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Trends are essential features of geological variables; stationarity only applies to our synthetic 
random function models.  An important goal of research in geostatistics is the search for ways to 
make random function models better reproduce realistic patterns of natural variability.  This 
paper offers a novel locally varying or non-stationary transformation technique for automatically 
incorporating the trend within a simulation framework.  The definition of a trend, some trend 
modeling principles, and various trend modeling techniques are discussed. The technique is 
described and implemented with an example.  Additional development is required; however, 
trends are indeed reproduced in the simulated realizations. 

Introduction 

The spatial distribution of a geological variable is of dual character: partly structured and partly 
stochastic [1].  The structured component manifests from a particular sequence of depositional 
events that control the variable of interest; the stochastic component is due to natural variations in 
these geological formation processes.  This notion of dual character can be represented 
analytically.  The typical decomposition technique calls for dissociation of the Z(u) random 
function (RF) into separate structured and random components as follows: 

 ( ) ( ) ( )= +u u uZ m R  (1) 

where m(u) is the structured component or trend and R(u) is the random component or residual. 
Figure 1 illustrates this simple decomposition for a fining upward log porosity profile. The trend 
m(u) is a smooth locally varying expectation in the attribute of interest.  The decision to split the 
spatial variability observed into a smoothly varying deterministic trend component and a more 
erratic or stochastic residual component is arbitrary [2]. Although there are sound geological 
reasons to dissociate smooth m(u) and random R(u) components from Z(u), the additive 
decomposition in (1) is arbitrary and not necessarily consistent with or motivated by geological 
interpretations. The motivation for adopting the particular RF formalism and decomposition in (1) 
lies, instead, in its convenience. Other breakdown can and should be considered. 

Trend Modeling Concepts 
Any and all discussions about trends are subjective. This has lead to an extensive variety of trend 
modeling procedures and methods to account for them throughout industry. However, amidst this 
large collection of techniques, a few important principles can be discerned. Before describing 
trend modeling and trend integration techniques, it is useful to clarify these key principles. 
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Stationarity 
It is important to note that special effort is needed to incorporate trends into geostatistical 
algorithms. Recall the required assumption of stationarity amounting to decide that a particular 
domain is homogeneous and contains sufficient data for reliable inference of the corresponding 
stationary RF model Z(u) [3]. Indeed then, it is a significant challenge to integrate deterministic 
trends m(u) that fundamentally violate any previous assumption of stationarity. 

Importance of the Trend 
A common concern is when the trend is in fact significant and needs to be modeled and 
accounted for. This subjective decision depends on the level of deterministic geological 
knowledge and hard/soft supporting data available. Consider the vertical string of unestimated 
grid cells a distance h away from the log porosity profile in Figure 1. The approximate form of 
the trend m(u) shown in the log porosity profile should be reproduced for any geologically 
acceptable model of heterogeneity in this string of cells. Choosing not to explicitly model the 
trend deterministically through m(u) and depending instead on the probabilistic interpolation of 
only the single string of data, however, may not suitably reproduce m(u). This is especially true if 
h is beyond the range of horizontal porosity correlation. In these cases, the trend m(u) must be 
explicitly modeled in order to be reproduced in estimation and simulation. From the porosity 
profile and knowledge of some fining upward geological interpretation, the trend component 
m(u) can be modeled deterministically for the unestimated grid blocks.  

In general, a trend model is needed when the resulting models of heterogeneity do not 
satisfactorily reproduce important large scale geological heterogeneities. And this is often the 
case in settings where there are very limited sample data coupled with a coherent deterministic 
geological understanding of the phenomenon. 

Balancing Deterministic and Probabilistic Variability 

Decomposition of the Z(u) RF according to (1) leads to the following decomposition of total 
variability in the original Z(u) random variable (RV): 

 { } { } { } { }( ), ( ) ( ), ( ) ( ), ( ) 2 ( ), ( )= + + ⋅u u u u u u u uC Z Z C m m C R R C m R  (2) 

The amount of variability modeled by the trend m(u) is a subjective balance between determinism 
and stochasticity. Deterministic geological interpretations governing the formation of a deposit or 
reservoir are subjective. In all cases, the trend should model no more variability than what our 
deterministic understanding of the geological processes suggests; nevertheless, in practice, the 
trend is often over fit and represents too much variability. That is, the variability captured in the 
C(m(u), m(u)) term is artificially high relative to C(R(u), R(u)). Incorporating too much 
variability in the trend dangerously leaves too little variability to the random fluctuations inherent 
in all petrophysical property variables and modeled by stochastic geostatistical methods.  

Consider again the estimation scheme in Figure 1. It is assumed that the separation h is slightly 
beyond the range of spatial correlation and that there exists some logical rationale for the fining 
upward trend in porosity at the unestimated grid blocks. An explicit model of m(u) would then be 
needed since the available porosity profile data on the left will not effectively reproduce the 
fining upward trend. It is easy to let the neighboring porosity profile over influence the m(u) trend 
model without any logical incremental deterministic knowledge. This recurring situation is an 
ongoing challenge in practice. 
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Scale Dependency 

Interpreting and modeling the trend is highly dependent on scale. For example, some smaller 
elevation intervals on the porosity profile shown in Figure 1 actually show a coarsening with 
elevation. Some elevation intervals correspond to no trend at all. The interpretation depends on 
scale. The domain size within which a stationary RF Z(u) is applied then has a significant impact 
on the trend model m(u). 

Trend Modeling Methods 

The general approach to trend modeling in three dimensions is to build a 2D aerial trend m(x,y) 
and 1D vertical trend m(z) separately and then merge them into a full 3D trend m(x,y,z). There are 
several methods available for generating lower dimension 2D and 1D aerial and vertical trends, 
each method with its own advantages/disadvantages, implementation details, and range of 
applicability. Four of the most common trend modeling techniques are listed below with brief 
descriptions: 

1. Hand Mapping is the classic approach to trend modeling. Although hand mapping 
techniques are simple and flexible in allowing the practitioner to model virtually any 
anticipated smoothly varying spatial structure, these methods are not repeatable and 
difficult to adjust when faced with new data or information; 

2. Moving Window Averages standardize the attribute of interest within overlapping regions 
spanning the full domain. Moving window averages are simple, effective, and easy to 
implement. The vertical trend is usually calculated with a moving overlapping vertical 1D 
window/interval average; 

3. Inverse Distance is a grid estimation/mapping procedure that weights surrounding data 
inversely to their distance from the estimation location and is a simple and effective trend 
modeling technique in 2D; and 

4. Kriging is a linearly weighted least squares error estimation technique and is one of the 
most effective and robust trend modeling tools available. Different anisotropy, expected 
values, and levels of variability can be incorporated into the trend model using kriging 
methods.  

An essential guideline for implementing any of these methods for constructing the trend is 
avoiding the tendency to overestimate its spatial variability in C(m(u), m(u)). For this reason the 
classical application of kriging for estimation is different than that for trend modeling. Two 
popular alternative kriging setups are global kriging where all sample data are retained for every 
grid cell estimate and block ordinary kriging where a grid cell discretization and significant 
nugget effect are used. Similarly, inverse distance weighting is implemented with higher than 
normal inverse distance powers and data to ensure smoothness; large overlapping windows are 
used for moving window averages; and hand mapping can virtually dial in any level of m(u) 
variability. 

A combination of the methods above are used to construct the trend in the required dimensions. 
These lower dimensional trends must then be merged into a full 3D m(x,y,z) trend model. The 
common approach to this problem is assigning the dimensional trend components probabilities 
and using probability combination schemes [5]. The two most frequently used combination 
relationships are the full independence and conditional independence (permanence of ratios) 
schemes [4, 5]. 
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Accounting for the Trend 

Geostatistics is increasingly popular for mapping regionalized variables in the mining and 
petroleum industry. These tools provide the ability to construct multiple equally probable and 
geologically realistic models of heterogeneity that can honor several types of conditioning 
information. These models can be used to assess the uncertainty of various production 
performance variables. Conventional geostatistics will reproduce the sample data, its distribution, 
and the model of spatial correlation; however, there can often be too few data to satisfactorily 
reproduce a significant trend. Geostatistical workflows must then be modified to explicitly 
account for the trend. 

There are four currently available approaches to incorporate the trend into geostatistical models 
of heterogeneity: (1) non-stationary kriging, (2) intrinsic random functions of order k (IRF-k), (3) 
explicitly modeling m(u) and R(u) separately and recombining, and (4) stepwise transformation 
of residuals conditional to the trend. These are now reviewed. 

Non-Stationary Kriging 

The earliest group of approaches aimed at integrating trends into geostatistical estimation is non-
stationary kriging. The most popular and well known form of non-stationary kriging is referred to 
as kriging with a trend (KT), originally identified and developed as universal kriging (UK) by 
Matheron in 1969 [6]. Here, the trend is modeled as a deterministic function of the coordinates 
vector u. The KT algorithm  provides the least squares error estimation of the functional trend 
coefficients, the corresponding estimate of the locally varying mean m*(u), the least squares error 
estimation of the residuals r*(u), and the corresponding estimate of the original variable z*(u) = 
m*(u) + r*(u) [7]. 

However, there are several implementation challenges facing this approach [3, 8]. The following 
five are the most important: 

1. KT is not theoretically correct for the implementation of simulation; 

2. It is not the spatial law of the original Z(u) RF that is required to interpolate z(u) data in 
KT. It is actually the spatial law of R(u) that is required. The usual assumption of 
stationarity for Z(u) must then be transferred to the residual RF R(u). Inference of this 
spatial law is difficult since R(u) is not sampled in reality and its realizations are only a 
product of the artificial construct in (1). 

3. Fitting the trend automatically is not recommended due to the possibility of artificial large 
scale heterogeneity due to limited data for estimating the trend m(u); 

4. There are several situations in which the estimation setting creates a singular matrix within 
the universal kriging system of equations; and 

5. The set of n conditioning data retained for the least squares estimation of the mean m(u) is 
not typically the same as for ordinary and simple kriging in practice. 

Geostatistical simulation is theoretically incorrect with any form of kriging other than simple 
kriging. Subsequent methods to account for the trend focused on theoretically correct integration 
with simulation. 
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Intrinsic Random Functions of Order k (IRF-k) 
The challenges associated with inferring the residual covariance R(u) for KT methods motivated 
the consideration and use of intrinsic random functions of order k (IRF-k) [9]. IRF-k are random 
functions with second-order stationary increments of order k [10]. The generalized covariance 
(GC) K(h) is the correlation structure of an IRF-k. Conventional geostatistics corresponds to the 
0-order (k = 0) increments Z(u + h) – Z(u) to which the variogram is the GC function K(h). The 
application of non-stationary kriging with IRF-k is notorious for quite restrictive isotropic K(h) 
models. 

In 1990, Dimitrakopoulos [11] developed and presented a comprehensive step-by-step non-
stationary simulation procedure using IRF-k. There are three main steps: (1) on-line unconditional 
simulation of Wiener-Levy process for the IRF-k in R1, (2) use of the turning-bands method to 
map the R1 realizations into Rn, (3) conditioning to available data with kriging, and (4) 
verification of the reproduced GC using generalized variograms. Unlike non-stationary kriging 
using the variogram, the use of GC’s from IRF-k yield theoretically correct results in a 
conditional simulation framework.    

Additive Decomposition 
The most common approach for integrating the trend into the construction of geological models 
of heterogeneity is performing geostatistical estimation and simulation of the assumed stationary 
residuals R(u) after the modeled trend m(u) is subtracted from the original variable Z(u). This 
straightforward and intuitive procedure nominally reproduces the general form of the trend model 
m(u); however, there are two practical limitations: 

1. The application of parametric geostatistical estimation and simulation tools to the R(u) 
stationary RF implies that R(u) is independent from m(u), a property referred to as 
homoscedasticity. However, virtually all scatters of (r(u), m(u)) pairs will reveal some 
structured relational behavior known as heteroscedasticity. Classical geostatistical tools, 
therefore, must be modified to account for these common departures from 
homoscedasticity; and 

2. The dissociation in (1) constrains R(u) ≥ m(u) for nonnegative RVs Z(u). Modeling the 
residuals and adding the mean back does not ensure this constraint is satisfied. Again, the 
classic application of geostatistics must then be modified to account for this constraint. 

Stepwise Conditional Transformation 

The two problems noted above for the additive decomposition approach are described and 
motivate the stepwise conditional transformation technique in [12]. The solution proposed when 
the first of these problems persists is a stepwise transformation of the residual data conditional to 
the trend. This transformation assumes the following form: 

 ( ) ( )1 ( ) | ( )−= ⎡ ⎤⎣ ⎦u u uRY G F R m  (3) 

where YR(u) is the Gaussian G transform of the residual random variable R(u) conditional to local 
m(u) windows. Similarly, the solution when the second of these problems persists is a stepwise 
transformation of the original variable conditional to the trend: 

 ( ) ( )1 ( ) | ( )−= ⎡ ⎤⎣ ⎦u u uZY G F Z m  (4) 
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Both transformations complement conventional practice. The same decomposition in (1) is used 
in that the trend m(u) and residual R(u) is modeled separately and recomposed.  Here, however, a 
pre (forward) and post (backward) processing stepwise conditional transformation step is 
implemented in order to preserve heteroscedastic and constraint features. All necessary 
implementation details as well as mining and petroleum examples are given in [12]. 

The Non-Stationary Transformation Technique 

We develop an alternative to the previous four approaches to accounting for the trend within a 
geostatistical simulation framework.  The method is based on a locally varying (non-stationary) 
transform (LVT).  This LVT concept is embedded within the classical sequential Gaussian 
simulation (SGS) framework.  There are 10 steps to the overall modified SGS methodology, 
hereafter referred to as SGS-LVT.  Each step of the proposed SGS-LVT methodology is now 
described. 

Step I: Collect all relevant hard sample data of the attribute of interest subsequently used to 
condition the simulations. These data are represented by z(us), s = 1,…, S. 

Step II: Establish a path through the grid network visiting each node once. The grid node 
locations are represented by the coordinates vector un, n = 1,…, N. To avoid artifacts, the path 
through the N grid nodes should be random [13].  

A random path can be created with a basic random number generator. A random number is 
assigned to each node and sorted in ascending order. A random path is defined by visiting the 
nodes in this order. Figure 2 illustrates the process within a simple 3 x 3 grid. 

Step III: At each of the un node locations, determine the univariate cumulative distribution 
function (cdf) representative of the local area surrounding the simulation location. These local 
cdfs are denoted with FZ(un; z). This step is in fact the fundamental distinction from the traditional 
implementation of SGS where of course under the assumption of stationarity these cdfs are the 
same stationary FZ(z) cdf built from all z(us) data, that is, FZ(un; z) = FZ(z) for all un, n = 1,…, N 
grid node locations. When necessary, declustering weights wD(us) are applied to the z(us) data to 
attain a more representative FZ(z) cdf that accounts for sampling bias [14].     

The goal here is to relax the assumption of stationarity by considering these non-stationary or 
locally varying FZ(un; z) cdfs. All S data are used to construct each of the N FZ(un; z); however, 
the weights wT(us) assigned to the z(us) data are neither equal nor derived from 
declustering/debiasing. They are derived from one of the previously described trend modeling 
algorithms. Either the inverse distance (ID) or simple kriging (SK) schemes are used to build the 
wT(us) weights in calculating the local FZ(un; z) cdfs representative of the local area surrounding 
the un location. 

Figure 3 illustrates the concept. There are S = 10 z(us) sample data color coded from blue (low 
values) to red (high values) available within the 2D XY rectangular domain D. Two hand-drawn 
contour lines separate the domain into high, medium, and low valued areas. There are a total of N 
= 117 (9 x 13) un grid node locations where the local FZ(un; z) cdfs are required. The conventional 
SGS approach, under the assumption of stationarity, assumes all FZ(un; z) are equivalent to the 
stationary FZ(z) cdf built from the 10 data weighted equally (w(us) = 1/S = 1/10) or by 
declustering weights (w(us) = wD(us)). The new SGS-LVT approach does not assume stationarity 
and instead calculates each of the N = 117 FZ(un; z) cdfs differently by weighting the S = 10 z(us) 
with either ID weights wID(us) or SK weights wK(us) as if estimating at the yet unknown un 
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location. Using the new SGS-LVT method then, the representative FZ(un; z) cdfs change 
according to the location vector un. In expected high valued un locations, the wID(us) or wK(us) 
weights are higher for high z(us) samples and the FZ(un; z) cdf shifts lower (red in Figure 3); in 
expected low valued un locations, the wID(us) or wK(us) weights are higher for low z(us) samples 
and the FZ(un; z) cdf shifts higher.  

Calculating the locally varying FZ(un; z) cdfs as described above will subsequently account for a 
locally varying expectation or trend in the attribute of interest. We will see how this develops and 
carries through later steps. First recall the essential guideline for applying any trend modeling 
method – avoiding the tendency to overestimate the spatial variability in the trend (C(m(u), m(u)) 
in relation (2)) – and the associated ID and SK algorithm changes to respect this guideline. 
Indeed, this same principle is relevant here when calculating the wID(us) or wK(us) to locally 
adjust the FZ(un; z) cdf. For both ID and SK, a global search is used retaining all S sample data. 
The amount of variability in the trend or the C(m(u), m(u)) term can then be dialed in with the ID 
weighting power and SK variogram model.  

Figure 4 illustrates the effect increasing the distance power (IDP) for the ID scheme and 
decreasing the continuity in the variogram for the SK scheme has on the locally varying 
representative FZ(un; z) cdfs. For IDP nearly zero and virtually nugget effect variograms, the set 
of w(us) weights are nearly equal at all un locations, the assumption of stationarity is strong, and 
the variation between FZ(un; z) cdfs is minimal. For IDP approximately equal to 0.5 and 
variograms with approximately 30% nugget and range equivalent to roughly half the domain size 
½|D|, the set of w(us) weights change according to un location, the assumption of stationarity is 
relaxed, and the variation between FZ(un; z) cdfs increases. For IDP greater than 1.5 and 
variograms with less than 15% nugget and more than ½|D for the range, the w(us) weights change 
drastically with un location, the assumption of stationarity is ignored, and the variation between 
FZ(un; z) cdfs is significant. 

Step IV: Perform a Gaussian transform of all relevant z(us) sample data and previously simulated 
values z(l)(un) found within some predefined search space using the local FZ(un; z) cdf calculated 
in the prior step as a reference distribution.  

The Gaussian transform of a sample z(us) or previously simulated node z(l)(un) is obtained by 
matching its FZ(un; z) cdf value to the cdf on a standardized Gaussian distribution GY with mean 
of zero and standard deviation and/or variance of one: 

 ( ) ( )( )-1 ;=u uY Z ny G F z  (5) 

The blue arrow in the top of Figure 5 illustrates this normal score transformation. The set of 
normal score local conditioning data is denoted y(uc), c = 1,…, C. Note the changing FZ(un; z) 
with location will alter the set of data values y(uc) retained for subsequent steps even when the 
same z(us) and z(l)(un) data are found within the search.   

Step V: Build the local conditional cumulative distribution function (ccdf) with SK using the 
y(uc) normal score data from the previous step. The standardized variogram model is inferred 
from only the original z(us) sample data. The resulting Gaussian ccdf, completely parameterized 
by the SK estimate y*(un) and standard deviation σ*(un), is denoted GY(un; y|C). 

Step IV: Draw a simulated value y(l)(un) from the local ccdf GY(un; y|C). 

Step VII: Back transform the Gaussian y(l)(un) simulated value to its real unit value z(l)(un) 
through the inverse local cdf FZ

-1(un; z) as follows: 
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 ( ) ( )( )( ) -1 ( )=u ul l
n Z nz F y  (6) 

This transformation is represented by the red line in Figure 5. Note the changing FZ(un; z) cdf 
with location will result in different z(l)(un) simulated values even when the same normal score 
simulated value y(l)(un) is calculated.  

Step VIII: Add the simulated value z(l)(un) to the pool of conditioning data; 

Step IX: Proceed to the next unknown un location according to the previously established random 
path and loop over steps III to VIII until all N grid nodes have been visited and simulated. 

Step X: Repeat steps II through IX to construct multiple l = 1,…, L realizations.  

Example 

The grades in this example are from a gold deposit. There are 67 available gold samples (oz/t) 
located on a 2D easting-elevation XZ cross section. Figure 6 shows a histogram and location map 
of the samples. The gold grade distribution is positively skewed with a mean and variance of 1.36 
and 1.72, respectively. The location map reveals a strong non-stationarity or trend of decreasing 
gold concentration with depth. There is then definitely a need to incorporate a model of the trend 
into the geostatistical simulation of gold grades since there is insufficient data for reproducing the 
trend automatically. 

For reference, a trend model is generated with a global simple kriging estimation scheme. Three 
different trend models are created at a 2 x 2m resolution and shown in Figure 7 representing a 
high (left), medium (middle), and low (right) amount of variability. These models are built using 
a variogram with zero, 10%, and 50% nugget effects, respectively. The decision to choose one 
trend model over another is subjective. These trend models are subsequently used as different 
reference trend models to compare the ability of the SGS-LVT and SGS algorithms to reproduce 
the trend. 

Variography was performed using the normal score values of the 67 gold sample data. The best 
correlation and principle variogram direction is along the 45o direction in the XZ plane; the minor 
variogram direction is then 135o. Figure 8 shows the final variogram points and models for both 
the 45o (red) and 135o (blue) direction. The analytical form of the final variogram model is: 

 
o o45 45
o o135 135

a 80m a 400m
a 60m a 60m

( ) 0.35 0.55 ( ) 0.10 ( )= =
= =

= + ⋅ + ⋅h h hγ Sph Sph  (7) 

The SGS algorithm is first implemented for comparison to the SGS-LVT approach. The first 
three realizations and the average of 20 realizations are all shown in Figure 9. Notice the poor 
reproduction of all the trend models in Figure 7 especially away from data and past the range of 
correlation represented by the variogram model in Figure 8. This confirms the need for explicitly 
incorporating a trend model into the simulation. 

Figure 10 shows the results of the SGS-LVT method using each level of trend variability in 
Figure 7. The same zero, 10%, and 50% nugget effect variograms and global kriging routine are 
used to construct the trend models in Figure 7 are used here to calculate the wK(us) weights for 
locally adjusting the FZ(un; z) cdfs. The first three realizations and the average of 20 realizations 
are shown for the high (top row), medium (middle row), and low (bottom row) trend variability 
cases in Figure 10. Notice here the additional control exerted by the locally varying FZ(un; z) 
transformation tables on the grades away from data and past the range of correlation represented 
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by the variogram model in Figure 8. At each level of variability in the trend, the SGS-LVT grade 
model satisfactorily reproduces the trend. 

Conclusion 

The SGS-LVT method is a robust simulation-based algorithm capable of accounting for large-
scale trends.  The methodology and implementation involves a straightforward modification of 
the traditional SGS algorithm.  The amount of variability allocated to the trend is tuned in by the 
weights used to calculate the local FZ(un; z) cdfs.  An increasingly random spatial law is used for 
calculating the FZ(un; z) cdf weights to decrease the influence of the trend and approach the 
classic assumption of stationarity.  The trend is automatically integrated into the simulated values 
through the locally varying FZ(un; z) forward transformation for y(uc) conditioning data and back 
transformation for z(l)(un) simulated values. 
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Figure 1: An illustration of the trend m(u) and residual R(u) components of the Z(u) RF for a 
fining upward porosity profile located along the dark vertical . An unestimated vertical string of 
20 grid cells is also shown a distance and direction vector h away from the porosity profile.  

 

 
Figure 2: Illustrating the establishment of a random path through a simple 3 x 3 grid using a 
basic uniform random number generator. 

 

 
Figure 3: The concept of locally varying representative FZ(un; z) cdfs. 
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Figure 4: The control of increasing inverse distance powers and spatial correlation in calculating 
the w(us) weights on the variation of local FZ(un; z) cdfs between un locations. 

 
Figure 5: Illustration of the normal score transformation for y(us) conditioning data (blue) and 
the back transformation of y(l)(un) simulated values to real unit z(l)(un) simulated values. 

 
Figure 6: The statistical (histogram - left) and spatial (location map – right) distribution of gold 
grade used in the example. 
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Figure 7: Three trend models with low (left), medium (middle), and high (right) variability 
created with a global simple kriging scheme. The color scale is the same in Figure 6. 

 
Figure 8: The experimental and model variogram for the major (45o/red) and minor (135o/blue) 
directions. 

 
Figure 9: The first 3 SGS realizations and average over 20 realizations showing poor trend 
reproduction. 
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Figure 10: The first 3 SGS-LVT realizations and average over 20 realizations for the high (top 
row), medium (middle row), and low (bottom row) trend variability cases showing sufficient 
trend reproduction. 

 


