 
representations of the models. 
 

NTG Scale (m) Geometry

0.2 500 Ellipse
0.4 1000 Lobe
0.6 1500 Bar
0.8  

 
Table 2 – the parameters for the marked point process scenarios. 
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NTG Channel Width:Thickness Sinuosity
Thickness (m)

0.2 2 20 1.0
0.4 4 50 1.5
0.6 7 100 2.0
0.8  

Table 3 – scenarios for the channel only ribbon sandbody training images. 
 

NTG Channel Width:Thickness Sinuosity Levee
Thickness (m) Fraction

0.2 4 20 1.0 0.2
0.4 50 1.5 0.5
0.6 100 2.0 0.8
0.8  

Table 4 – scenarios for the channel with levee ribbon sandbody training images.  
 

NTG Channel Width:Thickness Sinuosity Levee Crevasse Splay
Thickness (m) Fraction Fraction

0.2 4 20 1.0 same as 0.2
0.4 50 1.5 channel 0.5
0.6 100 2.0 0.8
0.8  

Table 5 – scenarios for the channel with levee and crevasse splay ribbon sandbody 
training images. 
 

NTG Surface Lobe Size
Correlation

0.2 Low Small
0.4 Median Median
0.6 High Large
0.8  

Table 6 - scenarios for the surface based turbidite lobe training images. 
NTG Channel Width:Thickness Sinuosity Amalgamation

Thickness (m)
0.2 4 10 1.0 Low
0.4 30 1.5 Medium
0.6 100 2.0 High
0.8  

Table 7 - scenarios for the bank retreat training images. 
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Figure 1 – the nominal model size, the level of discretization and the model origin.  
The plan, long and cross sections used in subsequent visualizations are indicated. 
 

 
 
Figure 2 – the templates for the marked point processes (Lobe – Top, Ellipsoid – 
Middle and Bar – Bottom).  The units are in the fraction of the randomly assigned 
scale (see Table 2).  Schematic is not to scale. 
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Figure 3 – a schematic of the stochastic transforms applied to the primary grain. 
From left to right they are scale, azimuth, dip and plunge. 
 

 

 
Figure 4 – example marked point process training images.  Plan view, cross section 
and long section slices taken from the center of training image. 
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Figure 5 – the FLUVSIM model.   
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Figure 6 - example FLUVSIM training images.  Plan view, cross section and long 
section slices taken from the center of training image. 
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Figure 7 – the relationship between deviation, deviation correlation length and 
sinuosity. 
 

 

 
Figure 8 - example surface based training images.  Plan view, cross section and long 
section slices taken from the center of training image. 
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Figure 9 – the bank retreat fluvial model. 
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Figure 10 - example bank retreat training images.  Plan view, cross section and long 
section slices taken from the center of training image. 
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Figure 11 – schematic representation of the multiple point statistics calculated with 
the mpstats program.  Top Left – multipoint histograms, a template is scanned 
through the image and the frequency of specific configurations is stored, Top Right 
– transition probabilities are the probability of contact between two facies, note the 
intervals without transition are also considered, but are not shown in the schematic 
to avoid clutter, Bottom Left – connectivity functions, the image is divided into 
connected geo-objects, Bottom Right – the distribution of runs. 
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Figure 12 - the MPSTATS parameter file. 
 

Line 1 2 2 -1.0 100.0 -nfile, nop, tmin, tmax
Line 2 data1.dat -datafl#1
Line 3 1 1 -datafl#1: ndata, cols
Line 4 data2.dat -datafl #2
Line 5 1 1 -datafl#1: ndata, cols
Line 6 256 256 128 -nx,ny,nz
Line 7 1 2 1 3 -operation#1: d1, d2, op, d3
Line 8 1 3 1 4 -operation#2: d1, d2, op, d3
Line 9 modelops.out -output file
Line 10 4 1 2 3 4 -nout, values
Line 11 1 256 -osx,osx
Line 12 1 256 -osy,osy
Line 13 1 128 -osz,oez

Parameters for MODELOPS
********************************

 
 

Figure 13 - the MODELOPS parameter file. 
 
 
 

Line 1 model.dat
Line 2 1 -column
Line 3 0.0 100.0 -tmin, tmax
Line 4 256 256 128 -nx,ny,nz
Line 5 3 1 2 3
Line 6 1 2 -number of pay facies, pay: 1,...,npay (option 3 only)
Line 7 1 -option (1-np hist., 2-trans. prob., 3-conn. func., 4-runs)
Line 8 4 -number of cells in template (option 1)/ lags (option 2 and 4)
Line 9 -1 -1  0 -cell #1 in template / lag #1: x,y,z relative
Line 10  0  1  0 -cell #2 in template / lag #2: x,y,z relative
Line 11  1  0  0 -cell #3 in template / lag #3: x,y,z relative
Line 12  1 -1  0 -cell #4 in template / lag #4: x,y,z relative
Line 13 1 1 -testedge, testcorner (option 3 only)
Line 14 mpstats.out -output file

-number of facies, facies:1,...,nfacies

Parameters for MPSTATS
******************************

-file with model



 27 

 
 

Figure 14 – a potential scenario tree for a reservoir model with uncertainty with 
respect to the depositional system, architectural elements and sandbody geometry.  
The resulting probabilities for each scenario may be applied for drawing training 
images. 
 
 
 
 
 
 
 
 
 
 


