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Abstract 

Optimal well placement is a complex problem that requires 
detailed models of the reservoir structure/geometry and the 
petrophysical properties such as facies, porosity, permeability, 
and fluid saturation.  The reservoir development team attempts 
to integrate all of these aspects when devising a well plan for 
optimal reservoir exploitation. Ideally the well locations 
would be selected with the assistance of a flow simulator; 
however, this is impractical due to time and CPU 
requirements. This paper presents a technique for selecting 
optimal well locations for fine-tuning with a flow simulator. 
The technique constructs the well placement problem as an 
optimization problem to be solved with simulated annealing. 
The global objective function consists of multiple component 
objective functions.  Each component represents a desirable 
feature or constraint in the problem. Optimality is defined as 
the best balance among the component objectives.  The format 
of the technique is flexible and can incorporate 3-D 
geostatistical models of uncertainty and multiple constraints. 
The proposed method iteratively refines initial well locations 
and trajectories until the global objective is maximized.  
Several examples are shown. Optimal well placement in a 
steam assisted gravity drainage context is illustrated.  

 
Introduction 

One task of a reservoir development team is to set a well 
plan that, given all available information, is reasonable. A well 
plan is set with the help of a reservoir model. A reservoir 
model highlights candidate regions for well placement. This 
initial well plan is static because it does not account for the 
dynamics of fluid flow.  The static well plan is adjusted to a 
dynamic well plan with the aid of a flow simulator. The 

process is iterative. This process can be expensive in terms of 
professional and CPU time. Selecting good static well plans is 
important because it will reduce the iterations required and 
lead to better decisions. 
 

Assembling a good static well plan is difficult due to 
heterogeneities and uncertainties in the subsurface reservoir 
parameters. Accounting for this information in a decision-
making framework is the subject of this paper. Various 
approaches have been proposed including optimization 
techniques such as mixed integer programming and neural 
networks.1,2. Integer programming requires the objective 
function to be expressed as a linear function, and neural 
networks require training and a library of training images. One 
common technique for accounting for uncertainty involves 
selecting the P05, P50, P95 realizations and selecting a well plan 
that is jointly optimal on these using a flow simulator. This 
approach is impractical in most cases due to the number of 
possible well locations and the computational expense 
required for evaluating the realizations.  

 
This paper proposes a technique for selecting a good 

static well plan. The problem is posed as an optimization 
problem for simulated annealing. Simulated annealing is an 
optimization routine particularly well suited to optimizing 
highly combinatorial problems such as the problem of 
selecting well locations. Consider the placement of two wells 
on a 2-D reservoir model on a 50 x 50 grid. If the reservoir 
development team were to exhaustively evaluate every 
location on the grid there are many combinations: 
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Selecting well locations with respect to uncertainty would 
require L⋅C2

2500 evaluations, where L is the number of 
realizations. In practice a reservoir model may have a grid size 
of millions of cells and hundreds of realizations. The 
combinatorial becomes incomprehensible in size.  
 

Simulated annealing is a numerical analogy to the 
thermodynamic process of annealing. An objective function 
measures the extent of order in an initial solution and 
successively perturbs the decision variables in the objective 
function until the objective function is reduced. Simulated 
annealing accepts perturbations that decrease the objective 
function and probabilistically accepts those that increase the 
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objective function with progressively diminishing probability. 
Progressively diminishing the probability of selecting 
perturbations that increase the objective function is analogous 
to slow cooling in annealing. The probability distribution used 
is the Boltzmann distribution. There are a several advantages 
to using simulated annealing: (1) the objective function need 
not be continuous, linear, or differentiable; (2) simulated 
annealing always converges to an optimal result; (3) simulated 
annealing can be made to converge quickly. However, the 
implementation of simulated annealing and requires some 
tradecraft. In particular, the annealing schedule is difficult to 
set. There are empirical rules that are very useful for 
establishing an efficient and fast annealing schedule. There are 
many good references on the subject of simulated annealing 
(SA) 3,4,5. 
  
Methodology 

The idea is to: (1) construct an objective function that 
quantifies the performance of a well plan, (2) propose an 
initial well plan, (3) quantify the performance of the initial 
well plan, (4) perform a random perturbation to the well plan, 
(5) apply the simulated annealing decision rule and accept or 
reject the perturbation, (6) repeat steps 4 and 5 until the well 
plan optimizes the objective function.  

 
Multiple realizations of porosity (φ), water saturation (sw), 

facies type (ft), top of reservoir, and the thickness of the 
reservoir are used. The top of reservoir and thickness models 
use a corner point grid topology and the other models use a 
center point grid topology. The proposed algorithm can select 
well locations for three different well paths: (1) vertical wells, 
(2) deviated wells, and segmented wells. Figure 1 shows an 
example reservoir model with the three well types 
superimposed.  

 
The decision variables that are perturbed are the 

coordinates of the segments that make up the well paths in the 
well plan. The perturbation mechanism randomly selects a 
segment and moves it by a random ∆x,∆y,∆z. Figure 2 
illustrates the perturbation mechanism for the three well types. 
In the perturbation of a vertical well a single pair of random 
∆x,∆y are drawn and two ∆z values are drawn (∆ztop ,∆zbottom). 
A perturbation for a deviated well draws six random 
coordinates, and the segmented well draws 3n+3 random 
coordinates, where n is the number of segments. The 
Perturbation mechanism is important in SA optimization 
problems. The perturbations must not be too drastic or most 
perturbations will not be accepted and convergence will be 
slow. The perturbations must not be too minor or many 
perturbations will be required to achieve convergence or the 
algorithm cannot jump out of a local minima. Standard 
practice is to choose a reasonable mechanism and any 
inefficiencies will be revealed in slow convergence.  The 
algorithm coded here rarely takes more than a few minutes on 
a PC for convergence; thus, any inefficiency translates to 
acceptable CPU time. 

 
The objective function is a measure of performance of the 

well plan. The aim is to satisfy several component objectives 
through a weighted linear combination of the component 
objectives:  
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where wc is the weight for the component objective Oc. The 
weights ensure that each component objective contributes 
appropriately to the global objective and that issues related to 
scaling and units are avoided. The units for the global 
objective is set to dollars and simulated annealing will be used 
to find a well plan that maximizes profit. Any number of 
component objectives can be included in the global objective 
function. Three components are considered and one is 
proposed in this paper: (1) profitability, (2) alignment to a 
fixed drilling platform, (3) cost per unit well length, and (4) 
connected pore volume.  

 
The profit component objective function is calculated in 

expected value over all L realizations. Calculating Oprofit over 
all L realizations accounts for uncertainty and yields a well 
plan that is jointly optimal on all of the L realizations. One 
cannot determine L individual optimal well plans and use them 
to infer a single joint optimal well plan. Figure 3 illustrates the 
notion of the joint optimal solution with a reservoir model 
consisting of 5 realizations of porosity. The global objective is 
to select a single well location with high porosity and robust 
with respect to uncertainty. The stack of realizations on the 
left show the well location that maximizes porosity over L 
realizations, no other location yields higher porosity over the 
entire model of uncertainty. The realizations on the right have 
optimal well locations on each realization. There is no easy 
way to reconcile the L optimal locations into a single optimal 
location.  

 
The profit component objective function is written as the 

sum of the by the N well profits (pwi) over the L realizations:  
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The well profits are constrained by the intersected geo-body, 
the drainage radius, and accounting. A geo-body is a 
collection of communicating blocks that share a specified 
attribute. Only cells of the same geo-body as intersected by the 
well path and falling within the drainage radius are included in 
the by-well profit calculations. Blocks in overlapping drainage 
radii are accounted for once by assigning them to the closest 
well. The by-well profits are calculated over the entire 
reservoir (V)  as: 
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where il

g is a binary variable indicating whether or not the cell 
at location u belongs to the same geobody as the cell 
intersected by the well path at location u’ on realization l: 
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and id is a binary variable indicating whether or not the cell at 
location u falls within the drainage radius centered at location 
u’: 
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and iw is a binary variable indicating whether or not the cell 
has been accounted for by another well: 
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and profitl is:  
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with thickness being the thickness of the cell centered at u and 
ph is the specified price per unit volume of hydrocarbon. This 
formulation of profit accounts for the interaction between 
wells and the lithofacies model. Each cell is attributed to one 
well. The lithofacies constraint is accounted for by only 
considering cells that have the same geobody type as the cell 
that is intersected by the well. The lithofacies model could be 
constructed using any technique. The weight wprofit is set to be 
equal to 1 since the units are in terms of dollars. 
 

A well plan may be constrained by the location of the 
drilling rig and/or the desire to drill multiple wells from a 
single location. A well plan that maximizes Oprofit may be 
expensive or impossible to drill from a fixed platform or pad 
location. One goal is to find the well plan that strikes the best 
balance between Oalign and Oprofit. Figure 4 shows wells with 
good and bad well alignment. The maps show two wells and 
their associated drainage radii (the dark lines surrounded by a 
shaded area) in a hypothetical reservoir. The wells in the left 
map have good alignment to the drilling platform, the wells on 
the right would require highly deviated wells with tight 
turning radii. Figure 5 shows one metric for measuring well 
alignment; the sum of the Euclidean distance (de ) and 
perpendicular distance (dp) between the start of the well path 
and platform location for the N wells: 
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The units for objective Oalign are not dollars. The weight walign 
is used to convert to dollars. High walign values put more 
emphasis on well alignment than low values. Professional 
judgment is required to selecting walign.  
 

The component objective function Olength is the sum all the 
well lengths (lw) in the well plan multiplied by a cost per unit 
length: 

lw
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 The proposed global objective function is flexible enough 

to permit new component objective functions to be added 
easily. Permeability is not considered in the present objective 
function. Permeability is often correlated to porosity and the 
connectivity of porous reservoir captures a lot of the 
information contained in permeability.  

 
 
Examples 

Two synthetic reservoirs have been prepared to illustrate 
the proposed technique. The first example is a small reservoir 
with a single source of uncertainty. The second example has 
uncertainty in all input variables. The maps show the well 
path(s) as a dark line and the drainage radii as shaded areas 
surrounding the well path. The lithofacies geobodies are 
shown as shaded objects on a white background. 

 
Example 1 

Consider a 50x50 grid with 10 realizations of porosity. 
Water saturation is held constant at 20%. The top of the 
reservoir is flat and the thickness is constant. The geobody 
model was created from a set of normally distributed 
unconditional realizations of porosity built using sequential 
Gaussian simulation. The realizations are converted to 
geobodies by identifying all communicating nodes that fall 
above a threshold value. An example conversion is shown in 
Figure 6. The map on the left is a realization generated by 
sequential Gaussian simulation.  The associated geobody map 
is shown on the right. The net–to-gross ratio is about 0.3 

 
Figure 7 shows a horizontal well in a single realization. 

The objective is to maximize profit given a single well; the 
component objectives of well alignment and well length were 
not used in this first example. The drainage radius was set to  
5 units. The maps show the progression of the optimization 
starting at the initial well plan (top left) to the final optimized 
well plan (bottom right). The number of perturbations is 
indicated at the top of each map.   

 
Figure 8 shows optimal well  plans for 1 to 3 wells on the 

same map. The cost per unit length component objective 
function was used; note that the well paths are of minimal 
length but maximize profit.  
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Figure 9 shows an example with 3 wells with the complete 
global objective function. For comparison the map on the left 
does not include the component objectives of length and 
alignment. The map on the right shows the results using the 
complete global objective function. The location of the drilling 
platform/pad is shown as a large dot. The wells on the map on 
the right are well aligned with the locations of the drilling 
platform at the expense of giving up some of the reservoir on 
the upper right.  

 
An optimal well plan on 10 realizations for 3 vertical wells 

is shown in Figure 10. The well locations are shown as black 
dots surrounded by a shaded drainage radius. The component 
objectives of length and alignment do not apply here. Note 
that the well positions are the same on each map. This is 
analogous to the stack of realizations on the left side of Figure 
3. One could find realization-specific optimal well locations 
that out perform the joint optimal solution, but those locations 
would not outperform the joint optimal solution over multiple 
realizations.  

 
The optimal well plan for a single well is not a subset of 

the well plan for 2 or more wells. This means that we cannot 
work backwards from the n wells well plan to solve for the n-1 
well plan nor work forward to solve for the n+1 well plan; 
each well plan represents a unique problem.  

 
None of the examples took more than a few seconds to 

optimize, even with 10,000 perturbations. The technique also 
works in 3-D but visualization is difficult.  

 
The initial well plan could be selected automatically or 

provided by a professional. The initial well plan has minimal 
impact on the final result, but could affect the number of 
perturbations required to reach optimality. 

 
Example 2 

This reservoir is a 2-D cross section. The reservoir consists 
of fluvial channels. The sources of uncertainty are the top 
surface, the thickness of the reservoir, porosity, and the 
locations and size of the sand bed forms. The stratigraphic 
correlation is proportional. The crest of the reservoir is, on 
average, 500m below surface, and the limbs average 650m 
below surface. The cells in the grid measure 50m in the x 
direction. The average thickness of the reservoir is 100m. 
There are 100 nodes in x and z. There are two facies types: 
channel sand and shale. The distribution of porosity in the 
channel sand is shown in Figure 11. The average is 20% with 
a standard deviation of 7. 

 
The water saturation model is constant (15%) above OWC 

and 100% below. Figure 12 shows the sectional view of a 
single realization of the reservoir model. The darkest shade is 
below OWC and has an sw of 1.0. The shapes with the lightest 
color represent channel beds.  

 

Figure 13 shows the optimal well plan over 50 realizations 
for a single vertical well having a drainage radius of 500m and 
a global objective of maximizing profit only. Below the map is 
a chart showing the profit for every location in the reservoir. 
The dashes are the locations that SA sampled. The optimal 
location is at x=1875.  Figure 14 is a histogram of the sample 
locations that SA visited over 10,000 perturbations. Note that 
every feasible location was sampled and that the region with 
the optimal location was heavily sampled.  

 
Application to a SAGD Process 

The steam assisted gravity drainage (SAGD) process is an 
important method for recovering bitumen. The SAGD process 
consists of a pair of parallel wells: a steam injector above a 
recovery well, see Figure 15. The injected steam increases the 
mobility of the bitumen within a drainage block. Gravity 
draws the bitumen down into the recovery well. 

 
Placing the well pairs requires consideration of remnant 

shale lenses. Due to sparse delineation wells and imperfect 
seismic data the locations of the shale cannot be known with 
certainty. Shale above the producer will reduce the 
performance of the well pair. The optimal vertical well 
placement is one that minimizes the probability of shale 
impeding performance. Moreover, the optimal well pair 
location maximizes recoverable reserves; bitumen below the 
recovery well cannot be recovered since the process relies on 
gravity. 
 

A SAGD process consists of a “network” of well pairs 
drilled from a central pad location, see  

Figure 16. The problem of selecting a pad location must 
also be considered: each well is subject to individual 
constraints such as those discussed above and joint constraints 
such as maximizing total production. We do not tackle this 
problem; we address the problem of selecting an optimal 
elevation for a single well pair. 

 
Our example considers 20 exploration core holes on a 

regular 400m x 400m grid. Data were re-gridded to a fine 
10cm resolution to preserve facies boundaries. Facies and 
porosity models are available for a 32x40x190 grid with 
regular blocks of size 50x50x0.5m. A subset of this model was 
used to construct a high-resolution model in the region of a 
single well pair, see Figure 17. The high-resolution model has 
151x50x95 nodes measuring 1x20x1m. 

 
The objective is to select an optimal vertical position for a 

well pair located in the middle (x=76) of the model.  3-D 
visualization software is very useful to understand the 
variability of the model and to assist in locating the wells; 
however, it becomes difficult to apply visual criteria when 
there are many geostatistical realizations to consider.  We will 
use 20 realizations for our example. 

 
Central XY, XZ, and YZ slices are shown on Figures 18, 

19, and 20.  Three figures are used to illustrate the variability 
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(i) the central slice of the first realization, (ii) the average of 
the central slice over 20 realizations, and (iii) the average of 
all slices over all realizations.  Low porosity is shown by light 
gray scale; high porosity is dark gray scale. 

 
The objective function is to maximize connected pore 

volume above the producer well location.  The pore volume 
above the producer will be greater when the well is positioned 
low in the reservoir; however, the McMurray formation has 
more shale at the bottom and a producer positioned too low 
will recover less on account of the greater fraction of shale. 

 
The connected pore volume is calculated with an ad hoc 

procedure, see Figure 21. Each 2-D XZ slice of each 
realization is considered independently. Slices are only 
accounted for if the well location considered intersects net 
reservoir. The connectivity of each block to the producer well 
is based on the amount of net reservoir that is encountered in a 
straight line of sight.  The greater the fraction of net reservoir 
the more likely the bitumen will be produced. A multiplicative 
factor is considered as a function of that net fraction, see 
Figure 22.  There is no discount when the net fraction is 1 and 
the factor is zero when there is no net.  Three different penalty 
functions are used to assess the sensitivity of the final 
placement to this input parameter. 

 
Figure 23 shows the results for the three penalty curves.  

The weighted pore volume must decrease as the penalty 
becomes more severe. Note, however, that the optimal 
location of the horizontal well is about the same in all three 
cases: Linear = 24m, Moderate = 24m, and Severe = 23m.  
The curves on Figure 23 are averages over all 20 realizations 
being considered. The curve denoted “Total Above” indicates 
the total pore volume (not penalized) above a well location 
whether or not non-net reservoir is intersected.    

 
Figure 24 shows the resource above the producer well (the 

light line) and the total resource above the well for the first 
three realizations. Note that each realization yields a different 
optimal well location: realization 3 gives an optimal well 
location of 20m (38177.5 m3), realization 12 gives an optimal 
location of 29m (33282.7m3), and realization 16 gives an 
optimal location of 24m (32749.9m3).  There is no clear way 
to reconcile the three realization specific optimal well 
locations into a single optimal well location, we must 
determine the optimal jointly. 

 
This overall optimal location is at 25 m from the base of 

the model.  A histogram of the 20 connected pore volumes for 
this location is shown at the center of Figure 25.  We also 
show the histograms for placing the 5m higher and 5m lower.  
By construction, the optimal well location is the best on 
average although any particular realization is different. 

 
In practice, the true reservoir is unknown and we can only 

determine the best producer location in expected value.  The 
range of results on Figure 25 tells us the uncertainty in the 

connected resource.  Selected realizations could be processed 
through a flow simulator to evaluate the variability in 
production.  The connected pore volume we calculate for 
placement could be used as a ranking measure to chose a 
limited number of realizations for flow simulation. 

 
Concluding Remarks 

Making the best possible decisions in the face of 
uncertainty is an important problem.  The overall idea is to 
determine the best positions in expected value over 
realizations that quantify geological uncertainty.  Clearly, the 
reasonableness of the results depends on how well the 
realizations reproduce all available geological, geophysical, 
and engineering data. 

 
The well positions we generate are good starting points to 

be refined with flow simulation and consideration of other 
engineering constraints.  It would be interesting to incorporate 
a fast flow simulator in the optimization problem. 
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Figure 1: An example reservoir model showing the three different well types considered in the paper. 
 
 

 
 

Figure 2: The perturbation mechanism for each of the 3 well types. 
 
 
 

 
 

Figure 3: Optimization over the entire model of uncertainty. Note that there are 5 wells on the bottom right map: 3 are in the middle and nearly 
overlap. 
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Figure 4: The map on the left shows two wells that have good alignment to the drilling platform, the map on the right shows two wells with 
bad well alignment. 
 

 
Figure 5: One metric of well alignment is the sum of the perpendicular and Euclidean distance between the location of the drilling platform 
and the well path. 
 
 

 
 

Figure 6: An example geobody conversion. 
 
 

 
 

Figure 7: A 2-D example showing the progression from the initial guess (top left) to the final optimized horizontal well path (bottom right). 
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Figure 8: An example showing 1, 2, and 3 wells using the cost per unit length component objective function. 
 

 
 

Figure 9: An example well plan with three wells. The map on the left has no constraints, the  map on the right has full constraints. The drilling 
platform location is denoted by a large dot on the left side of the map. 

 

 
 
Figure 10: An optimized 2-D well plan consisting of 3 optimal well locations on a model of uncertainty with 10 realizations. 
 

 
 

Figure 11: The distribution of porosity in the channel sand for example 2. 
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Figure 12: The reservoir model for Example 2. The geobodies are the lightest shade, the darkest shade is below OWC. 
 
 

 

0 1000 2000 3000 4000 5000
 

 
Figure 13: The optimal well location for a single well on one realization is x=1875. Shown below is a chart of the exhaustive profit at every 
possible location on the reservoir (the line on the chart) and the locations that SA sampled before reaching convergence (the squares). 
 
 
 

 
 

Figure 14: The distribution of  SA sample locations in the x  direction. 
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Figure 15: A SAGD well pair within a drainage block. 
 

 
 

 
 
Figure 16: A central platform servicing several well pairs. 
 
 
 
 

 
 

Figure 17: The high-resolution example model is a subset of a larger coarse model. 
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Figure 18: Central xy slice of first realization, same slice but averaged over 20 realizations, “projection” of averaged values. 
 
 

          
 

Figure 19: Central xz slice of first realization, same slice but averaged over 20 realizations, “projection” of averaged values. 
 
 

 

 

 
 

Figure 20: Central zy slice of first realization, same slice but averaged over 20 realizations, “projection” of averaged values. 
 

 

 
 
Figure 21: Connected pore volume is calculated by evaluating the fraction of non-net blocks on a line of site path from a block of interest to 
the well location. The example has 20% non-net on the line of site path and would be lightly penalized. If the fraction of non-net were higher 
then the penalty would increase. 
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Figure 22: The three penalty functions used to calculate the expected resource. 
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Figure 23: The x axis is pore volume (blocksize x porosity), the y axis is well location. The solid lines are expected resource above the well 
calculated using four penalty functions. The dashed line is the expected total remaining pore volume above the well. The no penalty line and 
the total above line are not the same since the no penalty line does not include pore volume at well locations where the well does not 
intersect reservoir where as the total above calculation does. 
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Figure 24: The resource above the well (the light line) and the total resource above the well for three realizations. Note that each realization 
yields a different optimal well location: realization 3 gives an optimal well location of 20m (38177.5 m3), realization 12 gives an optimal 
location of 29m (33282.7m3), and realization 16 gives an optimal location of 24m (32749.9m3)   
 

 
Figure 25: The histograms of pore volume for a well located 5m above the optimal well location of 24m (mean = 29282.98), at the optimal well 
location  (mean = 32177.5), and 5m below the optimal well location (mean = 31471.62). Note that in expected value the optimal well location 
yields the highest expected resource. 


