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Abstract 
 
The McMurray formation in the Athabasca oil sands deposits of Northern Alberta is part of the world’s 
second largest proven crude oil reserves.  The formation is characterized by stratigraphic layers that 
correspond to three different depositional environments: Marine, Estuarine and Fluvial facies.  Resource 
estimation for oil sands has traditionally relied on polygonal and inverse distance schemes.  These 
techniques are simple and straightforward in practice, but they do not permit reliable uncertainty 
assessment.  This paper describes the modeling of the McMurray formation using modern geostatistical 
techniques. 
 
Geostatistical modeling should be performed within homogeneous geological facies.  The methodology 
for geostatistical simulation within each of the identified facies involves: (1) assessing the most 
appropriate stratigraphic transformation for optimisation of the correlation structure, (2) determining 
representative distributions with declustering and debiasing techniques, (3) modeling spatial continuity of 
the bitumen grade, fines grade, water saturation and other petrophysical variables, (4) performing 
estimation and cross validation as checks against simulation results, (5) performing simulation for 
uncertainty quantification of bitumen and fines grade, and (6) model checking of simulation results 
against the input data and comparisons against the kriged models.  These steps are described in detail.  
The application of these models for uncertainty quantification in support of resource classification is also 
discussed. 
 
 
Introduction 
 
The Alberta oil sands deposits contain approximately 1.6 trillion barrels of bitumen, of which 174 billion 
barrels are proven reserves.  In 2002, Canada’s proven crude oil reserves comprised approximately 15% 
of the world’s reserves, second only to Saudi Arabia (Alberta Energy, 2003).  The oil sands deposits 
found in Alberta comprises the majority of Canada’s crude oil reserves, with about 35% of Canada’s 
crude oil output coming directly from the production of Alberta’s oil sands, and this is expected to 
increase to 50% by the year 2005 (Alberta Energy, 2003).  These statistics and economic trends clearly 
indicate the importance of the oil sands industry to Canada’s current and future economy. 
 
Crude bitumen can be found in three main regions in Alberta: Peace River, Athabasca  and Cold Lake.  
Of these three, the Athabasca deposit is the largest with an areal extent of over 32,000 square kilometres 
(Steward and MacCallum, 1978).  The Athabasca deposit has a Devonian limestone base and consists of 
three main formations (in ascending order): McMurray, Clearwater and Grand Rapids formations (Camp, 
1976; McRory, 1982).  The sands in the McMurray formation are host to the crude bitumen, in which 
three main lithofacies are recognized based on the depositional environments: Fluvial, Estuarine and 
Marine from the base to the top of the formation (Figure 1).  These form the stratigraphic layers of 
interest for resource modeling. 
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Resource modeling of oil sands has traditionally employed fairly straightforward techniques, such as 
polygonal and inverse distance schemes.  These resource models are usually combined with some type of 
geometric resource/reserve classification approach for public disclosure reporting.  These methods, 
however, do not provide a measure of uncertainty for the resource and/or reserve estimates. 
 
Instead, we propose to use a geostatistical simulation approach to model the McMurray formation that 
permits uncertainty assessment.  Considerations, quality control measures, and the basic modeling 
framework specific to the McMurray formation are described.  The methodology is illustrated for a small 
sanitized dataset, originally based on one of the current lease areas near Fort McMurray.  This is followed 
by a discussion on the applications of this model, including resource classification. 
 
This paper does not focus on modeling the stratigraphic controls; nevertheless, geostatistical modeling 
must always be performed within a stratigraphic framework accounting for all geological controls that are 
deemed representative.  There is an important tradeoff that must be made in practice between respecting 
deterministic controls interpreted by experienced geological staff and respecting the inherent uncertainty 
in presence of widely spaced data relative to small scale heterogeneity.  This paper describes the 
geostatistical procedures that are primarily aimed at modeling and understanding the stochastic uncertain 
aspects of oil sands deposits. 
 
 
Geostatistical Modeling Methodology 
 
The geostatistical approach can be described in six distinct steps: 

1. Analyze of correlation structure.  This investigates whether a transformation of the vertical 
coordinate system is required, in order to determine the true continuity structure of the deposit.  
There are a number of different correlation grids that should be considered: onlap, erosional, and 
proportional (Deutsch, 2003).  Determination of the correct grid is dependent on the correlation 
grid that yields the maximum horizontal continuity. 

2. Decluster drillhole data distribution.  This is a critical stage of the modeling workflow; the 
relevant statistics must be deemed representative of the deposit prior to modeling.  Any or a 
combination of cell, nearest neighbour and/or declustering by kriging weights may be employed 
to determine the summary statistics that are representative of the field. 

3. Model spatial continuity of the bitumen grade, fines grade, water saturation and any other 
petrophysical variables of interest.  A number of different spatial measures can be considered 

Figure 1 Schematic illustration of stratigraphic layers found 
within the McMurray formation of the Athabasca deposit. 
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here, among which, the semivariogram is the most common. 
4. Perform estimation and cross validation using kriging as checks against simulation results.  

Kriging is widely accepted in the mining industry and yields a map of the large scale continuity 
of the deposit.  Cross validation using kriging provides a quality control check on the estimation 
(and also simulation) parameters.  This is considered good practice in order to ensure that the 
results from modeling are consistent with geological expectations prior to the next step of 
simulation. 

5. Construct uncertainty models of bitumen grades, fines grades, etc., using geostatistical 
simulation.  Sequential Gaussian simulation (Isaaks, 1990) is by far the most commonly applied 
geostatistical simulation algorithm applied in the natural resources sector.  It has been extensively 
validated and provides a measure of local and global uncertainty, that is not afforded from 
kriging.   

6. Check simulation results against the input data and compare results against the kriged models. 
 
These uncertainty models can then be used for both long and short term decision making.  For instance, 
resources/reserves can be estimated along with the uncertainty and hence risk associated to this estimate; 
grade control optimization can also be realized by way of optimizing dig limits, accurately predicting the 
head grade, identifying production periods of economic risk; and resources/reserves can be classified in 
accordance with National Instrument 43-101 for public disclosure.  This last application is becoming 
more important as the modern classification approach is based on adopting a measure of uncertainty and 
then assessing the probability to be within this measure.  Some of the world’s leading mining companies 
have already begun to adopt this type of modeling workflow, realizing the advantages of these types of 
techniques over the more deterministic approaches currently used. 
 
An application to an example oil sands dataset will illustrate each of the above steps in more detail.  The 
data used in this application appear realistic, but are synthetic and do not belong to any particular site.  
The work flow and conclusions are reasonable and valid for a range of oil sands deposits.  Moreover, the 
application is shown only for bitumen grades; however, the same workflow would apply to fines and any 
other variables of interest. 
 
 
Application 
 
To illustrate the proposed methodology, a small dataset consisting of 94 drillholes is used.  This exercise 
will only be performed for the Estuarine facies; a similar approach and analytical workflow would be 
required for the Marine and Fluvial facies.  The three facies are typically treated independently since they 
belong to separate environments.  A total of 1609 3ft composites was available.  Figure 1 shows the 
projection of the available DH data onto the horizontal and vertical planes, as well as the distribution of 
the bitumen grade. The smallest drillhole spacing is approximately 50m in plan view, and samples are 3m 
vertically spaced.  A fairly fine scale model is chosen with a selected block size of 25m x 25m x 3m, 
covering a 7.5km x 7.5km x 100m volume.  This yields a 3D model with a total of 2.57 million cells.  It is 
common to construct numerical models with tens of millions of grid cells. 
 
The cross sectional views of the data show a stratigraphic layer that appears fairly flat and tabular; 
however, undulations of the surface indicate that the different correlation structures should be evaluated 
for application.  In addition to the direct elevation coordinates, stratigraphic coordinates corresponding to 
an onlapping, erosional/truncation, and proportional (Figure 3) correlation grids were considered 
(Deutsch, 2003).  In each case, the data were transformed to normal scores and the variograms of these 
scores were calculated (Figure 4). The most continuous correlation structure is an appropriate choice for a 
stratigraphic grid.  Figure 4 shows that the variogram corresponding to the original elevation coordinates 
is the most continuous in the short and long range structures.  Therefore, no stratigraphic coordinate 
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transform is required for this particular dataset.  This, however, does not preclude the need for a 
stratigraphic transform for different oilsands data.  A similar study of continuity depending on correlation 
grid should be performed for each dataset. Knowledge of the geological depositional and tectonic history 
should also be taken into account when determining the stratigraphic framework. 
 
Cell declustering was then performed in order to determine the appropriate declustering weights.  In this 
sense, data in densely clustered areas will receive less weight than data in sparsely sampled areas.  Most 
times, the clustered data can be expected to be in the high grade regions as drillholes are preferentially 
drilled in these zones.  Therefore, less weight can be expected to be given to the high grades, and higher 
weights can be expected for the low grade regions.  The result of this type of weighting is a weighted 
mean (Figure 5) that is lower than the naïve mean (Figure 2).  Of course, the reverse would be expected if 
we were declustering fines data, where the low fines regions are the areas that would have been 
preferentially sampled.  Figure 5 is the % bitumen distribution that we should expect to reproduce in 
subsequent models.  Note that declustering does not affect data values, but only assigns weights to each 
measurement. 
 
 

 
Figure 2 Drillhole data projected onto a horizontal plane (plan view (top left)), and two vertical planes (E-W 
sectional view (bottom left) and N-S sectional view (bottom right)).  Distribution of % bitumen is also shown 
(top right). 
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Figure 3 (a) schematic illustration of stratigraphic transform for a proportional grid, and (b) outcrop 
example with four stratigraphic layers bounded by five major surfaces: the style from bottom to top: onlap, 
proportional, erosional, and proportional. 

 
 

 
 
 
 
 

 

A normal scores transform was then performed.  Using these normal scores, directional variograms were 
calculated and modeled.  In the calculation, a number of tools were used to determine the directions of 
anisotropy including variogram maps and calculating the variogram in a series of multiple directions.  
From this analysis, the major continuity direction was determined to be N-S and the minor direction was 
E-W.  The variograms and fitted models are shown in Figure 6.  The fitted model is  
 

Figure 4 Variograms calculated based on different 
correlation structures: elevation, proportional, 
erosional and onlap. 

Figure 5 Histogram of declustered bitumen data. 

(a) 
 
 
 
 
 
 
 
 
 
(b) 
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where ahmax indicates the range in the horizontal maximum continuity direction (N-S), ahmin denotes 
the range in the horizontal minimum continuity direction (E-W), and ahvert is the range in the vertical 
direction. 
 
Before using these variogram models and representative statistics to construct simulation models, some 
quality control tasks should be performed to prevent errors later in the workflow.  Amongst the quality 
control checks are standard cross validation tools.  The idea of cross validation is to estimate at known 
sample locations as if it was unknown, using the surrounding data.  The estimate is then compared to the 
true value and the error in the estimation can be assessed directly.  A look at the distribution of errors 
shows that it is approximately normally distributed with a mean of zero, and the correlation between the 
estimate and the true values is fairly high at 0.707 (Figure 7).  A mean of zero shows that the errors are 
unbiased and a high correlation between the estimate and data is encouraging for subsequent modeling. 
 
Simulation was then performed using sequential Gaussian simulation (Isaaks, 1990).  In all, 100 
realizations of the 2.5 million cell model were generated in 6.75 hours (approximately 4 minutes per 
realization).  Figure 8 shows four arbitrarily chosen realizations at elevation 248m.  All the maps are 
clearly different, yet there are some similar features.  For instance, in the northwest quadrant of the maps, 
there is a very clear region that is characterized by a high % bitumen grade.  Just southeast of this high 
grade region, there is a small pocket that is clearly low grade.  These areas were verified against the data 
and the kriged models, both of which confirmed that the available drillhole data in these regions reflected 
the same grade trends.  Further examination shows that in the northeast and southwest areas of the map 
where no drillholes are available (see Figure 2), there is greater variability from one realization to the 
next.  Realizations 25 and 75 show a medium to high grade region in the northeast, while realizations 50 
and 100 show that this region could actually be a low grade region.  This variability in the realizations 
reflects the uncertainty in these regions where there are no drillhole and/or blasthole to suitably condition 
the models. 
 
The simulated model was then checked for histogram and variogram reproduction.  Although one would 
expect that these two key inputs should be reproduced by any representative model, only a simulated 
model will reproduce these statistics.  An estimated model, obtained from either kriging, inverse distance 
or any other conventional method, should produce the same large scale features, but these will not be able 
to reproduce either the histogram or the variability of the true data.  Figure 9 shows the histogram of one 
realization of bitumen; this histogram is comparable to the declustered distribution of Figure 5, in terms 
of its shape and the magnitude of the summary statistics.  Further, the reproduction of the summary 
statistics was also checked over the 100 realizations (Figure 10). 
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Figure 6 Directional variograms for normal scores bitumen: horizontal (left) with blue corresponding to the 
E-W direction, and red corresponding to the N-S direction, and vertical (right) direction. 

 
 

 
Figure 7 Cross validation results: histogram of errors (left) and crossplot of true vs. estimate (right). 
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Figure 8 Four realizations of % Bitumen obtained from sequential Gaussian simulation. 

 
 

 
Figure 9 Histogram of simulated % bitumen from one realization. 
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Figure 10 Box plots show the reproduction of summary statistics: mean (left) and variance (right).  In both 
cases, the representative statistic falls within the interquartile range, and shows reasonable reproduction. 

 
 
Discussion 
 
Model checking is important.  Quality control steps were integrated into the proposed methodology 
through declustering, cross validation and model checking after simulation.  These are straightforward, 
basic checks that should be performed as part of any resource modeling procedure; unfortunately, these 
are often neglected in practice (Leuangthong, McLennan and Deutsch, 2004).  Aside from checking that 
the implementation of the modeling method was correct, validation using production data remains the true 
test of the model’s ultimate value in resource estimation.  In this aspect, blasthole data validation is 
crucial.  This can only performed once production begins, but even at the early stages of production, the 
performance of the simulations can be directly assessed.  Comparisons between blasthole samples and 
simulated values at the same location will indicate how well the simulated model is able to predict the 
grade at previously unsampled locations. 
 
Once validation using production data is performed, there is a number of interesting applications for the 
multiple realizations of a simulated model.  The uncertainty assessment afforded by the model can be 
used to assess dilution at different scales, simulate production over different periods, forecast recovery, 
and resource/reserve classification.  With the passing of National Instrument 43-101 in 2001 (Canadian 
Securities Administrators, 2001), this latter application has come to the forefront of useful simulation 
applications.  With the use of simulation, resources/reserves classification accounts for more than just the 
geometry of the data configuration; it also accounts for the sample grades and the spatial continuity of the 
grade(s) of interest.  Further, classification is based on a measure of uncertainty that inherently captures 
the state of knowledge and information at the time of model construction. 
 
Quality control measures taken throughout any resource modeling task must also be addressed in 
reporting for public disclosure.  The qualified person is required to document specific measures that were 
duly undertaken in an effort to validate the reported reserves.  These measures must be an integrated part 
of the workflow and should be taken throughout the project, in all aspects of resource modeling. 

Conclusions 

There is little doubt that the future of Canada’s energy economy will depend largely on the oil sands 
resources found in Alberta.  Of the three main crude bitumen deposits, the Athabasca formation is by far 
the largest and most amenable to production using current surface mining technologies.  Estimation of 
these resources is incredibly important to forecasting its availability and determining the feasibility of 
current mining practice for certain deposits.  In this assessment, uncertainty is a key issue, which cannot 
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be addressed using conventional estimation tools that are prevalent in the industry.  Instead, a 
geostatistical approach is proposed that is fairly straightforward and is well positioned to satisfy the 
conditions and requirements set in classification guidelines. 
 
The proposed geostatistical methodology for modeling the oil sands deposits of the McMurray formation 
can be summarized into six steps: (1) determine an appropriate stratigraphic coordinate system that 
maximizes the correlation structure, (2) obtain a distribution of grades that is representative of the deposit 
by employing declustering techniques, (3) model the spatial continuity measure that shows the variability 
of grades with distance, (4) perform cross validation and kriging as quality control measures to detect any 
potential blunders, (5) generate multiple realizations using sequential Gaussian simulation, and (6) check 
the realizations to ensure that input data and statistics are reproduced.  Although this is a fairly classical 
geostatistical simulation methodology, an important feature for the oil sands setting is the analysis of 
correlation at the very beginning of the modeling workflow.  Given the known depositional environments 
found within the McMurray formation, it is imperative that this is reflected in the stratigraphic controls 
imposed on the models. 
 
Uncertainty is inevitable when dealing with incomplete data.  The paradigm of statistics is to quantify the 
uncertainty and permit risk qualified decision making in presence of uncertainty.  The advantage of 
geostatistics is that spatial correlations between the data are modeled and used to improve local grade 
estimates and uncertainty estimates.  There has been some controversy regarding the use of geostatistics.  
A claim is made that classical statistics is more straightforward and that geostatistics is needless.  The use 
of the correlation between multiple data is an established principle of statistics.  Correlation between data 
has been accounted for since the beginning of statistics.  de Moivre, Laplace, Gauss, Bayes and others 
luminaries of statistics pioneered these techniques since the late 1700s.  Geostatistics is the modern 
application of very classical statistical principles. 
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