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Abstract 
This paper focuses on the assessment of an unknown event A using its conditional probability 
P(A/B,C) given two different events, B and C.  This paper shows seven different methods for the 
integration of multiple secondary data.  The methods are different forms of Bayesian updating 
techniques, based on different assumptions of the relationship between the variable to be 
estimated and the secondary data, and between the secondary data itself.  The seven methods are 
applied to 73 training images.  The relationship between the method of Conditional Independence 
of secondary data and that of Permanence of Ratios, as well as the relationship between the 
methods of Permanence of Ratio and Least Squares are discussed. 

This paper summarizes the results of a term project conducted by the author for a course on 
Bayesian updating. 

Introduction 
Combining information from diverse sources is a recurring challenge in any estimation study.  In 
the oil industry, sparsity of data may result in combining porosity and/or permeability data from 
core analysis with seismic data and well logs in order to get reliable porosity or permeability 
model of the reservoir.  We need to consider the assessment of an unknown event A (e.g., 
porosity or permeability) through its conditional probability P(A/B,C) given two data events B 
(e.g., seismic) and C (e.g., well logs).  The probability P(A/B,C) is then used for estimation or 
simulation of event A. 

Consider the joint probability of A and the two data events B and C.  The following exact 
decomposition is the basis of all subsequent derivations and approximations [1]: 
 

                                                             (1) 
 

                                            (2) 

 
Thus,  the conditional probability of P(A/B,C) can be calculated by 
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where * means estimated value. 

The difficulty in formula (3) comes from the determination of joint probability of B and C. 

If the relationship between B and C can be known, Least Squares method can be used to get the 
conditional probability and the results are good in many cases, which is shown later in this paper.  
However, the relationship between B and C is unknown or difficult to determine in many 
situations, so the assumption of full independence or conditional independence of B and C are 
often used in the calculations.  In presence of actual data dependence, the methods provided by 
the traditional full independence or conditional independence hypotheses are shown to be non-
robust leading to various inconsistencies.  An alternative method based on Permanence of 
updating Ratios is developed, which guarantees all limit conditions even in presence of complex 
data interdependence [2].  Deutsch proposed a kind of modified conditional independence methods 
by adding two weights to the terms about events B and C [3].  Two modified Least Squares 
methods are considered based on the different ways to evaluate the covariance of B and C when 
the relationship of B and C is unknown.  These methods can be divided into two classes: 

      Class I .  Some bivariate information between B and C is taken from data, and 

      Class II.  No information between B and C is taken from data. 

In order to get some information about which method is better in a general sense,   seven methods 
are applied to 73 training images corresponding to 3 templates, 4 ranges, 3 proportions and two 
simulation methods.  The performance of each method is expressed by mean of squared error  
(MSE) related to the reference value, calculated directly from the training image.  The results are 
analyzed and the relationships between the methods are discussed. 

Description of Methods 
Method 1: Least Squares (Class I) 

The formula of the estimated probability P*(A/B,C) by Least Square method is [4]: 

[ ] [ ])()()()()(),|(* 21 CPCPBPBPAPCBAP −+−+= λλ                               (4) 

where )(AP , )(BP  and )(CP  correspond to expected values.  P(B) and P(C) correspond to 
indicator value that is:  

                                                                                       1,  if B occurs                            
                                P(B)  =  
                                                  0, if not 
 

                                                                               1,  if C occurs                            
                               P(C)  =  
                                                  0, if not 

λ1 and λ2 can be obtained by solving the kriging equations: 
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where, 
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Method 2: Full Independence (Class II) 

By assuming that the two secondary data B and C are independent, i.e., event B is independent of 
event C,  we have [2] 
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Therefore, the Formula (3) becomes: 
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Method 3: Conditional Independence (Class II) 

Conditional to event A, the two events B and C are independent if 

)/()/()/,( ACPABPACBP ⋅=  

Therefore,  by assuming that secondary data B and C are conditionally independent, i.e.,  event B 
given A and C given A are independent,  the  Formula (3) becomes [5]: 
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Usually the joint probability P(B,C) is difficult to obtain, so Journel proposed the substitution [2]: 
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It is based on the substitution presented by the author in Equation (7) of his paper [2]: 
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The terms ),|( BACP and ),|( BACP can be even more complicated to obtain.  Using Bayes Law 
directly may be more straightforward when applying this method, since conditional probabilities 
are easier to derive than joint probabilities,  that is: 
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Method 4: Permanence of Ratios (Class II) 

One of the most well-proven paradigms for engineering approximation is the permanence of 
ratios. Rates or ratios of increments are typically more stable than the increments themselves [2]. 

Consider the following ratios 
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The conditional probability is immediately retrieved as 
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This method has the advantage that it requires neither derivation of the joint probabilities nor the 
marginal probabilities of B or C. 

Method 5: Deutsch Proposal (Class II) 

The formula of the estimated probability P(A/B,C) by Least Squares method is[3]: 
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where ω1 and ω2 are weights. 

This method is based on Method 2 assuming that secondary data are independent, but the author 
proposed to weight each update of P(A) from secondary data, to account for dependence of B and 
C.  According to the paper,  ω1 and ω2 are related to the correlation coefficient between B and C. 

Method 6 and method 7:  Modified Least Squares Methods (Class II) 

Method of Least Squares is the best for many cases, which will be shown later.  The drawback of 
the method is the requirement of the relationship of B and C.   

Can we develop some methods based on the idea of Least Squares but without the need to know 
the relationship of B and C or develop some formula to express the relationship between B and C?   

Two methods are proposed in this paper. 
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Method 6 is described as follows: 

When CBC is the known covariance matrix between events B and C, the weights in Formula (4) 
can be found by solving Kriging equations (5): 
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In many cases CBC is unknown.  For the cases with the maximum and/or minimum “statistical” 
distance between B and C, it can be obtained by the following procedure. 

The maximum covariance can be reached when the “statistical” distance between B and C is the 
minimum.  In this case, 

ABBA Cd −=1  

ACCA Cd −=1  

BACABC ddd −=  

ABACBC CCC −+=1(max)  

The minimum covariance can be obtained when the “statistical” distance between B and C is the 
maximum.  In this case, 

BACABC ddd +=  

1(min) −+= ABACBC CCC  

Once we have solved Kriging equations for the minimum and maximum weight based on the 
minimum and maximum of CBC, we can average the resulting weights to find the weights for the 
Least Squares estimate. 
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where λ1(max) and λ2(max) are the weights when maximum of CBC  is used in the calculation,  
λ1(min) and λ2(min) are the weights when minimum of CBC  is used.  These weights λ1 and λ2 can 
then be used in Formula (4) to estimate the conditional probability. 

The basic idea of Method 7 is the same as Method 6 except the calculation of CBC(max) and 
CBC(min).  In method 7,  they are calculated by: 

CCBBBC CCC ⋅⋅= 618.0(max)  

CCBBBC CCC ⋅⋅−= )618.01((min)  

The two formulas are based on the formula: 
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CCBBBCBC CCC ⋅⋅= ρ  

0.618 is known as the Fibinacci ratio or the golden ratio/mean.  It is used here because “ The 
golden mean appears throughout nature”[6]. 

Disussions 
Relationship between Permanence of Ratios and Conditional Independence 
Methods 

Rewrite the ratios in Formula (9) for method of Permanence of Ratio: 
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Substitute a, b and c in Formula (9) and rearrange to get 
 

 

 

 

 

 

 

 

 

 

 

 

 

This is compared to the following formula for the method of Conditional Independence: 
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Therefore  

 

 

 

Relationship between Least Squares and Permanence of Ratio Methods 

Methods of Least Squares and Permanence of Ratios are two robust methods in many cases.  It is 
meaningful to study which correlation coefficient for Least Squares corresponds to the result of 
Permanence of Ratios.  This paper tries to get some idea about the correlation coefficients. 

Four types of situations were found for means of squared errors from Least Squares and those 
from Permanence of ratio versus correlation coefficients between B and C. 

Type 1.  Means of squared errors from Permanence of Ratios are lower than those from Least 
Squares regardless of the correlation coefficients.  This is shown in Figure 1. 

 

 
                        Figure 1  Plot of MSE (mean of squared error) vs. correlation coefficient 

between B and C for Type 1 

 

Type 2.  Means of squared errors from Permanence of Ratios are higher than those from Least 
Squares regardless of correlation coefficients.  It is shown in Figure 2. 
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Figure 2  Plot of MSE (mean of squared error) vs. correlation coefficient 

between B and C for Type 2 

 

Type 3.  There is one intersecting point of Permanence of ratio and Least Squares curves, as 
shown in Figure 3.  Some of means of squared errors from Least Square are lower than 
those from Permanence of Ratios for some correlation coefficients.   

 

 

Figure 3  Plot of MSE (mean of squared error) vs. correlation coefficient 

between B and C for Type 3 

 

Type 4.  There are two intersecting points of curves from Permanence of Ratios and Least 
Squares, as shown in Figure 4.  The means of squared errors from Least Squares are 
lower than those from Permanence of Ratios when the correlation coefficients between B 
and C fall in the range from Cor1 to Cor2. 

 
 

Figure 4  Plot of MSE (mean of squared error) vs. correlation coefficient 
between B and C for Type 4 
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Case Study 
One Image from sisim 

A 100×100 grid system shown in Figure 5 is used to check all methods listed above, which comes 
from SISIM[4] with a spherical variogram of range 10 and nugget effect 0. 

Figure 5  One training image from SISIM 

 

P*(A/B,C) is calculated for the following three templates: 

                                 Template 1                 Template 2                  Template 3 

A B C  B   B A C 

    A C     

The following eight probabilities are calculated by using the seven methods listed above: 

 

P(A=1/B=1,C=1) 

P(A=1/B=1,C=0) 

P(A=1/B=0,C=1) 

P(A=1/B=0,C=0) 

P(A=0/B=1,C=1) 

P(A=0/B=1,C=0) 

P(A=0/B=0,C=1) 

P(A=0/B=0,C=0) 

 

The means of squared errors for this image for all methods are shown in Table 1.  The last 
column in the table shows the results from modified Least Squares method when the true 
CBC(max) and CBC(min) of the image for the three templates are used in calculating of the 
weights. 
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Table 1 Means of squared errors of the image for three templates 
Template Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

 Least 
Squares 

Full 
Indep. 

Cond.  
Indep. 

Perm.  of 
Ratios 

Deutsch 
(ω1=ω2=0.5)

Modified
LS 

Modified 
LS 

In case of true
CBC(max)& 

CBC(min ) for 
MLS 

1 4.1E-06 0.1348 0.2064 0.0208 0.0506 0.1698 0.0173 0.0168 
2 1.45E-05 0.1339 0.0132 0.0004 0.0185 0.1550 0.0018 0.00012 
3 4E-06 0.1308 0.0005 2.41E-05 0.0205 0.1685 0.0008 0.00022 

Note: MLS means Modified Least Squares. 

The correlation coefficients of the image for the three different templates are shown in Table 2.   

    Table 2  Correlation coefficients of the image for three templates 
Template ρ(A,B) ρ(A,C) ρ(B,C) ρ(B/A,C/A) 

1 0.7703 0.6142 0.7682 0.5833 
2 0.7569 0.7709 0.6841 0.2491 
3 0.7703 0.7682 0.6142 0.0527 

From Table 1 we see that the Least Squares method is the best method and Permanence of Ratios 
is the second.  For template 3 the error for Conditional Independence method is smaller than 
those for other templates by using this method because B and C are almost conditionally 
independent in this case.  The correlation coefficient of B and C given A is 0.0527, shown in 
Table 2. 

From Table 1, for some cases the results from Method 7 may be better than the results from the 
other methods except Least Squares.  When CBC(max) and CBC(min) are the true values of one 
image., Modified Least Squares method can get better results than other values of CBC(max) and 
CBC(min) are used.  However, it should be noticed that we can not guarantee the results from 
Modified Least Squares method are better than those from other methods except Least Squares 
even though the true values for CBC(max) and CBC(min) for the image are used in calculation. 

24 images from SISIM and ELLIPSIM 
To test the performance of the seven methods described above, 24 training images generated from 
ELLIPSIM and SISIM routines in GSLIB[4] with 4 different ranges and 3 different proportions of 
1’s were used.  They are named by sisimrangepropij.ps and ellipsimrangepropij.ps.  The ranges in 
ELLIPSIM and SISIM parameter files are 0, 2, 8 and 32,  corresponding to i=1,2,3,4, 
respectively.  The proportions of 1’s in ELLIPSIM and SISIM parameter files are 0.05, 0.25 and 
0.5,  corresponding to j=1,2,3,  respectively.  The images are shown in Figure 6 and Figure 7.   
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Figure 6   12 images from SISIM 
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Figure 7   12 images from ELLIPSIM 

For each image in the 24 images, the following three templates are considered: 

                                Template 1                  Template 2                   Template 3 
A B C  B   B A C 
    A C     

The means of squared errors of results are shown in Tables 3, 4 and 5.  The true correlation 
coefficients between B and C are also shown in Table 3, 4 and 5.  Cor1 and Cor2 in the tables 
have the same meaning as those in Figure 4,  that is, Cor1 and Cor2 are the correlation coefficient 
values at left intersection and right intersection between the curve for Least Square method and 
line for Permanence of Ratios method,  respectively.  The configurations with valid Cor1’s and 
Cor2’s mean that the relationship between the results of Least Square and Permanence of Ratio is 
Type 4.  The results of the method ranks based on means of squared errors are shown in Table 6. 
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Table 3  Mean of squared errors of 24 images for Template 1. 
Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Gene. 
routine 

Range Prop. 
of 1 Least 

Squares 
Full Indep. Cond. 

Indep. 
Perm. of 
Ratios 

Deutsch 
(w=0.5)

Modified 
LS 

Modified 
LS 

Cor1 Cor2 
True 
Cor. 

Coeff. 
0.05 8.35E-05 8.07E-05 1.79E-05 8.08E-05 5.04E-05 4.06E-05 6.91E-05 0.0204 0.6304 -0.0101
0.25 3.23E-05 3.51E-05 4.40E-06 3.40E-05 5.23E-05 1.54E-04 1.89E-04 -0.0654 0.1634 -0.0189

0 

0.5 1.00E-07 1.00E-07 0.00E+00 1.00E-07 5.40E-06 2.41E-05 1.34E-05 -0.0021 0.0001 -0.0010
0.05 3.71E-03 1.77E-02 3.23E-03 1.31E-02 1.55E-02 2.97E-02 7.48E-03 -0.1506 0.6001 0.2712 
0.25 1.51E-04 3.62E-03 1.63E-02 3.26E-03 1.20E-02 3.41E-02 5.01E-03 -0.0046 0.4939 0.3012 

2 

0.5 8.42E-05 2.77E-03 3.34E-02 2.76E-03 1.03E-02 3.37E-02 5.36E-03 0.0014 0.4784 0.3022 
0.05 2.69E-03 4.78E+00 9.98E-02 3.48E-02 9.94E-02 2.35E-01 1.17E-02 0.2861 0.8221 0.6975 
0.25 2.25E-04 3.36E-01 1.49E-01 2.11E-02 5.72E-02 1.85E-01 1.08E-02 0.3811 0.8259 0.7186 

8 

0.5 3.46E-05 1.04E-01 2.03E-01 2.05E-02 4.46E-02 1.79E-01 1.24E-02 0.4074 0.8334 0.7328 
0.05 5.87E-04 1.97E+01 3.30E-01 1.78E-02 1.13E-01 3.20E-01 3.76E-02 0.6756 0.9156 0.8667 
0.25 5.04E-05 1.16E+00 2.54E-01 2.01E-02 7.98E-02 2.56E-01 3.21E-02 0.6334 0.9037 0.8454 

sisim 

32 

0.5 1.62E-04 3.14E-01 3.35E-01 1.84E-02 7.23E-02 2.93E-01 3.59E-02 0.7246 0.9314 0.8900 
0.05 1.51E-04 1.97E-04 3.75E-04 1.96E-04 3.62E-04 6.93E-04 2.81E-04 -0.5904 0.1386 -0.0146
0.25 1.30E-06 1.20E-06 5.90E-06 1.20E-06 1.00E-05 3.21E-05 6.00E-06 -0.2044 -0.0091 0.0031 

0 

0.5 4.14E-05 4.22E-05 6.00E-07 4.14E-05 5.55E-05 1.07E-04 1.16E-04 Type 1 -0.0114
0.05 2.42E-04 6.35E+00 1.03E-01 3.48E-02 6.28E-02 1.77E-01 3.95E-03 0.1786 0.8036 0.6333 
0.25 3.48E-05 1.39E-01 8.61E-02 1.66E-02 3.23E-02 1.15E-01 6.81E-04 0.1729 0.7464 0.5775 

2 

0.5 1.49E-04 2.39E-02 8.77E-02 8.84E-03 1.71E-02 8.33E-02 1.78E-04 0.1696 0.6996 0.5312 
0.05 5.58E-05 3.52E+01 3.53E-01 4.26E-02 1.63E-01 3.68E-01 8.82E-02 0.7564 0.9453 0.9098 
0.25 2.56E-04 1.34E+00 3.51E-01 4.03E-02 1.23E-01 3.15E-01 7.33E-02 0.7339 0.9397 0.9011 

8 

0.5 2.86E-04 2.59E-01 3.23E-01 3.32E-02 9.15E-02 3.21E-01 5.74E-02 0.7176 0.9334 0.8922 
0.05 4.53E-04 4.03E+01 2.69E+01 1.91E-01 1.97E-01 4.23E-01 1.46E-01 Type 3 0.9812 
0.25 1.97E-04 7.12E-01 6.67E-01 5.47E-02 1.65E-01 4.38E-01 1.17E-01 Type 2 0.0000 

ellipsim

32 

0.5 8.04E-04 3.38E-01 5.15E+00 1.28E-01 1.42E-01 4.59E-01 1.14E-01 0.3621 0.9879 0.9736 

Table 4  Mean of squared errors of 24 images for Template 2. 
Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Gene. 
routine 

Range Prop. 

of 1 
Least 

Squares 
Full Indep. Cond. 

Indep. 
Perm. of 
Ratios 

Deutsch 
(w=0.5)

Modified 
LS 

Modified 
LS 

cor1 cor2 
True 
Cor. 

Coeff. 
0.05 2.15E-04 2.41E-04 2.74E-04 2.40E-04 3.72E-04 5.96E-04 3.16E-04 -0.6876 0.1001 -0.0031
0.25 7.00E-06 5.90E-06 2.40E-06 6.20E-06 3.18E-05 1.59E-04 4.19E-05 0.0209 0.1894 -0.0023

0 

0.5 4.07E-05 4.06E-05 3.03E-05 4.07E-05 4.16E-05 4.51E-05 4.21E-05 Type 1 -0.0017
0.05 2.78E-03 4.11E-01 1.93E-03 5.60E-03 3.95E-02 1.14E-01 1.49E-02 -0.1799 0.2086 0.0944 
0.25 1.11E-04 1.51E-02 1.34E-04 5.73E-04 1.33E-02 6.17E-02 3.59E-03 0.0179 0.2286 0.1339 

2 

0.5 2.31E-05 2.87E-03 1.52E-05 2.90E-05 7.76E-03 4.64E-02 2.47E-03 0.0931 0.1211 0.1072 
0.05 5.64E-05 8.75E+00 4.30E-03 3.32E-03 6.02E-02 2.43E-01 1.45E-03 0.4366 0.8101 0.6102 
0.25 1.20E-05 4.64E-01 6.58E-03 9.22E-04 3.00E-02 1.93E-01 9.93E-04 0.4951 0.7621 0.6202 

8 

0.5 2.90E-06 1.08E-01 1.43E-02 5.48E-04 1.50E-02 1.85E-01 1.11E-03 0.5349 0.7794 0.6490 
0.05 1.25E-05 2.13E+01 3.07E-02 4.94E-04 7.84E-02 2.94E-01 1.40E-02 0.7514 0.8996 0.8284 
0.25 3.00E-07 1.36E+00 2.59E-02 4.20E-04 4.72E-02 2.41E-01 7.36E-03 0.7149 0.8929 0.8005 

sisim 

32 

0.5 3.02E-04 3.12E-01 3.46E-02 2.61E-04 4.52E-02 2.84E-01 7.18E-03 Type 1 0.8549 
0.05 3.52E-04 3.51E-04 3.38E-04 3.51E-04 4.73E-04 6.61E-04 4.60E-04 -0.7941 -0.0064 0.0010 
0.25 2.27E-04 2.25E-04 3.02E-04 2.25E-04 2.95E-04 3.95E-04 2.75E-04 -0.7214 -0.0099 0.0056 

0 

0.5 7.14E-05 7.18E-05 1.16E-05 7.14E-05 8.07E-05 1.14E-04 1.10E-04 Type 1 -0.0101
0.05 3.07E-04 1.41E+01 2.55E-02 1.15E-02 5.26E-02 2.02E-01 1.50E-03 0.2989 0.9528 0.6199 
0.25 1.95E-04 3.13E-01 3.18E-02 5.53E-03 2.02E-02 1.29E-01 5.26E-04 0.2829 0.9552 0.5864 

2 

0.5 2.22E-04 4.15E-02 3.15E-02 2.47E-03 8.13E-03 9.42E-02 2.66E-04 0.2839 0.8914 0.5309 
0.05 2.06E-04 4.30E+01 1.79E-02 2.11E-04 7.97E-02 2.98E-01 2.27E-02 0.8801 0.9242 0.8812 
0.25 1.30E-04 1.50E+00 1.54E-02 2.11E-04 5.34E-02 2.56E-01 1.18E-02 0.8396 0.9273 0.8657 

8 

0.5 3.10E-06 2.34E-01 2.80E-02 2.34E-04 3.76E-02 2.86E-01 7.23E-03 0.7851 0.9462 0.8651 
0.05 1.06E-01 2.04E+01 1.25E-01 3.19E-05 1.44E-01 2.41E-01 2.38E-01 Type 1 0.9530 
0.25 8.14E-04 6.24E-01 2.87E-02 5.54E-05 6.53E-02 3.36E-01 1.55E-02 Type 1 0.9601 

ellipsim

32 

0.5 5.90E-03 3.18E-01 4.29E-02 5.38E-04 1.22E-01 3.67E-01 3.02E-02 Type 1 0.9500 
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Table 5  Mean of squared errors of 24 images for Templates 3. 
Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Gene. 
routine 

range prop 
of 1 Least 

Squares 
Full Indep. Cond. 

Indep. 
Perm. of 
Ratios 

CVD 
(w=0.5)

Modified 
LS 

Modified 
LS 

cor1 cor2 
True 
Cor. 

Coeff. 
0.05 6.88E-05 5.41E-05 4.91E-05 5.45E-05 2.53E-05 4.95E-05 3.38E-05 0.1169 0.9685 -0.0011
0.25 3.36E-05 2.93E-05 8.98E-05 3.09E-05 4.76E-05 2.28E-04 2.83E-05 0.0379 0.5589 0.0111 

0 

0.5 1.00E-07 1.00E-07 1.84E-05 1.00E-07 2.00E-07 4.00E-07 2.00E-07 Type 1 -0.0092
0.05 5.71E-03 2.79E-01 8.60E-02 1.86E-03 5.32E-02 1.32E-01 2.57E-02 Type 1 0.0214 
0.25 1.21E-03 6.43E-03 3.28E-03 5.48E-04 2.42E-02 8.44E-02 1.09E-02 Type 1 0.0183 

2 

0.5 5.63E-05 1.43E-03 1.25E-03 3.41E-04 1.13E-02 5.56E-02 4.84E-03 -0.0689 0.0919 0.0049 
0.05 2.02E-05 8.39E+00 9.82E-04 1.32E-03 6.95E-02 2.74E-01 2.91E-05 0.4014 0.6119 0.4989 
0.25 4.48E-05 4.40E-01 3.94E-05 1.48E-04 3.23E-02 2.09E-01 2.24E-04 Type 2 0.5399 

8 

0.5 1.49E-05 1.01E-01 3.56E-04 3.08E-05 1.71E-02 2.03E-01 2.29E-04 Type 2 0.5563 
0.05 1.20E-04 2.20E+01 4.32E-03 1.47E-04 7.45E-02 2.93E-01 1.31E-02 0.7861 0.8331 0.7938 
0.25 5.87E-05 1.32E+00 1.73E-03 6.44E-05 4.75E-02 2.49E-01 5.74E-03 Type 2 0.7479 

sisim 

32 

0.5 5.00E-07 3.00E-01 3.31E-03 3.53E-05 4.10E-02 2.90E-01 5.95E-03 0.7909 0.8526 0.8215 
0.05 1.26E-04 1.77E-04 2.99E-04 1.75E-04 3.48E-04 7.14E-04 2.60E-04 -0.5521 0.1536 -0.0122
0.25 1.20E-06 1.20E-06 1.34E-05 1.20E-06 6.50E-06 1.90E-05 4.40E-06 -0.2559 -0.0066 0.0061 

0 

0.5 4.14E-05 4.06E-05 1.32E-04 4.14E-05 5.71E-05 1.15E-04 4.82E-05 -0.0056 .0.211 0.0211 
0.05 4.03E-03 1.38E+01 3.94E-04 8.27E-05 6.63E-02 2.79E-01 5.23E-03 Type 1 0.4121 
0.25 9.45E-04 2.32E-01 1.97E-04 2.91E-05 2.84E-02 1.72E-01 2.41E-03 Type 1 0.3500 

2 

0.5 8.24E-05 2.61E-02 8.36E-04 1.38E-04 1.17E-02 1.19E-01 1.18E-03 0.2841 0.3529 0.3176 
0.05 2.97E-04 4.18E+01 3.28E-05 1.55E-05 8.31E-02 3.15E-01 1.84E-02 Type 1 0.8287 
0.25 3.15E-04 1.48E+00 1.23E-04 7.02E-05 5.29E-02 2.68E-01 9.87E-03 Type 1 0.8125 

8 

0.5 8.55E-05 2.22E-01 5.02E-04 7.72E-05 3.49E-02 2.98E-01 5.46E-03 Type 1 0.8035 
0.05 6.92E-03 4.03E+01 2.45E-02 6.37E-03 7.38E-02 2.89E-01 5.09E-02 Type 3 0.9647 
0.25 7.70E-05 6.30E-01 1.34E-04 6.06E-05 7.42E-02 3.45E-01 1.32E-02 Type 1 0.9467 

ellipsim

32 

0.5 9.69E-04 2.45E-01 3.20E-03 1.00E-03 6.18E-02 3.70E-01 1.24E-02 0.8976 0.9654 

 

Table 6  Rank of the methods(from 1 to 7, best to worst). 
Range Prop. of 1 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7Template Generate 

routine   Least 
Squares 

Full 
Indep. 

Cond.  
Indep. 

Perm.  of 
Ratios 

Deutsch 
(w=0.5) 

Modified 
LS 

Modified 
LS 

1 sisim 0 0.05 7 5 1 6 3 2 4 
   0.25 2 4 1 3 5 6 7 
   0.5 2 4 1 3 5 7 6 
  2 0.05 2 6 1 4 5 7 3 
   0.25 1 3 6 2 5 7 4 
   0.5 1 3 6 2 5 7 4 
  8 0.05 1 7 5 3 4 6 2 
   0.25 1 7 5 3 4 6 2 
   0.5 1 5 7 3 4 6 2 
  32 0.05 1 7 6 2 4 5 3 
   0.25 1 7 5 2 4 6 3 
   0.5 1 6 7 2 4 5 3 
 ellipsim 0 0.05 1 3 6 2 5 7 4 
   0.25 3 2 4 1 6 7 5 
   0.5 3 4 1 2 5 6 7 
  2 0.05 1 7 5 3 4 6 2 
   0.25 1 7 5 3 4 6 2 
   0.5 1 5 7 3 4 6 2 
  8 0.05 1 7 5 2 4 6 3 
   0.25 1 7 6 2 4 5 3 
   0.5 1 5 7 2 4 6 3 
  32 0.05 1 7 6 3 4 5 2 
   0.25 1 7 6 2 4 5 3 
   0.5 1 5 7 3 4 6 2 
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2 sisim 0 0.05 1 3 4 2 6 7 5 
   0.25 4 2 1 3 5 7 6 
   0.5 4 2 1 3 5 7 6 
  2 0.05 2 7 1 3 5 6 4 
   0.25 1 6 2 3 5 7 4 
   0.5 2 5 1 3 6 7 4 
  8 0.05 1 7 4 3 5 6 2 
   0.25 1 7 4 2 5 6 3 
   0.5 1 6 4 2 5 7 3 

 32 0.05 1 7 4 2 5 6 3 
  0.25 1 7 4 2 5 6 3 
  0.5 2 7 4 1 5 6 3 

 

ellipsim 0 0.05 4 2 1 3 6 7 5 
   0.25 3 1 6 2 5 7 4 
   0.5 3 4 1 2 5 7 6 
  2 0.05 1 7 4 3 5 6 2 
   0.25 1 7 5 3 4 6 2 
   0.5 1 6 5 3 4 7 2 
  8 0.05 1 7 3 2 5 6 4 
   0.25 1 7 4 2 5 6 3 
   0.5 1 6 4 2 5 7 3 
  32 0.05 2 7 3 1 4 6 5 
   0.25 2 7 4 1 5 6 3 
   0.5 2 6 4 1 5 7 3 

3 sisim 0 0.05 7 5 3 6 1 4 2 
   0.25 4 2 6 3 5 7 1 
   0.5 3 1 7 2 5 6 4 
  2 0.05 2 7 5 1 4 6 3 
   0.25 2 4 3 1 6 7 5 
   0.5 1 4 3 2 6 7 5 
  8 0.05 1 7 3 4 5 6 2 
   0.25 2 7 1 3 5 6 4 
   0.5 1 6 4 2 5 7 3 
  32 0.05 1 7 3 2 5 6 4 
   0.25 1 7 3 2 5 6 4 

  0.5 1 7 3 2 5 6 4  
ellipsim 0 0.05 1 3 5 2 6 7 4 

   0.25 1 3 6 2 5 7 4 
   0.5 2 1 7 3 5 6 4 
  2 0.05 3 7 2 1 5 6 4 
   0.25 3 7 2 1 5 6 4 
   0.5 1 6 3 2 5 7 4 
  8 0.05 3 7 2 1 5 6 4 
   0.25 3 7 2 1 5 6 4 
   0.5 2 6 3 1 5 7 4 
  32 0.05 2 7 3 1 5 6 4 
   0.25 2 7 3 1 5 6 4 
   0.5 1 6 3 2 5 7 4 

 

Tables 3, 4, 5 and 6 show that the method of Least Squares is the best based on the means of 
squared error with respect to the reference values (“true” probabilities extracted from the training 
images),  but it requires that the relationship between B and C is known .  For the methods in 
Class II, method of Permanence of Ratios is the best.  

According to the sum of MSE for different templates and different parameters, we rank the 
methods as shown in Table 7. 
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Table 7  Ranks of the methods for different templates and parameters. 
Range Method 

1 
Method 

2 
Method 

3 
Method 

4 
Method 

5 
Method 

6 
Method 

7 
Generate 
routine 

 Least 
Squares

Full 
Indep. 

Cond.  
Indep. 

Perm.  
of Ratios

Deutsch 
(w=0.5)

Modifie
d LS 

Modifie
d LS 

Template 1 1 7 6 2 4 5 3 
 2 2 7 4 1 5 6 3 
 3 2 7 3 1 5 6 4 

SISIM 1 7 5 2 4 6 3 Generate 
rountine ELLIPSIM 1 7 6 2 4 5 3 
Range 0 1 3 4 2 6 7 5 

 2 1 7 5 3 4 6 2 
 8 1 7 5 2 4 6 3 
 32 1 7 6 2 4 5 3 

0.05 1 7 6 2 4 5 3 
0.25 1 7 5 2 4 6 3 

Probability 
of 1’s 

0.5 1 5 7 2 4 6 3 
Total 1 7 5 2 4 6 3 

 

From the tables, we see: 

·  Method of Full Independence is the worst for all templates because B and C are not fully 
independent in many cases, shown in Table 2.  For template 3, the method assuming 
conditional independence of B and C gets better results than using the method in other 
templates. This is because B and C are close to conditionally independent in Template 3. 

·  As we see in Tables 3, 4 and 5, based on the mean squared error (MSE) with respect to the 
reference values, the performance of the Least Squares method is the best in 44 of 75 
configurations, the method of Permanence of Ratio is the best in 14 of 75 configurations, 
Conditional Independence method is the best in 12 of 75 configurations, Full independence is 
the best in 3 of 75 and Method 7 is the best in 1 of 75.  Deutsch’s method is the best in 1 of 75 
when ω1 and ω2 are set to 0.5’s, which may get better results if we select other ω1 and ω2. 

·  For ranges equal to zero the best method varies widely between the methods, shown in Table 6 
and the method assuming full independence of B and C gets better results than for other ranges. 

·  For Template 1, the predominantly best method is Least Square.  For Template 2 and Template 
3, Permanence of Ratios is the best but Least Squares almost has the same probability as 
Permanence of Ratios to be the best method.   

·  From Tables 3, 4 and 5,  we also know that in case of valid Cor1 and Cor2 values,  the true 
correlation coefficients of B and C are often between the range of cor1 and cor2. 

In general, the best method seems to be Least Squares method in a very consistent way.  The 
predominantly best method in Class II is permanence of ratios.   
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Conclusions 
1    For the same image with different templates,  the correlation of B and C, B/A and C/A are 

different:  

—When the correlation coefficients between event B and C are close to zeros, method of 
Full Independence and Conditional Independence can often get good results. 

—Method of Least Square is the best for many cases.  Its drawback is that it needs to know 
the relationship between the two secondary data. 

2    Method of Permanence of Ratios is the best when the relationship between the two secondary 
data is unknown.  Its advantage is that does not require joint probabilities to be derived, nor 
does it require the marginal probabilities of B or C. 

3 Method of Conditional Independence and method of Permanence Ratios are different.  
However, there is a relationship between the estimated conditional probabilities from the two 
methods. 

4 There are four types of relationship between means of squared errors from Least Square and 
those from Permanence of Ratios.  
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