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Abstract 
Optimal reservoir management requires reliable reservoir 
performance forecasts with as little uncertainty as possible. 
There is a need for improved techniques for dynamic data 
integration to construct realistic reservoir models by using 
geostatistical techniques. This paper gives a method to create 
porosity models that honor interpreted pore volumes from well 
test data. Well porosity data, seismic data and well test results 
are integrated in sequential simulation. Seismic data is 
modified iteratively until the co-simulated porosity matches 
the interpreted well test pore volume. A number of examples 
are shown.  
 
Introduction 
There are many data that can be used to constrain reservoir 
models including core data, well logs, seismic and production 
data. There are few wells during reservoir exploration. 
Seismic data is areally extensive. The large-scale information 
provided by seismic data is accounted for in the structural 
framework and facies model. Seismic may also provide 
additional information on large-scale porosity variations 
within the facies. 

Production data are extraordinarily important because they 
are direct observations of reservoir performance. Any reliable 
reservoir characterization study should account for these 
dynamic data [1,2].  

Well test data is one kind of production data that can 
provide average porosity and permeability in some volume 
near the well. In fact, average porosity is an input to well test 
analysis, but it must be adjusted during well test interpretation 
in order to make the actual pressure curves and theoretical 
type curves match better. Because effective pore volume in the 
area around a well is a basic concept used in well test model 
and can be calculated by multiplying average effective 
porosity by formation thickness and relevant area, the basic 
idea of this paper is to account for the pore volume from well 

test data by slight modifications to seismic data when co-
simulating porosity. This makes the model more predictive 
since it matches interpreted flow data and decreases 
uncertainty in the porosity model. 
       
Methodology 
Hard data include the facies assignments, porosity, and 
permeability observations taken from core and well logs that 
provide reliable measurements at the scale we are modeling. 
All other data including seismic data and production history 
are called soft data and must be calibrated to the hard data. 

Seismic data are frequently used as secondary data for co-
simulation of porosity based on the relationship between 
porosity and seismic [3,4,5]. The seismic data are often 
impedance values from seismic inversion or some other 
attribute if an inversion has not been undertaken. The sole 
calibration parameter is the correlation coefficient between the 
Gaussian transform of porosity and the Gaussian transform of 
seismic. Seismic data constrains the spatial distribution of 
porosity. Well test data can be seen as additional soft data that 
the porosity model must reproduce [6,7]. The two soft data 
(seismic data and well test) must be considered 
simultaneously. Two significant complexities make this 
difficult. First, the volume scale difference between the hard 
data, the modeling scale, the seismic scale, and the well test 
make it very difficult to quantify the relationship between the 
data types. Second, the cross correlation or redundancy 
between the different soft data must be modeled at the same 
time as their correlation to the hard data. Finally, porosity does 
not average linearly after Gaussian transformation. For these 
reasons, a full cokriging approach is not practical. 

It is conceptually straightforward and practically efficient 
to slightly modify or update the seismic data to carry the 
information of the well test data. Using the updated seismic 
data as secondary data for Gaussian simulation will decrease 
the uncertainty of the results. 

Consider the estimation of an unknown Gaussian 
transform of porosity z*(u) at an unsampled location u by: 
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The collocated seismic value is denoted y(u). The n+1 

weights ( µλ ;,,2,1, nii ⋅⋅⋅= ) are calculated by the well known 
collocated cokriging equations: 
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The estimation variance or kriging variance is given by: 
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Assuming multivariate Gaussianity permits the distribution 

of uncertainty at u to be predicted as Gaussian in shape with 
mean z*(u) and variance )(2 uKσ . Simulation proceeds by 
drawing from such conditional distributions with increasing 
levels of conditioning. A Gaussian value is drawn: 
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where G-1 is the Gaussian quartile function and p(l) is a 
uniform pseudo random number. 

The porosity is established by back transformation  
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The seismic data y(u) value in Equation 1 can be modified 
within some allowable range to ensure that the simulated 
realization reproduces the average porosity from the well test 
interpretation. 

Matching pressure transient well test data requires an 
average porosity for a specified areal geometry and reservoir 
thickness. The effective porosity is considered to be an input 
parameter; however, it is often adjusted in the well test 
interpretation process. This provides additional data for 
reservoir characterization. The porosity values and geometry 
are denoted: 

 
( i

WT

i V,φ ) 
for WTni ,,2,1 ⋅⋅⋅=  

 
where Vi represents a 3-D volume defined by upper and lower 
surfaces and inner/outer drainage radii. 

There may be multiple annular regions around the same 
well. The average porosity of a geostatistical realization is 
written by: 
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  for WTni ,1,2, ⋅⋅⋅= ; Ll ,1,2, ⋅⋅⋅=      (6) 

 
The average values from the simulated realizations should 

reasonably match the average effective porosity from well test 
interpretation. 

Of course, the well test data provides a total connected 
pore volume or “storativity” and not just an average porosity; 
however, if we match the average porosity within the correct 
volume (area and thickness) we will also match the storativity. 

WT
iφ  is compared with )(l

iφ . If they do not match, the 
following factor f is used to update the Gaussian transforms of 
the seismic data: 
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for WTni ,1,2, ⋅⋅⋅= ; Ll ,1,2, ⋅⋅⋅=           (7) 

 
where    
             
                                                   1,   for ρ > 0 

sign( ρ ) =      0,   for ρ = 0 
                                                  -1,   for ρ < 0 
 

The seismic data is modified by : 
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The seismic data are adjusted so that the porosity moves in 
the right direction. For example, an increase in y in Figure 1 
results in an increase in the expected value of porosity. 

Co-simulation will give new simulated porosity values 
with the new seismic data. The seismic is updated until the 
simulated porosity )(l

iφ  matches the well test porosity 
WT
iφ . 

This procedure must be applied iteratively and repeatedly for 
each realization.  

Iteration number k = 0 is corresponding to unadjusted 
seismic data. 

Figure 2 gives a schematic explanation for the 
methodology. Figure 2(a) is a map of seismic data with wells 
posted on it. The area in the circle indicates the area of 
influence of the well test at A. There is a relationship between 
porosity and seismic data and the correlation coefficient is 
shown in Figure 2(b). Using seismic data as secondary data in 
co-simulation, the porosity distributions are changed to use the 
seismic as drawn as Figure 2(c). In most cases, the simulated 
porosity does not match the reference value from the well test 
and the simulated value has a larger uncertainty. Using the 
interpreted average porosity from well test can reduce the 
uncertainty and increase the accuracy for the simulated value. 
The iterative procedure is shown in Figure 2(d). 

The porosity is simulated with SGS (Sequential Gaussian 
Simulation)[8] using the latest grid of seismic data. The 
average porosity values are calculated and compared to the 
well test derived average values. The seismic values are 
updated until the simulated average values match the average 
porosity interpreted from well test. 

 

)2(



SPE 84276 Linan Zhang, Luciane B. Cunha, and Clayton Deutsch 3 

Application  
A reference porosity field with 50x50 grid cells is shown in 
Figure 2(a). There are 6 wells in it and 5 of them have well 
test data and corresponding connected volumes. Pressure 
transient data and their interpretation are uncertain; therefore, 
the reference values were assigned an error variance of 5%. 

The standard GSLIB data set “true.dat” and related 
secondary data “ydata.dat” were used for this first example [8]. 
The units are not exactly for porosity; however, the 
methodology is insensitive to the exact units. Any volumetric 
average could be considered. 
Using original seismic as secondary data in co-simulation. 
To check how close the simulated connected volumes are to 
the reference well test values, one hundred realizations of 
porosity were generated by Sequential Gaussian Simulation 
with an isotropic spherical variogram and the original seismic 
data as secondary data. Figure 3 gives the histograms of 
connected volumes for three wells based on the 100 
realizations. Well A is located where seismic values are low. 
Well F is located where seismic values are high. Well C is 
located at the interface between low and high seismic value 
regions. The reference connected volumes from the reference 
well test values are also shown in the Figure. We see a large 
uncertainty for the connected volumes from simulated 
porosity. The probability of simulating porosity that just 
happens to match the reference value is low.   
Changes of simulated connected volume versus updated 
seismic data. Figure 4 shows pixel plots of seismic and 
simulated porosity as well as connected volumes for the initial 
realization, first, second, and tenth iteration with the 
correlation coefficient of 0.9. The changes can be seen in the 
plots. When seismic data is updated 10 times, the connected 
volume calculated from the simulated values is very close to 
the reference value ( “Ref.” means the reference connected 
volume from well tests and “Real” means the connected 
volume from simulated porosity). The method appears to work 
for the Well A.  
Changes of factor and relative error versus iteration. 
Figure 5 shows the factor and the relative difference between 
the reference and simulated values versus iteration for 
correlation coefficients between porosity and seismic of 0.9, -
0.9, 0.7 and –0.7, respectively. The connected volumes 
converge to the reference values in both cases. For positive 
correlation coefficient, the factor should be less than one when 
the reference value is smaller than the simulated porosity. The 
factor should be larger than one when the reference value is 
larger than the simulated porosity. For negative correlation 
coefficient, the factor is larger than one when the reference 
value is smaller than the simulated value. The factor should be 
less than one when the reference value is larger than the 
simulated value. The factor should converge to one when the 
connected volumes from the simulated porosity converge to 
the reference values. 
Effect of correlation coefficient on convergence of results.  
The correlation coefficient between porosity and seismic data 
can affect the convergence of results. Correlation coefficients  
-0.9, -0.7, -0.4, -0.1, 0, 0.1, 0.4, 0.7 and 0.9 were studied. 
Figure 6 shows the effect of correlation coefficient on the 
convergence of simulated connected volume. In general, the 
higher the absolute value of the correlation coefficient, the 

quicker the convergence of the simulated values to the 
reference values. For the same absolute values, the connected 
volumes for negative correlation coefficients converge more 
slowly than those for positive correlation coefficients. This is 
because the porosity and seismic data (from the GSLIB data 
sets) are actually positively correlated.  

The simulated values can not converge to the reference 
values when the correlation coefficient is close to zero, e.g. -
0.1, 0, 0.1. This is expected. The seismic values are given no 
weight (µ=0) when the correlation is zero; any changes to 
seismic would have no affect whatsoever on the connected 
volume. 
Comparison of histograms for connected volume with and 
without considering well test data. 100 realizations 
considering the well test data were generated with the 
correlation coefficient of 0.7. For each realization, a reference 
connected volume is drawn from a Gaussian distribution with 
a mean equal to the reference value and a variance 0.05. This 
is done to account for error or uncertainty in the interpreted 
well test storativity. Any value could be used 

 Figure 7 shows the comparison of histograms for 
connected volumes around 5 wells with and without 
considering well test data. The figures on the left side 
correspond to no well test data and the figures on the right side 
correspond to those considering well test data. The uncertainty 
decreases when the well test data are used to update the 
seismic data. 

 Figure 8 shows the histograms for connected volumes 
with and without considering well test data in three areas: at 
the well, near the well and outside the influence of the well. 
The figures on the left side correspond to no well test data and 
the figures on the right side correspond to the realizations 
considering well test data. Modifying seismic data according 
to well test data reduces the uncertainty of simulated porosity 
near the well, but does not affect the simulated porosity values 
far away from the well.  
The effect of geometry around a well on the result 
convergence. The geometry of the well test volume around a 
well affects the connected volume and the simulated porosity 
values with the correlation coefficient of 0.7. Assuming the 
area influenced by a well is circular, different radii are used to 
represent different geometries. Figure 9 shows the effect of 
different radii on the convergence of connected volumes. The 
connected volumes converge to the reference values for all 
radii.  
 
Discussion  

The changes to seismic data to reproduce well test data 
should be small. If the changes are large, then it is important 
to look for alternative explanations such as (1) errors in well 
test modeling (2) incorrect structure, or (3) biased 
Geostatistical modeling parameters. The proposed procedure 
could be used to detect inconsistent modeling parameters. 

The changes to the secondary variable could be spread 
smoothly to the entire reservoir area. The technique would 
then resemble the sequential self-calibration (SSC)[9] and 
gradual deformation techniques [10]. 

The procedure could also be adapted to permeability 
modeling where the goal is to match interpreted k-h values. 
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Conclusion and Future Work 
This paper presents a methodology for generating porosity 
models honoring well test results. The method is to use 
seismic data as secondary data in Sequential Gaussian 
Simulation and the effective connected volume interpreted 
from well test data as additional soft data to update seismic 
data. The methodology has been demonstrated with some 
synthetic examples. The results showed that the methodology 
is able to decrease the porosity uncertainty derived from 
porosity-seismic co-simulation due to the constraint of the 
well test data. 

Although some sensitivity studies have been performed to 
investigate how robust the methodology is, there are some 
important issues that warrant further research. The application 
of smoothing techniques on the updated seismic map should 
be explored. The allowable deviation of seismic data is an 
important aspect to be investigated. Additional application of 
this methodology to real reservoirs is a priority.    
 
Nomenclature 

C(h) = covariance (1- )(hγ ) of the Gaussian-
transformed porosity 

f (l) = factor used to update the Gaussian transforms 
of the seismic data( Ll ,1,2, ⋅⋅⋅= ) 

φF  = porosity distribution 
G = standard Gaussian distribution. 
i = location index with porosity data or well test 

data 
 j = cell index 
l = realization index 
k = iteration number 
L = number of realizations 
n = number of sampled porosity data 

nWT = number of wells with well test data 
Ni = the number of cells within the specified 

volume (uj∈Vi , i= WTn,,2,1 ⋅⋅⋅ ). 
p(l) = a random number seed ( Ll ,1,2, ⋅⋅⋅= ) 
u = location being estimated 
ui = sampled location of porosity data 

( ni ,1,2, ⋅⋅⋅= )  

iV  = the connected volume for the affected region 
by well i ( i= WTn,,2,1 ⋅⋅⋅ ) 

)(uy  = Gaussian-transformed seismic value at the 
location being estimated 

Z(ui) = Gaussian-transformed porosity data at 
sampled location ui ( ni ,1,2, ⋅⋅⋅= ) 

Z*(u) = Gaussian-transformed porosity at unsampled 
location u 

z(l)(u) = Gaussian-transformed value of the lth 
realization of simulated porosity data 
( Ll ,1,2, ⋅⋅⋅= ) 

)(hγ  = variogram of the Gaussian-transformed 
porosity 

iλ  = weight applied to the ith known porosity data  
( ni ,1,2, ⋅⋅⋅= ) 

µ  = weight applied to the seismic data 
ρ  = correlation between Gaussian-transformed 

porosity and Gaussian-transformed seismic 
data. 

)(2 uKσ  = kriging variance or estimation variance 
)(l

iφ  = average porosity from simulated porosity of 
the lth resolution in the region affected by 
well i (i= WTn,,2,1 ⋅⋅⋅ , Ll ,1,2, ⋅⋅⋅= ) 

WT

iφ  = average porosity from well test interpretation 
in the region affected by well I (i = WTn,,2,1 ⋅⋅⋅ ) 
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Figure 1: Schematic illustration of how seismic affects porosity 
 
 
 

 
 

Figure 2: Schematic illustration of methodology 
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Figure 3: Example realizations and associated histograms without considering well test data 
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Figure 4: Changes of seismic data and co-simulation results during updating  

seismic data based on well test results ( ρ =0.9 ) 
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Figure 5: Changes of factor and relative error with iteration 
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Figure 6: Effect of correlation coefficient on convergence of simulation results 
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Figure 7: comparison of histogram of connected volume for 5 wells with  

or without considering well test data ( ρ =0.7 ) 
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Figure 8: comparison of histogram with or without considering well test data 
for three different distance cases ( ρ =0.7 ) 
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Figure 9: Effect of radius around a well on convergence ( ρ =0.7 ) 
 

 
 


