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Summary. Two averaging algorithms are proposed for determining block effective absolute permeability. The experimental relation-
ship between the effective permeablhty, the volume fraction of shale, and the amsotropy of the shales is first observed through repeated
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flow simulations. A power-averaging model and a percolation model are proposed o fit the experimentally observed relationship. The
power-averaglng model proy1des a surprisingly easy and efficient way to calculate block effective absolute permeability. A simple graph
is given to determine the averaging power from the geometric anisotropy (aspect ratic) of the shales for both vertical and horizontal
steady-state flow. The effective absolute permeability can then be calculated with the averaging power, the volume fraction of shale,
and the component sandstone and shale permeabilities. The effective permeability of a sandstone/shale sequence is affected when the
shales are large with respect to the size of the gridblocks. A correction for large shales relative to small gridblocks is also proposed.

Introduction

One goal of reservoir engineering is fo develop reservoir-
management plans to achieve optimal recovery under certain eco-
nomic constraints. Reservoir simulation nr0v1des the means to per-

form this optimization by predicting recovery before production
The simulation programs solve mathematical equations that describe
the flow of fluids through a numerical model of the reservoir. This

paper considers the problem of building an accurate numerical model
of absolute permeablllty

The problem is difficuit because flow-simulation programs im-

plicitly assume that each gridblock is homogeneous. In reahty, how-
ever, the reservoir unit that each gridblock represents is rarely
homogeneous Therefore, to describe the reservoir accurately, it
is necessary to define effective properties that represent the small-
scale heterogeneity found within each gridblock. This task is not
too difficult if the reservoir is relatively homogeneous Unfortunate-
ly, in the most common clastic reservoir, a sandstone/shale se-
quence, thefe are severe discontinuities. The flow transport
properties within the constitnent shales and sandstone differ
drastically.

The sandstone matriy containg the movable finids, while Qh:ﬂps
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provide obstacles for fluid flow. Néijther the sandstone nor the shales

. are homogeneous. The 1mpact of the heterogeneity within the sand-

stone and shale, however, is not as important as that of the transi-
tion between the sandstone and shale. 15 The study presented here
will consider the sole heterogeneity intreduced by the transition be-
tween the two rock types.

The impact of the shales on the block effective absolute permea-
bility will depend on the volume and spatial distribution of the shales.
As the volume, ¥, increases, the effective absolute permeability
decreases. Other important factors are the shape and orientation
of the shales with respect to the direction of fluid flow. The shales
have the most impact on vertical flow and the least impact on
horizontal flow.

When the shales within a reservoir can be correlated between
wells, the reservoir is essertially separated into distinct layers that
should be handled separately in the simulation program. The shales
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contintous between wells. These discontinuous shales can signifi-
cantly affect reservoir performance.

Discontinuous shales can be modeled by stochastic processes. To
study the effect of discontinuous or stochastic shales on the block
effective absolute permeability, various sandstone/shale sequences
were simulated and single-phase steady-state flow simulations were
performed to obtain effective permeabilities. The relationship be-
tween the resultant effective permeablhty and the volume fraction
of shale was then observed for various shale geometries. Two
models for the averaging process will be considered: a power-
average and a percolation-theory-based model. The resultant models
canbe apphed to real reservoirs to estimate effective absolute per-
meability.
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Calculating Effective Absolute Paljmoablllty

The sandstone/shale sequence is modeled as a three-dimensicnal
(3D) grid network where each gridblock is ejther sandstone or shale.

A particular sandstone/shale sequence is created by adding shales

of a given geometry and orientation until a specified target volume
fraction is met. Shales are assumed to be ellipsoids of equal size
and are positioned independently of other shales. The shale geom-
etry may look quite complex because of overlapping of the shale
units and truncation of the shales on the boundary of the grid net-
work. These effects are illustrated in Fig. 1, which shows two
horizontal and two vertical sections from a particular sandstone/shale
configuration. _

After the sandstone/shale configuration is created, the effective
permeability is found by observing the steady-state flow rate for
an applied pressure gradient. The commercial flow simulator
ECLIPSE has been used to determine the steady-state flow rate. The
block effective permeability ean then be calculated directly from
Darcy’s law. The outlined procedure can be repeated with differ-
ent volume fractions of shale. Thus, the relationship between the
effective permeability and the volume fraction of shale is empiri-

callv abserved rather than analvticallv derived,

Cauy OOSCIVOC Talnol Wiall Qlldnyiially ol

The relationship between the effective permeability and the
proportion of shale for small isotropic shales (i.e., each shale is
the size of an elemental cubic grid unit) is shown in Fig. 2. The
permeability of each gridblock in the 20 X20x10 network is as-
signed either a sandstone permeability (1 000 md) or a shale per-
meabmty (0.01 md) before flow simulation. The three tramuona.t
averaging processes (the arithmetic, geometric, and harmonic aver-
ages) are shown for reference. Although none of the three conven-
tionally used averages adequately represents the effective
permeability, a clear functional relation appears between the ef-
fective permeability and the volume fraction of shale for ¥, <0.4.

Commonly occurring shales are highly anisotropic and are not
spatially uncorrelated as in the previous simulation. Figs. 3 and
4 show the results of models constructed for directions parailel and
perpendicular to the major anisotropy. A 10: 1 horizontal-to-vertical
anisotropy ratio was considered for the shale geometry, with an
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ity (parallel to the major direction of continmity) is consistently great-
er than the vertical permeability. The arithmetic average appears
to represent the horizonta] permeability adequately for shale volumes
<40%. The vertical permeability also appears clearly related to
the volume fraction of shale for ¥, <40% but cannot be modeled
with conventional averaging techniques. The numerical results
presented in Figs. 2 through 4 suggest that an averaging process
can be defined that varies contmuously with the degree of shale
contnuity.

' Modoeling thé Averaging Procoess
- Two different techniques (power averaging and a percolation model)

are presented to model the observed behavior between the effec-
tive permeability and the volume fraction of shale.
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I-lg- i—Two horizontal and two vertical ¢cfoss sections Of &
simulated sandstone/shale sequence are shown. Note the
complex geometry created by overlapping and truncation of
the shales. The dimensions of an elemental shale unltare 5x 5
in the x-y directions and 1 In the z (vertical) direction.
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Anisotropic shales have haen added to

a sandstone matrlx to slmuiate a sandstone/shale sequence
(the network slze Is 20 x 20 x 10), The shales have a circular.
horlzontal cross sectlon 10 units In diameter and 2 1-unit ver-
tical thickness. Thus, the shales have a 10:1 horizontal-to-
vertical anisotropy. The three common averages are shown
for reference. Note the clear relation between k, and V, for

V., <40%,
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Voluma Fraetion of Shaole
Flg. 2—k, ve. V,,. Shales are added randomiy to a reservelr

grid {20 x 20 x 10). k, Is then calculated by flow simulation.
The three common averages are shown for referance. Note
the clear relation between k, and V,,, for V,, <40% and the

percolation behavior near the critical threshold V.. =0.69.

Power Averaging. One straightforward approach is to model the
effective permeability, k,, as a power average of the component
permeabi]jties-

={[Vouk, +(1 =V k&1Y%,
where kg, and k. =shale and sandstone permeabilities, respective-
ly, Vg —volume fraction of shale, and w=some averaging pow-
er. Korvin® presents the axiomatic foundations of the method and
discusses various applications in the earth sciences. Journel ez al.”
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timate effective absolute permeability.

The effective permeability, &,, of a 3D network of blocks, each
with a known permeability, may take any value between the har-
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Fig. 5—k, vs. V. This graph shows the same results as Fig.
2 with more detai! for V,, <40%. A power-average model
and the percolation-theory model are shown to provide an
extremely good fit to the expetimental resuits.

Fig. 7—Koy V8. V. This graph shows the same results as
Fig. 4 with more detail for V,, <40%. The power-average
model and the perdolation-theory model provide a good fit
to the experimental results. ’ '
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Fig. 6—K,u V5. V. This graph shows the same results as
Fig. 3 with more detail for V., <40%. The power-average
model and the percolation-theory model are again shown to

fit the experimental results well.
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Fig. 8—The relationship between the averaging power « and.
the anisotropy F,;. The blocks used in-the simulation are
20x 20 x 10. The right side is for horizontal flow and the left
side Is for vertical flow. If the anisotropy of the shales can
be inferred, then the correct averaging powers can be read.
Eqg. 1 can then be used to provide an estimate for the block
k,.

monic and arithmetic average of the block permeabilities, depend-
ing on their spatial arrangement. The lower-bound harmonit average
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bourtd arithmetic average can be seen-as a power average with the.

power w=+1. The geometric average is obtained with a power

«=0 average (through a limited expansion, because Eq. 1 is not.

defined for w=0). Therefore, the effective permeability is given
by a power w average with a power value @ between —1 and +1.
The problem of determining the effective permeability is now solved
if the volume of shale, the component sandstone and shale perme-
abilities, and the averaging power are known.

SPE Formation Evalation, Seplember 1989

Percolation Model. Percolation theory considers the general prob-
lem of flnid flowing through some heterogeneous medium.’ Sub-
surface flow of water or ofl throngh a sandstone/shale sequence
is one example, and the flow of electricity through a resistor net-
work is another example. On the basis of numerical results,
Kirkpatrick!® proposes a power law to describe the normalized
electrical conductance of a resistor netwerk. In the context of ef-
fective absolute permeability, Kirkpatrick’s relationship can be writ-
ten as .

Eolligs=cWape=Veps vvenenennnnn. IO @)




Parcolation Threshold (Vahc) vs. Anisotropy
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stant at 10. Note the effect of horizontal anisotropy on the
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Fig. 9—The relatsonshlp between V,,,c, i and cand F,,,, The
simulation conditions are the same as for Fig. 8. The right
side corresponds to horizontal flow and the laft side to verti-
cal flow. Knowing F,,;, the appropriate parameters for Model
2 can be read.

where Vg, =critical volume fraction of shale, r==an exponent (near
1.5 t0 2.0), and c=a proportionality constant (near 1.5t0 2.0). The
critical shale fraction is the maximum amount of shale beyond which
the flow rate will drop dramatically: Vy;.=0.69 in Fig. 2. From
Figs. 3 and 4, we see that the critical threshold changes with
anisotropic shales. As the spatial continuity in the direction of flow
increases, so does the critical threshold.

The critical threshold can be predicted by percolation theory for
some very simple configurations. For example, the critical threshold
for random, isotropic shales in a two-dimensional (2D) spacell is

Vi =0.5. For spatlally correlated heterogeneities in a 3D space,
percolation-theory results are not yet established. The percolation

model (Eq. 2) will be extended to cases where no theoretical

threshold value exists, and the corresponding parameters (V. ¢,
and #} will be fitted to the experimental results.

Some Numerical Results. Fig. 5 shows the results of using the
power-average and percolation models. Regression analysis indi-
cates a good fit betwéen the modeling averages and the empirical
sandstone/shale permeability data. Figs. 6 and 7 show the best-fitting
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models for the anisotropic results presented in Figs. 3 and 4. In
both cases, the power-average and the percolation models provide
very good approxxmatxons to the numerical resuits.

Additionai cases with different anisotropy ratios were considered

-to establish the relation between the model parameters (w, V. shos

¢, and #) and the anisotropy ratio. The anisotropy ratio, Fa, is
defined as the longest shale dimension (horizontal} divided by the
shortest shale dimension (vertical):

Fagi=Lagu L e e e evmeeneeneeeeae e 3)

Fig. 8 shows how the averaging power, w, depends on the anisotropy
ratio, F,,;;. The averaging power for horizontal flow and vertical
flow are shown on opposne sides of the graph As the amsotropy

ratio increases beyond some maximum, the aver 4511.!5 pPOWeEr isseen
to change very little. If F,,; went to co, the arithmetic (w=1) and
harmonic (w=-1) averages would be found for horizontal and ver-
tical permeability, respectively. These limit cases, however, would
correspond to a perfectly layered sandstone/shale sequence, which
is not of interest to this study. The averaging power for vertical
flow is seen to be very far from the theoretical minimum of —1.
The harmonic average would be obtained when the shales are aligned
perfectly opposite the flow. This never happens with discontinu-
ous shales because there are always tortuous paths that the fluid

can follow through the sandstone. It appears that the geometric aver-
age (w=0) traditionally used for vertical flow underestimates the
effecuve vertlcal permeabﬂxty To consider Iarge anisotropy ratios
(Fani> 11}, it would be necessary to use grid sizes larger than
2020 10. This was not possible with the computer available to
this project.

The percolation threshold, V., is a clearly defined physical

constant; therefore, it is established before the other two parame-

ters are fitted by least-squares regression. Fig. 9 shows the rela-
tionship between the peroolauon-model parameters (Vg ¢, and
?) and the anisotropy ratio, F,,;. In Fig. 9,-it appears that for
F 1 <6, both the critical threshold Vg, and the proportionality fac-
tor ¢ vary linearly. The power ¢ is found to be constant around 1.71
for vertical flow and to decrease sharply from 1.71 to 1.25, where
it stabilizes, for horizontal flow. The physical interpretation of the
two parameters ¢ and ¢, and thus their behavior in Fig. 9, is not
yet understood.

In the preceding flow simulations, the shales were all considered

Snmtmmamin Tt Q-
to be isotropic in the horizontal plane. To illustrate the effect of

anisotropic horizontal shale length on the directional permeability,
the anisotropy ratio, F;, as defined in Eq. 3, will be kept con-
stant at F ;=10 and the second horizontal length will be progres-
sively reduced.
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Fig. i1—w vs. Lp {the results for both horizontal and vertl-
cal flow are shown). For blocks with horizontal dimensions
larger-than three times the shale length (L p =3), the averag-
ing power stabilizes.

When the shales are anisotropic in the horizontal plane, the ef-
fective permeability will be different for each of the three grid direc-
tions. Fig. 10 shows the averaging power w for each grid direction
vs. the horizontal anisotropy (recall that F,,; is fixed at 10). Note
that (1) the permeability in the direction of maximum shale con-
tinuity js the largest and the permeability in the direction of mini-
mum shale continuity is the smailest and (2) the vertical permeability
increases (for a given F,,;) with increasing horizontal anisotropy.

In practice there may be information on the directional horizon-
tal dimension of the shales. The directional permeability can then
be corrected in the manner described. One further correction may
be required because of the size of the shales relative to the size
of the simulation gridblocks.

Effect of Block Size. All numerical flow simulations must con-
sider a finite grid size. In some cases, the shales will not be small
with respect to the size of the gridblock. We know that the effec-
tive properties of a bounded medinvm depend on the ratio of the
autocovariance range (e g size of the shales) to the block dimen-

sien. Smith and Freeze discuss this for one-dimensional and 2D

flow. Desbarats® illustrates the effect for 3D flow.

The dimension of the shales and the autocovariance range are
equivalent when the shale centers are located independently. This
is the case for the simulations generated in this paper. Therefore,
a dimensionless block Iength can be defined as the ratio of the block
length to the length of the elemental shales:

A Y AN B @

From the numerical results noted,>*2 it is known that if Lp>2
or 3, there will be no noticeable change in the effective properties.
This would suggest that the block size should be selected greater
than three times the shale size to filter out the influence of the grid
size. This corresponds to the notion of a representative elemental
volume.

Fig. 11 shows how the averaging power w varies with the block
size Lp, for shales with a fixed 3:1 anisotropy ratio (i.¢., F,; =3).

1. For horizontal flow, the power w decreases to an asymptotic
minimum as Ly becomes large. The minimum is reached around
L 15 Bad 3.

2. In practice, the dimensionless block length for the vertical direc-
tion is always large (i.e., Lp>10). In Fig. 11, we are seeing the
effect of the horizontal dimensionless block length on the vertical
flow behavior. The averaging power « increases to a maximum
as Lp becomes large (Lp >3). :

From this example, some general conclusions ¢an be made re-
garding the effect of the block size. First, we see that if the block
length is less than three times the shale length, the effective per-
meability is affected. For horizontal flow, the effective permeabil-
ity is greater than that obtained for the ‘‘large-block’’ domain

SPE Formation Evaluation, September 1989
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(Lp > 3); conversely, the vertical permeability is smaller than that '
for the large-block domain. If the shales are larger than the grid-
block (i.e., Lp<1), they can be handled explicitly in the flow
simulation.

The effect has been shown for only one anisotropy ratio
{Fani=3). It is clear, however, that this effect will occur for all
anisotropy ratios. To account for this effect, a correction to the aver-
aging power is proposed:

S e e (5)

where @, =corrected averaging power, w=limit averaging pow-
er corresponding to large block, and Fp, ==block correction factor.
The block correction factor, Fj, can-be obtained either directly
from charts or figures (e.g., Fig. 11) or from a mathematical rela-

tion of the form
D T . P (3

wherc a=constant that measures the amount of correction needed.
As the relative block size Lp becomes large (Lp >3}, the block
correction factor Fp, will be equal to 1. The constant 2 will be posi-
tive for horizontal flow and negative for vertical flow—e.g., con-
stant ¢ would bé +0.60 and —1.11 for the horizontal and vertical

flow results, respectively, shown in Fig. 11. Fig. 12 shows the resul-

tant models.

The effect of the block dimension relative to the shale dimension
has been addressed. If the size of the block is small or if the shales
are large, the limit averaging power corresponding to large blocks
must be corrected. A negative exponential corréction is proposed
to provide this correction.

Discussion of Results, A large block size and isotropic horizontal
shales are assumed to be reasonable first approximations. When
detailed information about the relative block size or horizontal
anisotropy is available, however, it can be used to refine the esti-
mate of the averaging process. Both the power-average model and
the percolation-type model provide a goed fit to the experimental.
results. However, one additional question remains: which of these
two models should be used?

There are several reasons to use the power-avérage approach.

1. The power-average is the most parsimonious (one parameter
vs. three). A procedure that requires evaluation of a single param-
eter, @, is extremely easy to implement.

2. The shale permeability does not have to be set to zero, as re-
quired by the percolation model.
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3, The power-averaging algorithm can be extended to 2 multimo-
dal or continuous distribution of permeability.

The percolation model is not easily generalized to the case of
a multimodal permeability distribution. There are, however, several
reasons to use the percolation model.

1. The model is continuous until the percolation threshold V..
This allows estirmation of permeability for very shaly sequences.

2. Because the percolation model relies on three parameters rather
than one, the model gives the lowest mean-squared error when ex-
perimental data are fitted.

The drawback of the percolation model is that three parameters
must be estimated. Estimating the parameters is complicated be-
cause the estimate of one parameter will affect the choice of the
others.

. The power-averaging model is the simplest and most practical.
Averaging powers, w0, can be estimated from such charts as Fig.
8. The effective permeability can then be obtained from Eq. 1. The
improvements over the traditional arithmetic and geometric aver-
ages can be appreciated from Figs. 6 and 7.

Conclusions

For sandstone/shale sequences, a major problem is that of averag-
ing the component sandstone and shale permeabilities to obtain block
effective permeabilities Typically, a geometric average (m -—D) is
uat:u lUl. VClllbd.J. ycuuca.buuy dlld aii ﬂl..llh-ulﬁ'-ub a.vcuzg,\; \W'— J.} lB
used for the horizontal permeability. Results from flow simulation
make it clear that this approach can be improved if the anisotropy
of the shales is accounted for. Two models have been proposed
to account for the shale anisotropy.

The averaging process for absolute permeability in sand-
stone/shale sequences can be modeled by either a power-average
or 2 percolation model. The power-averaging model is recom-
mended because of its simplicity and effectiveness. The important
aspect of this averaging problem is the presence of two rock com-
ponents The preliminary results of th.is research require certain
liii‘llui‘lg assm“;ptmm' the sandstone and shales are assumed {0 be
homogeneous, and the shales are assumed to be located indepen-
dently from each other with the same elliptical shape and orienta-
tion. By making the averaging process depend on the spatial
anisotropy, more information can be used and a better estimate of
effective permeability in sandstone/shale sequences can be obtained.
Thus, the reservoir model will be more accurate and predictions

“from flow-simulation programs are more likely to reflect fumre

reservoir performance.

Nomenclature
a = constant used for block-size correction
¢ = proportionality constant
ani = anisotropy ratic
F;, = block-size correction factor
block effective permeability, md
kg = shale permeability, md
= sandstone permeability, md

g
Rt
I |

=
g
1
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Ly = block length )
Lp = dimensionless block length
L, = shale length

t = percolation-model parameter
Vg = volome fraction of shale
Vype = critical volume fraction of shale
w = averaging power between —1 and +1
Waeor = averaging power corrected for block size
Subscripts
H = horizontal
r = relative
¥V = vertical
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3. The power-averaging algorithm can be extended to a multimo-
dal or continucus distribution of permeability.

The percolation model is not easily generalized to the case of
a multimodal permeability distribution. There are, however, several
reasons to use the percolation model.

1. The model is continuous until the percolation threshold V.
This allows estimation of permeability for very shaly sequences.

2. Because the percolation model relies on three parameters rather
than one, the model gives the lowest mean-squared error when ex-
perimental data are fitted.

The drawback of the percolation model is that three parameters
must be estimated. Estimating the parameters is complicated be-
cause the estimate of one parameter w111 affect the choice of the
others.

“The power-averaging model is the simplest and most practical.
" Averaging powers, @, can be estimated from such charts as Fig.
8. The effective permeability can then be obtained from Eq. 1. The
improvements over the traditional arithmetic and geometric aver-
ages can be appreciated from Figs. 6 and 7.

Conclusions

For sandstone/shale sequences, a major problem is that of averag-
ing the component sandstone and shale permeabilities to obtain black
effective permeabilities. Typically, a geometric average (w=0) is
used for vertical permeability and an arithmetic average (w=1) is
used for the horizontal permeability. Results from flow simulation
make it clear that this approach can be improved if the anisotropy
of the shales is accounted for. Two modeis have been proposed
to account for the shale anisotropy.

The averaging process for absolute permesbility in sand-
stone/shale sequences can be madeled by either 2 power-average
or a percolation model. The power-averaging model is recom-
mended because of its simplicity and effectiveness. The important
aspect of this averaging problem is the presence of two rock com-
ponents. The preliminary results of this research require certain
limiting assumptions: the sandstone and shales are assumed to be
homogeneous, and the shales are assumed to be located indepen-
dently from each other with the same elliptical shape and orfenta-
tion. By making the averaging process depend on the spatial
anisotropy, more information can be used and a better estimate of
effective permeability in sandstone/shale sequences can be obtained.
Thus, the reservoir model will be more accurate and predictions
from flow-simulation programs are more likely to reflect future
Teservoir performance. .

Nomenclature

a = constant used for block-size correction
proportionality constant
Fn = anisotropy ratio

Fy, = block-size correction factor

k., = block effective permeability, md

kg = shale permeability, md

kg = sandstone permeablhty, md

o
il

L, = block length

Lp = dimensionless block length
L, = shale length
t = percolation-model parameter
Vs, = volume fraction of shale
Vepe = critical volume fraction of shale
@ = averaging power between —1 and +1
tigcor = averaging power corrected for block size
Subscripts
H = horizontal
r = relative
V = vertical
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Figure 3: Horizontal effective absolute permeability K, versus shale volume
fraction V,,. Anisotropic shales have been added to a sandstone matrix to
simulate a sandstone/shale sequence (the network size is 20x20x10). The shales
have a circular horizontal cross-section 10 units in diameter and a 1 unit vertical
thickness. Thus, the shales have a 10:1 horizontal to vertical anisotropy. The
three common averages (Arithmetic, Harmonic, Geometric) are shown for
reference. Note the clear relation between K, and V,; for V < 40%.
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Figure 4: Vertical efective absolute permeability K, versus shale volume fraction V.
The simulation setting is the same as for Figure 3. Note the clear relation between X,
and V,, for V, <40% and the difierence between these results and the results for
horizontal flow shown on Figure 3.
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be a viable approach to this problem by Journel, et.al., 1985, and Deutsch, 1986.

The effective permeability X, of a three dimensional network of blocks, each with a
known permeability, may take any value between the harmonic and arithmetic average of the
block permeabilities depending on their spatial arrangement. The lower bound harmonic
average can be seen as a power average with @ = —1. Similarly, the upper bound arithmetic
average can be seen as a power average with the power ® = +1. The geometric average is
obtained with a power ® =0 average (through a limited expansion since equation 1 is not
defined for @ = 0). Therefore, the effective permeability is given by a power @ average with a
power value ® between -1 and +1. The problem of determining the effective permeability is
now mapped into the problem of determining the proportion of shale and the averaging power.

Percolation Model:

Percolation theory was introduced by Broadbent and Hammersley (1957). Fe-colation
theory considers the very general problem of fluid flowing through some heterogeneous
medium. The first example studied by Broadbent and Hammersley (1957) was the flow of gas
through porous carbon granules, Other examples of fluid flow include the flow of electrons in
heterogeneous semiconductors or the flow of messages in an unreliable network. In this paper,
the fluid is considered to be water or oil and the medium a sandstone/shale sequence.

There are two ways to describe the randomness of flow. The fluid could be considered
random in which case one is considering a diffusion process. Alternately, if the medium is
considered as the underlying random mechanism a percolation process is being considered.
Subsurface flow is primarily a percolation process and percolation theory is directly applicable.
An excellent introduction and summary of percolation theory can be found in Hammersley and
Welsh (1980).

On the basis of numerical results, Kirkpatrick (1973) proposed a power law to describe
the normalized electrical conductance of a resistor network near the percolation threshoid. The
flow of fluid through a sandstone/shale network is analogous to the flow of electricity through
a resistor network in which some resistors have been removed (sandstone replaced by shales).
The relationship between the normalized electrical conductance and the proportion of non-
conductive sites (Kirkpatrick, 1973) may be rewritten in our context:

K Ve = V) @

[
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where V,,. is the critical shale fraction, ¢ is an :xponent (near 1.5-2.0), and ¢ is a
proportionality constant (near 1.5-2.0). The critical shale fraction is the maximum amount of
shale beyond which the flow rate will drop dramaticaliy: V,,, = 0.69, on Figure 2. From
Figures 3 and 4 we see that the critical threshold changes with anisotropic shales. As the
spatial continuity in the direction of flow increases so does the critical threshold.

The critical threshold can be predicted by percolation theory for some very simple
configurations, For example, the critical threshold for random, isotropic shales in a 2- _ ’
dimensional space is V,,, = 0.5 (Sykes and Essam, 1964). For spuially correlated
heterogeneities in a 3 dimensional space, percolation theory results are not yet established,
although simulation results similar to the results presented here exist. The percelation model
(2) will be extended to cases where no theoretical threshold value exists and the corresponding
parameters (Vg ¢, ?) will be fitted to the experimental resuits.

Some Nu.werical Results;

Two different approaches have been considered to model the relationship between

effective permeability and the volume fraction of shale:

1. The power averaging approach which is characterized by a single parameter: inhe
averaging power @.

2. A percolation model which calls for three parameters: the percolation threshold V., an
exponent ¢, and a proportionality constant c.

We are interested in determining the parameters that make each model fit the
experimental data best. This can be dcne by the standard least squares regression procedure.
Figure 5 shows the fit of both models to the spatially uncorrelated data presented on Figure 1.
Both models achieve a very close fit.

Figures 6 and 7 show the best fitting models for the anisotropic results presented on
Figures 3 and 4. In both cases the power average and the percolation model provide very good

approximations to the numerical resuits.

Additional cases, with different anisotropy ratios, were considered to estahlish the relation

between the model pirameters (@, V., ¢, ¢) and the anisotropy ratio. The anisotropy ratio A is

defined as: *
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Figure 5: Effective absolute permeability X, versus shale volume fraction V. This
graph shows the same results as Figure 2 with more detail for V,, < 40%. A power
average model and the percolation theory model are shown to provide an extremely
good it to the experimental results.
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Figure -6: Horizontal effective absolute permeability X, versus shale volume fraction
V. This graph shows the same results as Figure 3 with more detail for V,, < 40%.

The power average model and the percolation theory model are again shown to fit
well the experimental results,
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experimental results.
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2= longest shale dimension
shortest shale dimension

&)

In all our experiments the longest shale dimension corresponds to horizontal directions
and the shortest shale dimension to the vertical direction. The effect of horizontal anisotropy is
addressed in Appendix B. Figure 8 shows how the averaging power (®) depends on the
anisotropy ratio (A). The averaging power for horizontal flow (flow in the direction of shale
continuity) and vertical flow (flow perpendicular to the plane of shale continuity) are shown on
opposite sides of the graph. As the anisotropy ratio increases beyond some maximum, the
averaging power is seen to change very little. If A went to oo, the arithmetic (0 = 1) and
harmonic (@ =-1) averages would be found for respectively horizontal and vertical
permeability,. However these limit cases would correspond to deterministic shales which are
not of interest to this study. The averaging power for vertical flow is seen to be very far from
the theoretical minimum of -1. The harmonic average would be obtained when the shales are
aligned perfectly opposing flow. This never happens with discontinuous shales since there are
always toruous paths that the fluid can follow through the sandstone. It appears that the
geometric average (w = 0) traditionally used for vertical flow underestimates the effective
vertical permeability. Figure & corresponds to a finite networx size of 20x20x10. In appendix B
the effect of the relative shale versus network size is addressed. To consider large anisotropy
ratios (A>7) it would be necessary to use grid sizes larger than 20x20x10. This was not
possible with the computer available to this project.

When fitting the percolation model, the percolation threshold is established prior to fitting
the other two parameters by least squares regression. The percolation threshold is a clearly
defined physical constant and a regression procedure that would fit all three parameters
simultaneously would not honor this fact. Figure 9 shows the relationship betwieen the
percolation model parameters (Vi ¢, ) and the anisotropy ratio (A). On Figure 9 it appears
that for anisotropy ratios A less than 6, both the critical threshold V,,. and the proportionality
factor ¢ vary linearly. The power ¢ is found to be constant around 1.71 for vertical flow, and to
decrease sharply from 1.71 to 1.25 where it stabilizes for horizen'al flow. The physical
interpretation of the two parameters ¢ and ¢ and thus their behavior on Figure 9 is not yet
understood.
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Figure 8: The relationship between the averaging power w and the anisotropy A is
shown on this Figure. The blocks used in the simulation are 20x20x10. The right side
of the Figure is for horizontal flow and the left side is for vertical flow. If the
anisotropy of the shales can be inferred then the correct averaging powers can be read
from this Figure. Equation 1 can then be used to provide an estimate for the block
effective absolute permeability.




Hﬂ SPE 1726k

Percoiction Threshold (Vehc) va. Anisotropy

————T y

Vertical Flow < » Hori | Flow

aalaas

Y Y

ssalasasiasaelass

\AARS AR RARRA REARE RARLN LEEES

Vertical Flow ——) Horisontal Flow

FEVE PR NS

NS EERRERRARE RRRAS RARAS AL

aaalaaals

ks

MASa2RASSARRSRAREEAAAMS LASAS AAAEE LA M
saadasataanalas

aapaligaals

longest shale dimension
shortest shale dimension

anisotropy w=

Figure 9: The relationship between the percolation model parameters (Vo 4 ¢) and
the anisotropy A is shown on this Figure. The simulation conditions are the same as
for Figure 8. The right side of the Figure comesponds to horizontal low and the left
side to vertical fiow. Knowinglmeappropﬁuep:amnfanndencanberead
from this Figure.




SPE 17264
-17-

Two different sensitivity analysis are presented in the appendices To summarize the
results:

1.  The effect of block size: For a fixed shale size the effect of changing the block (network,
dimensions has been studied. If the shale size is not small with respect to the size of the
block then the effective permeability must be adjusted. This correction is required if the
shale length is greater than one third of the block length. Details of this correction are
given in appendix A.

2.  The effect of horizontal anisotropy: For a constant A as defincd in equation 3 the effect of
anisotropic horizontal dimensions has been studied. Another correction can be applied if
the horizontal anisotropy of the shales is known. This correction is discussed in appendix
B.

Assuming a large block size and horizontal isotropy are reasonable first approximations.
However, when detailed information about the relative block size or horizontal anisotropy is
available, it can be used to refine the estimate of the averaging process. Both the power
average model and the percolation type model fit well the experimental results. However, one
additional question remains:

Which of these two models should be used? There are applications for both models, and

reasons to choose one model over the other:

Reasons to use the power average approach:

«  The power average is the most parsimonious { 1 parameter versus 3). A procedure that

requires evaluation of a single paramet=: (w) is extremely easy to implement.

o  The shale permeability does not have to be set to zero as is required by the percoiation
model.

« The power averaging algorithm can be extended to a multimodal or continuous
distribution of permeability. The percolation model is not easily generalized to the case of
a multimodal permeability distribution.

Reasons to use the percolation model:

o The model is continuous until the percolation threshold. This allows estimation of
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permeability for very shaley sequences.

Because it relies on 3 parameters rather than one, the percolation model gives the lowest

mean squared error when fitting the expcrimental data.

The drawback of the percolation model is that three parameters must be estimated.
Estimating the parameters is complicated because the estimate of one parameter will affect the
choice of the others.

The power averaging model appears to be the simplest and most practical. Averaging
powers can be estimated from charts such as Figure 8. Then the effective permeability can be
obtained from equation 1. The improvements over the traditional arithmetic and geometric
averages can be appreciated from Figures 6 and 7.

Conclusions

For sandstone/shale sequences, a major problem is that of averaging the component
sandstone and shale permeabilities to obtain block effective permeability. Typically a geometric
average @ = 0 is used for vertical permeability and an arithmetic average @ = 1 is used for the
horizontal permeability. Results from flow simulation make it clear that this approach can be
improved if the anisotropy of the shales is accounted for. Two models have been proposed to
account for the shale anisotropy.

The averaging process for absolute permeability in sandstone/shale sequences can be
modeled by either a power average or a percolation model. The power averaging model is
recommended because of its simplicity and effectiveness. The important aspect of this
averaging problem is the presence of two rock components. The preliminary results of this
research require certain limiting assumptions: the sandstone and shales are assumed to be
respectively homogeneous, and the shales are assumed to be locaed independently from each
other with the same elliptical shape and orientation; however, these ellipsoids are allowed to
overlap thus generating spatial correlation. By making the averaging process depend on the
spatial anisotropy more information can be used and a better estimate of effective permeability
in sandstone/shale sequences can be obtained. Thus, the reservoir model will be more accurate
and predictions from flow simulaiion programs are more likely to reflect future reservoir

performance.
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Nomenclature

Vs = volume fraction of shale

K, = block effective permeability (md)

K,, = sandstone permeability (md)

K,, = shale permeability (md,

o = averagiug power € [ -1 , +1 ]

Vene = critical shale volume fraction

¢t = a percolation model parameter

¢ = proportionality constant (unitless)

B = dimensionless block length

W, = averaging power corrected for block size

b = block size correction factor
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Appendix A: The Effect of Block Size

All numerical flow simulations must consider a finite grid size. In some cases the shales
will not be all small with respect to the size of the grid block. We know that the effective pro-
perties of a bounded medium depend on the ratio of the autocovariance range to the block
dimension, This is discussed by Smith and Freeze (1979) for one and two dimensional flow.
For three dimensional flow this effect is illustrated by Desbarats (1987).

The size of the shales and the autocovariance range are equivalent when the shale centers
are located independently. This is the case for the simulations generated in this paper. There-
fore, a dimensionless block length can be defined as the ratio of the block length to the length
of the elemental shales:

= block length
5 shale length ’ (A1)

From the numerical results noted above (Smith and Freeze, 1979; Desbarats, 1987) it is known
that if B is greater than 2 or 3 there will be no noticeable change in the effective properties.
This would suggest that the block size should be selected greater than 3 times the shale size in
order to filter out the influence of the grid size. This corresponds to the notion of an REV or
representative elemental volume.

In this appendix we are not concerned with grid blocks tha: are larger than an REV (i.e.,
B > 3). Neither are we concerned with grid blocks smalles than the size of the shales (i.e., B <
1) which would correspond to deterministic shales. The main concern is for shales which are
neither small nor large with respect to the grid size (i.e.,, 1.0 < B > 3.0). This situation will
occur in practice when some of the shales are not small with respect to the size of the grid
blocks. Therefore, the effect of the block size must be known and handled.

Figure A.1 shows how the averaging power ® varies with the block size B for shales
with a fixed 3:1 anisotropy ratio (i.e., A = 3). Some interesting remarks:

. For horizontal flow the power ® decreases to an asymptotic minimum as B becomes

large. The minimum is reached around B=3.

. Practical dimensionless block lengths for the vertical direction are always large (ie.,




SPE

Averag ¥g Power ve. Blook Size(B)

w_ ¥ ] L) l L1 ] 1 l ¥ l T I T ‘[ T
: s -
os - . . =
- . Horizontal Flow
s - * . . . . . i
: 3 A
! ME— g
>F E
H C Vertical Flow 1
03 i -
E s . * ¢ . * ' ]
0.28 {— . .
o.z:- . .
e ]
Slosk Size (B)

Figure A.l: The averaging power w versus the relative hcrizontal block size (B).
The results for both horizontal and vertical flow are shown. For blocks with
horizontal dimensions larger than three times the shale length (B ==3) the
averaging power stabilizes.
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2>10). On Figure A.1 we are seeing the effect of the horizontal dimensionless block
length on the vertical flow behavior. The averaging power ® increases to a maximum as
B becomes large (B>3).

From this Figure we can make some general conclusions about the effect of the block
size. First, we see that if the block length is less than 3 times the shale length the effective
permeability is affected. For horizontal flow the effective permeability is greater than that
obtained for the "large block" domain (B>3), conversely the vertical permeability is smaller
than that for the "large block” domain.

The effect has been shown for only one anisotropy ratio A=3, However, it is clear that
this effect will occur for all anisotropy ratios. To account for this effect a correction to the

averaging power of the foliowing form is proposed:
pe=b-® (A.2)

where @, is the corrected averaging power, ® is the limit averaging power corresponding to
the large block, and b is a block correction factor. The block correction factor (b) can either be
obtained directly from charts or Figures such as A.l1, or a mathematical relation of the
following form could be used:

b=1+a-e? (A.3)

where a is a constant th:t measures the amount of correction needed. As the relative block size
B becomies large (B > 3) the block correction factor & will be equal to 1. The constant a will
be positive for horizontal flow and negative for vertical flow. For example the constant a
would be +0.60 and -1.11 for the horizontal flow and vertical flow results shown on Figure
A.1. The resulting models are shown on Figure A.2.

The effect of the block dimension relative to the shale dimension has been addr:ssed. If
the size of the block is small or if the shales are large, the limit averaging power corresponding
to large blocks must be corrected. A negative exponential correction is proposed to provide this

correction.
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Appendix B: The Effect of Horizontal Anisotropy

This appendix illustrates the effect of anisotropic horizontal shale length on the
directional permeability. The anisotropy ratio A as defined in equation 3 (longest over shortest
shale dimensions) will be kept constant at A = 10 and the second horizontal length will be
progressively reduced.

When the shales are anisotropic in the horizontal plane the effective permeability will be
different for each of the three grid directions. Figure B.1 shows the averaging power ® versus
the horizontal anisotropy for each grid direction (recall that A is fixed at 10). Some remarks:

o  The permeability in the direction of maximum shale continuity or length is the largest and
the permeability in the direction of minimum shale continuity is the smallest.

«  The vertical permeability increases (for a given A) with increasing horizontal anisotropy.

In practice there may be information on the directional horizontal dimension of the

shales. In this case, the directional permeability can be corrected in the manner described
above.
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Averaging Power vs. Horizontal Anisotropy
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Figure B.1: The relatio ship between the averaging power w and the horizontal
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