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Summary. Two averaging dgoritbms are proposed for determining block effective absolute permeability. The experimental relation-

ship between the effective permeabdity, the volume fraction of shale, and tie anisotropy of the shales is tirst observed through repeated

flow simulations. A power-averaging mcdel and a percolation model are proposed to ~t tbe experimentally observed relationship. The

power-averaging model prqvides a surprisingly easy and efficient way to cafculate block effective absolute permeabti~. A simple graph

is given LO determine the averaging power from the geometric anisotropy (aspect ratio) of the shafes for both vertical and borizordal

steady-state flow. The effective absolute permeabiky can then be calculated with the averaging power, the volume fraction of shale,

and the com~onent sandstone and shale permeabilhies. The effective permeability of a sandstonelshafe sequence, is affected when the

shales are large with respect to the size of the gridblock. A correction for large sb+es relative tp small gridblccks is also proposed.

[ntroductlon

One god of reservoir engineering is to develop reseNoir-

m~ement plans to achieve optimal recove~ under certain eco:

nonuc constr?mts. Reserv6ik simulation provides tie maps to Pr-

form this optimization by predicting recovery before p~duction.

The simulation programs solve mathematical equatiom that dewzihe

the flow of fluids through a numerical mcdel of the reservoir. This

papq considers tie problem of building an accumte numeric-al model

of absolute permeability.

The problem is difficult because flow-simulation progrzyns im-

plicitly assume that each gridblwk is homogeneous. In @ity, how-

ever, the reservoir unit that each gridblock represents is ~ely

homogeneous. Therefore, to describe the reservoir accurately, it

is necessary to define effective properties that represent the small-

scale heterogeneity found v@ldn each gridblock. This task is not

too difficult if the reservoir is relatively homogeneous. Unfortunat&

ly, in the most common clastic reservoir, a sandstone/shale se-

quence, there are severe discontinuities. The flow’ tWIspOrt

properties within the constituent shales and sandstone differ

drastically.

The sadstone matrix contains the movable fluids, while s&les

nmvide obstacles for fluid flow.’ Neither the sandstone nor the shales

he homogeneous. The impact of the heterogeneity within the sand-

stone and sbafe, however, is not as imp.xbmt as that of the transi-

tion between the sandstone and shale. 1-5 The study presented here.

wifi consider the sole Memgeneity in!mduced by the transition be-

tween the two rock types.

The impact of+e shales on the blink effective absolute permea-

bility will @end on the volume and spatial distribution of the shales.

As the volume, V,k, incrsases, the effective absolute permeability

decreases. Other important factors are the shape and orientation

of the shales with respect to the direction of fluid flow. The shales

have the most impact on vertical flow and the least impact on

horizontal flow.

When the shales within a reservoir can be correlated between

welfs, the reservoir is essentially separated int~ distinct layers that

should be. handled wpamtely in the simulation program. The shales

that must be accounted for by averaging are tie ones that are dis-

continuous between wells. These discontinuous shales can signifi-

cantly aff~t reservoir performance.

Discontinuous shales can be mcdeled by stochastic processes. To

study the effect of”discontimous or stochastic shales on the block

effective absolute permeabtity, varioui sandstonelshale sequences

were sinudated and single-phase steady-state flow simulations were

performed to obtain effective permeabilities. The relationship be-

tween the resultant effective permeability and the volume fraction

of shale was then obsewed for various shafe geometies. Two

models for the averaging process will be considered a power-

average and a pe.rccdation-themy-based mcdel. The resuftant mcdels

can be applied to real reservoirs to estimate effective absolute per-

meabi!i~.
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Calculating Effective Absoiute Permeability

The sandstone/shale sequence is modeled as a three-dimensional

(3D) @d network where each @dblock is either sandstone or shale.

A particular sandstonelshafe sequence is created by adding shales

of a given geometry and orientation until a specified target volume

fraction is met. Shales am assumed to be ellipsoids of equal size

and are positioned independently of other shales. The shale geom-

etry may look quite complex because of overlapping of the s@fe

units and truncation of the shales, on the boundary of the grid net-

work. These effects are illustrated in Fig. 1, which shows two

horizonti and two vetical sections from a particular sandstonelsbale

configuration. ,_

After the sandstonelshale configuration is created, the effective

permeabili~ is found by observing the steady-state flow rate for

an applied pressure gradient. The commercial flo!y simulator

ECLIPSE has twn used to deterndne the steady-state flow rate. The

block effective permeabifiq’ can then be calcidated directly from

DaIcy’s law. The outlined procedure can be repeated with differ-

ent volume fractions of shale. Thus, the relationship between the

effective permeability and tie volume fraction of shale is empiri-

cally observed rather t-ban analytically derived.

The relationship between the effective permeability and tie

propotion of shafe for small isotxopic shales (i.e., each shale is

the size of an elementrd cubic grid unit) is sbow~ in Fig. 2, The

permeability of each gridblock in the 20x20x 10 network is as-

signed either a sandstone permeability (1,000 md) or a shale per-

meability (0.01 md) before flow simulation. The three tradition?

averaging prccesses (the arithmetic, geometic, and harmonic aver-

ages) pe shown for reference. Although none of the three COnWn-

tionally used averages adequately represents the effective

permeability, a clear functional relation appears between the ef-

fective permeability and the volume fracdon,of shale for Vh <0.4.

Conmimdy occurring sb?+les are higfdy anisotropic and are not

spatially uncorrelated as in the previous simulation. Figs. 3 ~d

4 show the resti~ of modsls constructed for directions parallel and

Fe~ndicti= to the major anisotropy. A 10:1 horizontal-twvertical

anmotmpy ratio WF considered for the shale geo”metq’, with g

equal range in all horimntaf directions. The horizontal permeabil-

ity (parallel to ~e major direction of continuity) is consistmtfy great-

er than the verticaJ perrneabi3ity. The arithmetic average appears

to represent the hori&t.X perm&bility adequately for shale volumes

<40 %. The verticaf permeability also appears ckarly related to

the volume fraction of shak for V,h < 40% but cannot be modeled

with conventional averaging techniques. The numericaI results

presented in Figs. 2 @rough 4 suggest that an averaging process

can be defined that varies continuously witi the degree of shale

condnui~.

Modeling the Averaging Process

Two different techniques @wer averaging and a percolation model)

are presented to model the observed behavior between the effm-

tive permeability and the volume fraction of shale.
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Fig. l—Two horizontal and fwove!tical cross sections of a

simulated sandstonelshale ?equence are shown. Note the

$omplex geometry created by overlapping and truncation of

the shales. The dimensions of an elemental shale unit am 5 x 5

in the x-y directions and t in the z (vertical) direction.
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~i9. z—k. VS. Vti. Shales are added randomly to a reservoir

yid (20x20x10). k. Is then calculated by flow slIIIUlaflOn.

rhe three common averages are shown for reference. Note

!he clear relation between k. and V.h for V& c 40% and the

>ercolafhm behavior near the critical threshold V.~. = 0.69.

Power Avemglng. One straightfommrd approach is to model the

effective permeability, k,, as a power average of the component

pmmeabilities:

ke=[V$hkfh+(l- V,h)k&]liW, . . . . . . . . . . . . . . . . . . . .. . ...(1)

where kti and k,, = shale and sandstone p$rmeabilities, respecdve-

ly, Y,h =volume fraction of shale, and m= some averaging pow-

er. Korvin6 presents the axiomatic foundations of the method and

discusses vtious applications in the earth sciences. Journel et al 7

and Dmtsch8 show power averaging to be a viable approach to es-

timate effective absolute permeability.

The effective permeabtity, k., of a 3D network of blocks, each

with a known permeability, may take any value between the har-
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Fig. 3–k0,H vs. V,h. Ani?otropic shales have betm added to

i sandstone matrix to simulate a sandstonelshale sequence

(the network size is 20X20X 10). The shales have e.Circular

horizontal cress section 10 units In diameter and a l-unit ver-

tical thickness. Thus, the shales have a 10:1 horbmrital-to-

vertlcal anisotropy. The three common averages are shown

for reference. Note the clear relatlon between k. and V* for

v8h <40%.
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‘lg. 4-k.,v vs. VM. The simulation setting 15 the same as

‘or Fig. 3. fdote the clear relation between k. and Vti for

Y@ <40% and the difference between the&a results and the

,esults for horizontal flow shown In Fig. 3.
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h.rlz.nt.l flow
!0,,

.\

\

:
.> \

; ..\

\

P,r4*ian Med4 (solid hcl

;
. . . -0.90. I - I.M... - 1.1s

\

\

\

& \
~.

\*?;

\~

\%

1,0, ! :/.; ‘o!,’ ‘,,\: ‘,,,’ \,\; I,, $tlr, ‘.!:41 !., !

h,”.. ,.,,,.. or S“,!. ““ “’”

~.
Pow. Awwfi k< = v,, k?h + (] . v.]. k?,

1’

;

Pwmlxkm Modd k, = k,, c ( V,,, V,, Y

Hg. 64$ “ VS. !/4. This ‘graph shows the -me reSUoS =

Fig. 3 with more detail for V,ti < 40%. The power-average

model and the percolation-theory model are again shown to

fit the experimental results well.

momic and arithmetic average of the block penneabilities, depend-

ing on theii spatial arrangement. The lower-bound harmonic average

can be see” as a power average with a = – 1., Similarly, the upFer-

bourid arithmetic average can be seem as a power average with the

power w=+ 1. The genmetic average is ob!ained with a power

u =0 average (through a limited expansion, because I?q. 1 is not.

de~ned for u =0). Therefore, the effective permeability is given

by a power o average with a power value co between -1 and +1.

The problem of &termi@g the effective @neabilhy is nOW Sokd

if the volume of shale, the component sandstone and shale perme-

abilities, and the averaging power are !mown.
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Fig. E—The relationship tietween the averaging power co and.

the anisotropy Fan,. The blocks used inthe simulation are

20 x2o x 10. The right side is for horizontal flow and the Iejt

#de Is for vertical flow. if the anisotropy of the shal~ can

be inferred, then the correct averaging powers can be read.

Eq. t can then be used to provide an estimate for the block

k . .

Percofaticm Modef. Percolation theory considers tie general pmb

Iem of fluid flowing through some heterogene& medium.g. Sub-

surface flow of water or oil tbmugh a sandstone/shale sexpence

is one example, and the flow of electricity through a resistor uet-

work is another example. On the basis of numerical results,

Kirkpahick10 proposes a power Iaw to describe tie normalized

electrical conductance of a reSistor network. 10 tie context of ef-

fective absoluk pa-mabii~, fikpatrick’s relationship can be writ-

ten as

kJk,$=c(v,~c-v#, . . . . . . . . . . . . . .. . . . . . . . . . . . . ...(2)
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:al flow. Knowing Fml, the appropriate parameters for Model

2 can be read.

where V,Ac =crhic~ volume fraction of shale, t=an exponent (near

1.5 to 2.0), and c=a proportionality constant (near 1.5 to 2.0). The

critical shale fraction is the maxinum amount of shale beyond which

the flow rate wifl drop dramatically V,hc=0.69 in Fig. 2. From

Fisw. 3 and 4. we see that the critical threshold chamzes with

aysotropic sties. As the spatial continuity in the directio~ of flow

increases, so does the criticaf threshold.

The critical threshold can be pr@icted by percolation theory for

some very simple ccmtigurations. For example, the critical threshold

for random, isotropic shales in a two-dimensional (2D) spacel 1 is

V,ti =0.5. For spatia12y correlated heterogeneities in a 3D space,

percolation-theory results are not yet established. The percolation

model (Eq, 2) wilf be extended to cases where no theoretical

threshold vahie exists, and the corresponding parameters (V$hc, c,

and t) will be fitted to the experimental results.

Some Numerical Results. Fig. 5 shows the re.mdts of using the

power-average and percolation models. Regression analysis indi-

cates a good tit between the modeling averages and the empirical

sandstotisbale permeability data, Figs. 6 and 7 show the best-fitting
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models for the anisotmpic results p,=sented in Figs. 3 and 4. f.n

both cases, the power-average and the percolation models provide

ve~ good approximations to the numerical resufts.

Additional cases with different anisotropy ratios were considered

to establish the relation between the model mm.meters (CO, V,I,.,. .
c, and t) and the anisotropy ratio. The anisotropy ratio,, Fm; , is

defined as the longest sh~e dimension (horizontal) divided by the

shortest shale dmension (vertical):

Fmf=Lti,RIL,h,v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(3)

Fig. 8 shows how the avemging Fower, w depends on the anisotropy

ratio, Fmi. The averaging power for horizontal flow and vertical

flow are shown on opposite sides of tie graph. As the anisotropy

ratio increases beyond some maximum, tie averaging power is seen

w change very little. If Fmt went to CO, the arithmetic (a = 1) and

harmonic (u= – 1) averages would be found for horizontal and ver-

tical permeabii~, respectively. These knit cases, however, would

correspond to a perfectly layered sandstoneJsha2e sequence, which

is not of interest to this study. The averaging power for vertical

flow is seen to be ve~ L%I from the theoretical minimum of -1.

The harmonic average would be obtained when the shales are af@d

perfectly opposite the flow. ‘his n&er happens with discontinu-

ous shafes because there are always tortuous paths that the fluid

can follow through the sandstone. It appears that tie geomettic aver-

age (0=0) tmditionafly used for vertical flow underestimates the

effective verdcal pe,rmeahifity. To consider LWge tiSOKOPY mtios.

(Fan; > 11),it would be necessary to use grid sizes larger tfmm

20X20X 10. This was not possible with the computer available to

this project.

The percoladon threshold, V,~c, is a clealy defined physical

constanc therefore, it is established before the other two parame-

ters are fitted by least-squares regression. Fig. 9 shows the rela-

tionship between the percolation-model parameters (V,hc, c, and

2) and the anisotropy ratio, Fmj. fn Fig. 9, it appears that fO1

Fm. <6, both the critical threshold V,hc’and the propatimdity f.ic-

tor c vary finearly. The power t is found to be constant around 1.71

for vertical flow and to decrease sharply from 1.71 to 1.25, where

it stabihze.s, for horizontal flow. The physical interpretation of the

two parameters c and t, and thus their bebavior in Fig. 9, is not

yet understood.

3U the mecedine flow simulations. the shales were af2 considered

to be is&opic h-the horizontal pl&e. To illustrate the effect of

anisotmpic horizontal shale length on the directional permeabiMy,

the anisotropy ratio, Fro;, as defined in Eq. 3,. will be kept con-

stant at Fd = 10 and the second horizontal length will be progres-

sively reduced.
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‘i9.11—@vs. L. (the results for both horizontal and veti.

:alflow are shown). For blocks with horizontal dimensions

argerthan three times the shale length (Lo= 3), the averag-

ng power stabltizes.

When the shales are anisotropic ii the horizontal plane, the ef-

fective permeability will be different for each of tie three grid direc-

tions. Fig. 10shows tbeaveraging power tiforeach griddirection

vs. the horizontal anisotropy (recalI that Fm is fixed at 10). Note

that (1) the permeability in the direction of maximum shale con-

tinuity is the largest and the permeabtiity in the direction of mini-

mum shale continuity is the smallest and (2) the vertical permeability

increases (for a given FaPi) with increasing horizontal anisotropy.

f.n pmctice there maybe information on the directional horizon-

tal dimension of the shales. The directional permeability can then

be corrected in the manner described. One tirther correction may

be required because of the size of the shales relative m the size

oftbe simulation gridblocks.

Effect of Block Size. AH numerical flow simulations must con-

,sidera finite grid size. fn some cases, the shales wilfnot be small

whhrespecttotbe size of the gridblock. Weknowthat thee ffec-

tive properties of a bonnded medium depend on the ratio of the

autocovariance range (e.g., sizeofthe shales) to fheblock dimen-

sitin. Smith and Freeze12 discuss this for one-dmensional and 2D

flow. Desbarats3 illustrates tbeeffect for3D flow.

The dimension of the shales and the autocovariance range are

equivalent when the shale centers are located independently. This

is thetisef orthe simulations generated intbis paper. Therefore,

a dimensionless block length can be detined as the ratio of the block

length to the length of the elemental shales

LD=LblL,h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(4)

From tbenumericat results noted,3.12 itisknown tlatif LD>2

or 3, there witl be no noticeable change in the effective properties.

This would suggest that the block size should be selected greater

than three times the shale size to filter out the influence of the grid

size. This corresmnds tothenotion ofaremesentakive elemental

volume.

Fig. 11 shows how the averaging”power w varies with the block

size LD for shales ivith a fixed 3:1 anisotropy ratio (i.e., Fati =3).

1. For horizoutaf flow, the power w decreases to an asymptotic

minimum as LD becomes large. ‘fbeminimur nisreachedaround

L~=3.

2, In practice, the dimensiordess blcck length for the vertical direc-

tionisalways large (i.e., LD>lO). kFig. 11, weareseeingthe

effect of the horizontal dimensionless block length on the verdcat

flow behavior. Theaveragingpowerw increases toamaxinmtn

a.s LD becomes large (LD>3).

From this example, some general conclusions can be made re-

garding the effect of the block size. First, we see that if the block

length is less than three times the sh61e length, the effective per-

meability is affected. For horizontal flow, the effective permeabil-

ity is greater than that obtained for the “large-block” domain

SPE Formation Evaluation, September 1989
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(LD > 3); conversely, the vertical permeabtity is smaffer tkm that’ ‘

for the large-block domain. E the shales are larger than the grid-

block (i.e., LII < I), they can be handled explicitly io the flow

simulation. –

The effect has been shown for onLy one anisotropy ratio

(Fani =3). It is clear, however, that this effect wifl occur for all

anisotropy ratios. To account for this effect, a correction to the aver-

aging power is proposed

%cor=Fbu, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

where CJam,= corrected averaging power, w =Omit averaging pOw-

er correspondhg m large block, and Fb =block correction factor.

The block correction factor, Fb, can be obtained either directty

from charts or figures (e.g., Fig. 11) or from a mathematical rela-

tion of the form

Fb=l+a&D, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(6)

where a =constant that measures the amount of correction needed.

As the relative block size LD becomes large (LD > 3), the block

correction factor Fb will be equal to 1. The constant a MO be psi-

tive for horizontal flow and negative for vertical flow-e. g., con-

stant a would bi +0.60 and – 1.11 for the borizonkd and vertical

flow results, respectively, shown in Fig. 11. Fig. 12 shows the resul-

tant models.

The effect of the block dimension relative to the shale dimension

has been addressed. If the size of tbe block is smafl or if the shales

are large, the limit averaging power corresponding to large blocks

must be corrected. A negative exponential corrciction is proposed

to provide this correction.

Discussion of Results. A large block size and isotropic horizontal

shales are assumed to be re+.sonable tirst approximations. when

detaifed information about the relative block size or horizontal

anisotropy is available, however, it can be used to refine the esti-

mate of the averaging process. Both the power-average model and

the percolation-type model provide a good tit to the experimental.

resufts. However, one additional question remains: which of these

two models should be used?

There are sevemf reasons to use the power-average approach.

1. The power-average is the most parsimonious (one parameter

vs. three). A procedure that requires evacuation of a single pamm-

eter, u, is extiemely easy to implement.

2. The shale penneabihty does not have to be set to zero, as re-

quired by the percolation model.
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3. The power-averaging algorithm can be extended to a multimo-

dal or continuous distribution of permeabiMy.

The percolation model is not easily generalized to the case of

a mukimodd permeabtiv distribution. There are, however, severaf

reasons to use the percolation model.

1. The model is continuous until the percolation threshold V,hc.

This aflows esttiation of permeability for very shaly wquences.

2. Because the percolation mcdel relies on three parameters rather

than one, the model gives the lowest mean-squared error when ex-

perimental data are fitted.

The drawback of the percolation model is that three parameters

must be esfimated. Estimating the pamnetws is complicated be-

cause the estimate of one parameter will affect the choice of the

others.

Tbe power-averaging model is the simplest and most practical.

Averaging powers, w can be estimated from such charts as Fig.

8. The effective permeability can then be obtainaj from Eq. 1. The

improvements over the traditional arithmetic and geomehic aver-

ages can be appreciated from Figs. 6 md 7.

Conclusions

For sandstonelshale sequences, a major problem is that of averag-

ing tie component sandstone and shale pwmeabilities to obti blcck

effective permeabilities. Typicafly, a geometric average (o =0) is

used for verticaJ permeability and an arithmetic average (w= I) is

used for the horizontal permeability. Results from flow simulation

male it clear that this approach can be improved if the anisotropy

of the shafes is accounted for. Two models have been proposed

to account for the shale anisotropy.

The averaging process for absoIute permeability in sand-

stone/shale sequences can be modeled by either a power-average

or a percolation model. The power-averaging model is recom-

mended because of its simplicity and effectiveness. The important

aspect of this averaging problem is the presence of two rock com-

ponents. The preliminav results of this research require certain

Iimiting assumptions: the sandstone and shales are assumed to be

homogeneous, and the shafes arc assumed to be located indepen-

dently from each other with the same elliptical shape and orienta-

tion. By making the averaging process depend on the spatial

anisotropy, more information can be used and a better estimate of

effective permeability in sandstone/shale sequences can be obtained.

Thus, the reservoir model will be more accurate and predictions

from flow-simulation programs ~e more likely to reflect fumre

reservoir performance.

Nomenclature

~ = mn$~t “~~d fOr blO~k.&e CO~Cti,3D

c = pq~*i~mfi@ Constmt

Fmi = anisotropy ratio

Fb = block-size correction factor

ke = block effective permeability, md

k,h = shale permeability, md

k,, = sandstone permeability, md

Lb = block length

LD = dimensionless block length

L,h = shale length

t = percolation-model parameter

V.h = volume fraction of shafe

V,hc = critical volume fraction of shale

o = averaging power between – 1 and + 1

am, = averaging power corrected for block size

Subscripts

H = horizontal

f. = re~”e

V = vertical
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3. Thepower-averaging dgorhhmcaobe extended to amuldmo-

dal or continuous distribution of permeability.

The percolation model is not easily generalized to the case of

a mufdmcdal Perm@bility distribution. There are, however, several

reasons tousethe percolation model.

1. The model is continuous until the percolation threshold V,hc.

This allows esttiation of permeability for ve~ shaly sequences.

2. Because the percolation mcdel relies on three pafametefs rather

than one, the model gives the lowest mean-squared error when ex.

perimental data are fitted.

The drawback of tbe percolation model is that three pammeters

mtmtbeestbnated. Estimating tbe parameters is complicated be-

cause the estimate of one parameter wilf affect the choice of the

others.

The power-averaging mcdel is the simplest and most practical.

Averaging powers, u, can be estimated from such charts as Fig.

8. The effective permeability can then be obtained from Eq, 1. The

improvements over the traditional arithmetic and geometic aver-

ages can be appreciated from Figs. .6 and 7.

Conclusions

For sandstonelshale sequences, a major problem is that of averag-

ing the component sandstone and shale permeabtities to obtain bbxk

effective permeabilities. Typically, ageometric ayerage(to=O)is

used for vertical permeability and an arithmetic average (u= 1) is

used for the horizontal permeability. Results tim flow simulation

make it clear that this approach can be improved if the anisotropy

of the shales is accounted for. Two models have been proposed

to account for the shale anisotropy.

The averaging process for absolute permeability in sand-

stone/shale sequence8 can bemodekzl byeither a power-average

m a percolation model. The pewer-avefaging model is recom-

mended because of its simplicity and effectiveness. ‘The important

aspect of this averaging problem is the presence of two rock com-

ponents. Thepreliminary results ofthisresearch require certain

biting assumptions: the sandstone and shsles are assumed to be

homogeneous, and the shales are assumed to be located ind~en-

dently from each other with tie same elliptical shape and orienta-

tion. By making the averaging process depend o“ the spatial

anisotro~, more information can be used and a better estimate of

effective psrmeabilhy in sandstonekbale sequences can be obtained.

Thus, the reservoir model will be more accurate and predictions

from flow-simulation programs 8fe more likely to reflect fimure

reservoir performance.

Nomenclature

a = constantused .forblock-siz.e correction

c = proportionally constant

Fti = anisotropy ratio

Fb = block-size correction factor

k, = block effective permeability, md

k,b = shale permeability, md

k,, = sandstone permeability, md

Lb = block length

LD =dimensionless block lenmti

L,h =shalelengtb

r = percolation-model parameter

V,k =volurne fraction of shale

V,hc =critical volume fmction of shale

@ = averaging power between – 1 and +1

o%.., = averaging power corrected for bbxk size

Subscripts

H = horizontal

r = relative

V = vertical
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Figure 3: Horizontal effective absolute perme~ility K, versus shale vo~ume
fraction V,h. Antitropic shales have been added to a sandstone matr~ to
simulate a sandstone/shde sequence (the network size is 2OX2OX1O).The shales
have a circular horizontal cross-section 10 uniks in diameter and a 1 unit vertical
thickness. Thus, the shales have a 10:1 horizontal to vertical anisotropy. The
three common avemges (Arithmetic, Harmonic, Geometric) are shown for

reference. Note the clear relation between Kc and V,k for V,h < 40V0.
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bea viable approach to this problem by Journel, et.al., 1985, and Deut@ 1986.

The effective permeability K4 of a three dimensional network of blocks, each with a

known permeability, may take any value between the harmonic and arithmetic average of the

block permeabilities depending on their spatial amangemmL The lower bound hamonic

average can be seen as a power average with @= -1. Similarly, the upper bound arithmetic

average can be seen as a power average with the power 0 = +1. The geometric average is

obtained with a power 6) = O average (through a limited expansion since equation 1 is not

defined for o = O). Therefore, the effective permeability is given by a power @ average with a

power value @ between -1 and +1. The problem of determining the effective permeability is

now mapped into tlw problem of determining the proportion of shale and the averaging power.

Percolation Model:

Percolation theory was introduced by Broadbent and Hammemley (1957). Fe-colation

theory considers the vq general problem of fluid flowing t.hmugh some heterogeneous

medium. The first example studied by Broadbent and Hamnwsley (1957) was the flow of gas

through porous carbon granules. Other examples of fluid flow include the flow of electrons in

heterogeneow semiconductors or ti flow of messages in an unreliable network. In this paper,

the fluid is considered to be water or oil and b medium a sandatonehdude sequence.

‘Ike are two ways to describe the randomness of flow. The fluid could be considered

random in which case one is considering a diffusion process. Alternately, if b medium is

considered as the underlying random mechanism a percolation jxoccss is being considered.

Subsurface flow is primarily a percolation process and percolation theory is directly applicable.

An excellent introduction and sumrmuy of percolation theay can be found in Hammersley and

Welsh (1980).

On tie basis of numerical results, Kirkpatrick (1973) propwwd a power law to describe

the normalized electrical conductance of a resistor network near the percolation thmshoki. ‘l%e

flow of fluid through a sandstone/shale network is analogous to the flow of electriaty through

a resistor network in which some resistors have been removed (sandstone replaced by shales).

The relationship between the normalized elecaical conductance and the proportion of non-

conductive sites (Kirkpatric~ 1973) may be rewritten in our amtexc

(2)
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where v~k is the crit.kd MC 11’action, t is ~ ~xponent (new ~.5-2.0), ~d c is

proportionality constant (near 1.5-2.0)0 The critical shale fraction is the maximum amount

a

of

shale beyond which the flow rate will drop dramatically: VJh = 0.69, on Figure 2. From

Figures 3 and 4 we see that the critical threshold changes with idioGo@c shales. As the

spatial continuity in the direction of flow increases so does the critical thmhold.

The critical threshold can be predicted by percolation theory for some very simple

configurations. For example, the critical threshold for random, isotropic shales in a 2-

dimensional space is V~k = 0.5 (Sykes and Essm, 1964). For widly Comlated

heterogeneities in a 3 dimensional space, percolation tiory results are not yet established,

alrhough simulation results similar to the results presented here exis~ The percolation model

(2) will be extended to cases where no theoretical threshold value exista and the corresponding

p~~etem (vsk, c, t) will be fitted to the experimental fesuks.

Some Nu.xericaJ Results:

Two different approaches have been considered to model the relationship between

effective permeability and the volume fhction of shale:

1. The power averaging approach which is characterized by a single parametm ‘he

averaging power m

2. A percolation model which calls for three parameters: the percolation threshold V~k, an

exponent t, and a proportionality constant c.

We am interested in determining the parameters that make each model fit the

experimental data best This can be done by the standard least squares qmssion procedure.

Figure 5 shows the fitof both models to the spatially uncomelated data presented on Figure 1.

Both models achieve a very close fit.

Figures 6 and 7 show the best fitting models for the anisotropic xesulta presented on

Figures 3 and 4. In both cases the power average and the percolation mtiel provide very good

approximations to the numerical resuhs.

Additional cases, with different anisotropy ratios, were considered to estahlish the relation

between the model p:uameters (co, VJk, c, t) and the anisotropy rstio. The anl’~’troPYmtio ~ is

defined as:
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longest shale dimension
shortest shale dimension

(3)

In all our experiments the longest shale dimension corresponds to horizontal directions

and the shortest shale dimension to the vertical direction. The effect of horizontal anisotropy is

addressed in Appendix B. Figure 8 shows how the averaging power (o) depends on the

anisotropy ratio (k). The averaging power for horizontal flow (flow in the direction of shale

continuity) and vertical flow (flow perpendicular to the plane of shale continuity) am shown on

opposite sides of the graph As the anisotropy ratio increases beyond some maximum, the

averaging power is seen to change very little. If % went to =, the arithmetic (o= 1) and

harmonic (al = -1) averages would be found for respectively horizontal and vertical

permeabilky. However these limit cases would correspond to deterministic shales which are

not of interest to this study. ‘Ile averaging power for vertical flow is seen to be very far from

the theoretical minimum of -1. The harmonic average would be obtained when the shales are

aligned perfectly opposing flow. This never happens with discontinuous shales since there are

always tormous patha that the fluid can follow through the sandstone. It appears that the

geometric average (a= O) traditionally used for vetical flow underestimates the effective

vertical permeability. Kgure S wrresponds to a finite netwm Ksi~ of 2OX2OX1O.In appendix B

h effect of the relative shaIe vemua utwork sim is addressed. To consider large anisotropy

ratios (b7) it would be Mcessary to use grid sizes larger dun 2OX2OX1O.This was not

possible with tk computer available to this project.

When fitting the percolation model, the percolation threshold is established prior to fitting

the other two parameters by least squares regression. The percolation threshold is a clearly

defined physical constant and a regression procedure that would fit all three parameters

simultaneously would not honor this fact. Figure 9 shows the relationship between the

ptmolation model parameters (V,b c, t)and the anisotropy ratio (k). On Figure 9 it appears

that for anisotropy ratios k less than 6, both the critical threshold V& and the proponionality

factor c vary lineariy. The power t is found to be constant around 1.71 for vertical flow, and to

decrease sharply Iiom 1.71 to 1.2S where it stabiliws for horizon ‘al tlow. The physical

interpretation of the two parameters c and t and thus their behavior on Figure 9 is not yet

un&rstood.
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Two different sensitivity analysis are presented in the appendices To summarize the

results:

1. The e&ct of bfock size: For a iixed shale size the effect of changing the block (network,

dimensions has been studied. If the shale size is not small with respect to the size of the

block then the effective permeability must be adjusted. This comection is required if the

shale length is greater than one third of ttw block length. Details of this cornxtion are

given in appendix A.

2. The efed @ horizontal anisotropy: For a comt.ant k as defined in equation 3 the effect of

anisotropic horizontal dimensions has been studied. Another correction can be applied if

the horizontal anisotropy of the shales is known. This correction is discussed in appendix

B.

Assuming a large block size and horizontal isotropy are reasonable first approximations.

However, when detailed information about the relative block size or horizontal anisotropy is

available, it can be used to refine the estimate of the averaging process. Both the power

average model and tiM percolation type model fit well the experimental results. However, one

additional question remainx

Which of these two models should be used? Them are applications for both models, and

reasons to choose one model over tb othw

Rearons to use the power average approach:

● The power average is the most parsimonious { 1 parameter versus 3). A procedure that

requires evaluation of a single parznne% (toj is extremely easy to implemenL

● The shale permeability does not have to be set to zero as is required by the percolation

model.

● The power averaging algorithm can be exten&d to a multimodal or continuous

disrzibution of permeability. The percolation model is not easily generalized to the case of

a multimodal permeability distribution.

Reasons to use the percolation modei:

● The model is continuous until the percolation threshold. This allows e@imation of



permeability for very shaley sequences.

● Because it relies on 3 parameters rather than one, the percolation mmlel gives rhe lowest

mean squared emr when fitting the expaimental data.

The drawback of the percolation model is that three parameters must be estimated

Estimating the parameters is complicated because the estimate of one parameter will affect the

choice of the others.

The power averaging model appears to be the simplest and most practical. Averaging

powers can be estimated from charta such as Figure 8. Then the effective permeability can be

obtained from equation 1. TIE improvements over the eaditional arithmetic and geometric

averages can be appreciated fkom Figures 6 and 7.

Conclusions

For sandatontdshale ~uences, a major problem is that of averaging the component

sandstone and shale permeabilities to obtain block effective permeability. Typically a geometric

average @= O is used for vertical permeability and an arithmetic average co= 1 is used for the

horizontal permeability. Results from flow simulation make it clear that this approach can be

improved if tlM anisotropy of the shales is accounted for. Two models have been proposed to

account for the shale anisotropy.

The averaging procas for absolute permeability in sandstone/shale sequences can be

modeled by either a power average or a percolation model. The power averaging model is

recommemied because of its simplicity and effectiveness. The important aspect of this

averaging problem is the p xence of two rock components. The preliminary results of this

research require certain limiting assumptions: the sandstone and shales are assumed to be

respectively homogeneous, and the shales are assumed to be loca’ed independently ffom each

other with the same elliptical shape and orientation, however, these ellipsoids are aUowed to

overlap thus gemxating spatial correlation By making the averaging process depend on the

spatial anisotropy more information can be used and a better estimate of effective permeability

in sandstone/shale sequences can be obtained. Thus, the reservoir model will be more accurate

and predictions tim flow simulation programs are more likely to reflect future reservoir

performance.
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Nomenclature

V.h = volume fiction of shale

KC= block effective permeability (red)

KM- sandstone permeability (red)

K,h = shale permeability (m~

0. averagiug power E [ -1, +1 ]

V$~ = critical shale volume tiction

t= a percolation model parameter

c = proportionality constant (unitless)

B - dimensionless block length

o= = averaging power corrected for block size

b - block size correction factor
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Appendix A: The Effect of Block Size

All numerical flow simulations must consider a finite grid size. In some cases the shales

will not be all ~mull with respect to the size of h grid block. We know that the efktive pro-

perties of a bounded medium depend on the ratio of the autocovariance range to the block

dimensioa This is discussed by Smith and Freeze (1979) for one and two dimensional flow.

For three dimensional flow this effect is illustrated by Desbarats (1987).

The size of the shales and the autcxmvariancerange are equivalent when the shale centers

are located independently. This is the case for the simulations geze:ated in this paper. There-

fore, a dimensionless block length can be delined as the ratio of the.block length to the length

of the elemental shales:

~ = block length
shale length

(A.lJ

From the numerical results noted above (Smith and Freeze, 1979; Desbarats, 1987) it is known

that if B is greater than 2 or 3 there will be no noticeable change in the effective properties.

This would suggest that the block size should be selected greater than 3 times the shale size in

order to filter out the influencs of the grid size. This corresponds to the notion of an REV or

representative elemental volume.

In this appendix we are not concerned with grid blocks tix are larger than an REV (i.e.,

B > 3). Neither are we comxrned with grid blocks smaller than the size of the shales (i.e., B c

1) which would correspond to deterministic shales. ‘I’hemain concern is for shales which are

neither small nor large with respect to the grid size (i.e., 1.0 c B > 3.0). This situation will

occur in practice when some of the shales am not small with respect to the size of the grid

blocks. Therefore, the effect of the block size must be known and handled.

Figure A.1 shows how the averaging power o varies with the block size B for shales

with a tixed 3:1 anisotropy ratio (i.e., k = 3). Some interesting remarks:

● For horizontal flow the power o decreases to an asymptotic minimum as B becomes

large. The minimum is reached around B=3.

9 Practical dimensionless block lengths for the vertical direction are always lwge (i.e.,



.

.
-

●

Horizontal Flow
● ● ** 99*

i
i

4

Vertical Flow 1

ax k ● 5

WE ~72f)4 r.

Figure Al: The averaging power w vemus the relative horizontal bkwk size (B).
The results for both horizontal and vertical flow are shown. For blocks with
horizontal dimensions larger than three times the shale length (B =3) the
averaging power stabilizes.



-, -

4

size.

Sn 1726hi

-23-

.%10). On Figure A. 1 we are seeing t!!e effect of the horizontal dimensionless block

length on the vertical flow behwior. The averaging power co increases to a maximum as

B beCOItMS large (-3).

From this Figure we can make some general conclusions about the ef%ct of the block

FirsL we see that if the block length h, less rhan 3 times the shale length the effective

permeability is affected. For horizontal flow the effective permeability is greater than that

obtained for the “large block” domain (*3), conversely b vertical permeability is smaller

than that for the ‘Urge block” domain.

The effect has been shown for only one anisotropy ratio ~3. However, it is clear that

this effkct will occur for all anisotropy ratios. To account for this effect a correction to the

averaging power of the following form is proposed:

C)a= b”(J) (A.2)

where 01= is the corrected averaging power, o is the limit averaging power corresponding to

the large block and b is a block comection factor. The block conection factor (b) can either be

obtained directly fkom charts or Figures such as A. 1, or a mathematical relation of the

following form could be used

b=l+a”e+ (A.3)

where a is a amstant thix mcaaures the amount of correction needed. As the relative block size

B becoms hrge (B :>3) the block correction factor b will be equal to 1. The constant a will

be positive for horizontal flow and negative for vertical flow. For example b constant a

would be +0.60 and -1.11 for the horizontal flow and vertical flow results shown on Figure

A.1. The resulting models are shown on Figure A.2.

“fie effect of the block dimension relative to the shale dimension has been ad&jssed. If

the size of the block is small or if the shales are large, the limit averaging power corresponding

to large blocks must be mrrccted. A negative exponential correction is proposed to provide this

correction.
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Appendix B: The Effect of Horizontal Anisotropy

This appendix illustra~s the effect of anisotropic horizontal shale length on the

directional permeability. The anisotropy ratio k as defined in equation 3 (longest over shcxlest

shale dimensions) will be kept constant at L = 10 and the second horizontal length will be

progre~ively reduced.

When the shales are anisotropic in the horizontal plane the effective permeability will be

different for each of the three grid directions. Figure B. 1 shows the averaging power o versus

rbe horizontal anisotro~ for each grid direct.kn (recall that k is fixed at 10). Some remarks:

● The permeability in the direction of maximum shale continui~ or length is the largest and

the permeability in tlm direction of minimum shale continuity is the smallest.

● The vertical permeability increases (for a given k.) with increasing horizontal anisotropy.

In practice there may be information on the directiomd horizontal dimension of the

shales. In this case, the directional permeability can be corrected in the manner described

above.
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