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Pressure transient well test information has largely been ignored in stochastic reser-
voir modeling. Well testing informs the effective absolute permeability of some region
around the well. This information does not resolve local details of the spatial distribu-
tion of permeability; however, it does constrain the average permeability. This paper
presents an approach, based on simulated annealing, that will condition stochastic
reservoir models to such well test-derived effective properties.

The volume and type of averaging informed by the well test must first be cali-
brated by forward simulating the well test on stochastic reservoir models that are
consistent with the geological interpretation, core data, well log data, and seismic
data. Stochastic reservoir models are then constructed with simulated annealing
where one component of the global objective function relates to honoring the well
test-derived average permeability.

INTRODUCTION

The concept underlying stochastic reservoir modeling is to construct numerical mod-
els of the reservoir properties that are consistent with all relevant data. Applying
a flow simulator to multiple numerical models allows an appreciation for the uncer-
tainty in the reservoir response. The accuracy and precision of the output response
distribution requires integrating a maximum amount of relevant prior information,
e.g., core plug measurements, well log data, surface and borehole geophysical in-
terpretations, geological interpretations, spatial information gathered from similar
reservoirs, properties inferred from well tests, .... This paper is concerned with in-
tegrating this last source of data, i.e., effective permeabilities inferred from pressure
transient well tests, into stochastic models of absolute permeability.

Conventional conditional simulation techniques such as Gaussian [6,18], fractal
10], or indicator [13] models have the ability to account for local conditioning data
core and well log data), a global histogram, and varying amounts of spatial infor-

mation in the form of two-point variogram/covariance models. Variants of these
techniques based on cokriging [7] or some type of trend model [17] allow geophysical
information to be integrated into the resulting realizations. However, none of these
techniques allow the integration of well test-derived effective permeabilities.

Simulation techniques based on marked point processes [9] are well-suited to sim-
ulating spatial phenomenon that are characterized by a repetition of easily character-

505




506 CLAYTON DEUTSCH

ized shapes. The resulting spatial structure is implicitly controlled by the placement
of the digitized or analytical shapes. Conditioning to local data and a global his-
togram is achieved by disallowing inconsistencies at data locations and controlling
the number of objects placed in the realization. The integration of geophysical in-
terpretations and well test-derived effective permeabilities is not possible with these
latter techniques.

A well test-derived effective permeability does not directly inform the smaller
scale permeability values near the well bore. However, it does constrain a complex
non-linear average of the small scale values, Many flow processes are directly influ-
enced by the average flow characteristics as informed by well test-derived effective
permeabilities. Historically, well test-derived permeabilities were used in homoge-
neous reservoir models for reservoir performance forecasting [20]. Two inadequacies
of such homogeneous models are that they do not allow an assessment of uncer-
tainty and they do not allow for the important influence of small scale permeability
heterogeneities. Stochastic reservoir models allow the small scale permeability het-
erogeneities to be accounted for. However, as mentioned above, current stochastic
modeling techniques do not account for the information carried by average properties
measured by well tests.

The problem of conditioning stochastic models to well test-derived effective per-
meability is difficult because the average is non-linear. Conventional simulation
techniques allow data of different volumetric supports only when the averaging is
linear, see page 513 [14].

One way to achieve this conditioning would be to discard all models that do not
vield a forward simulated well test response close enough to the actual measured
pressure response. Such selection procedures may be practical when building models
with a single well test; however, it is not practical in presence of multiple well test
interpretations, some with more advanced multirate tests which inform a number
of different permeability averages near the well. In general, a prohibitively large
number of realizations would be required to find a few that simultaneously match all
well test data.

The algorithm proposed in this paper is to generate realizations with simulated
nnnmh’ng%lﬁ] that honor the measured well test effective permeabilities in addi-
tion to conventional data such as the local conditioning data, a histogram, and a
variogram/covariance. Application of simulated annealing requires that the genera-
tion of a stochastic realization be posed as an optimization problem. The two-part
objective function in this optimization problem consists of the deviation from the de-
sired statistical /geological description plus the deviation from the well test effective
permeabilities. The deviation from the measured well test results could be known
through forward simulation of the well test on all candidate realizations. Again, it
would be impractical to forward simulate the well test after each (set of) pertur-
bation(s) as demanded by simulated annealing. Therefore, the forward simulation
must be replaced by a more easily calculated numerical approximation. A non-linear
power average [3,5,16] of the small scale permeability values has been adopted for
this purpose.

More precisely, the well test is first interpreted to provide the effective permeabil-
ity near the well bore. Second, the type of averaging, as quantified by an averaging
power, and the volume of averaging must be calibrated. The averaging power de-
pends essentially on the connectivity of the extreme permeability values. The volume
of averaging depends on the duration of the well test. Third, the initial stochastic
realizations are altered by systematically changing the elementary grid block per-
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meability values so that the previously calculated effective permeability and the
variogram model are honored. Calculation of that effective permeability can be done
very fast after each (set of) perturbation(s) using the previously calibrated power
average.

Tﬁe following presentation of the algorithm will clarify the implementation details
and acknowledge a number of limitations. One limitation is that the method imposes
the well test results without accounting for uncertainty in the underlying well test
interpretation. A second limitation is that the method requires that the full well test
response be summarized by a single non-linear weighted power average. The severity
of these limitations may be judged through numerical experimentation.

QUANTIFYING WELL TEST-DERIVFED EFFECTIVE PERMEABILITY

Pressure transient well tests are performed by generating some flow rate impulse in
the reservoir (e.g., start production, change the flow rate, stop production, ...) and
measuring the pressure response. Well test interpretation consists of interpreting
the pressure response by using some appropriate mathematical model to relate the
pressure response (output) to flow rate history (input) [11]. Provided that the math-
ematical model is appropriate the model parameters can be associated to certain
reservoir parameters. Of particular interest is the effective absolute permeability k..

To apply the envisaged optimization technique it is necessary to translate this well
test effective k. into a more easily calculated property while retaining the flexibility
to differentiate a wide variety of heterogeneous systems encountered in practice.
The power averaging formalism is used to model the non-linear averaging of absolute
permeabilities [5]. The assumption is that the elementary permeability values average
linearly after a non-linear power transformation, i.e.,

k(w) = [% X, k(u,-}“‘] ‘ (1)

eV

Where k(w) is the w-power average permeability of the N permeability values k(u;).
¢ =1,..., N, at locations u; within the volume of interest V. The power w varies
between the bounding values of -1 and 1 corresponding to the harmonic and arith-
metic averages respectively (the geometric average is obtained for w=0.0). The idea
is to use relation (1) and to calibrate the averaging volume V' and averaging power
w for each particular reservoir,

To define the appropriate averaging volume it is necessary to consider the portion
of the pressure response used to derive the well test effective permeability k,. In
practice, k. is obtained by interpreting the pressure response during the time at which
the response resembles infinite-acting radial flow. Early-time effects such as wellbore
storage and late-time boundary effects are not considered in the interpretation. It is
possible to define an inner radius 7, and an outer radius r,, that correspond to
the limits of infinite acting radial flow since the pressure response, at any time {, may
be related to block permeabilities within a time-dependent radius-of-drainage r(t).
Consider a typical pressure response shown on the Miller-Dyes-Hutchinson MDH)
plot at the bottom of Figure 1. The pressure response between 1 hour and 10 hours is
used to derive an estimate of the effective permeability kyeiese. The inner and outer
limits of the shaded region (on the schematic illustration of the reservoir) correspond
to the radius-of-drainage at 1 hour and 10 hours respectively.
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Figure 1: A schematic illustration of the volume measured by a given well test interpre-
tation. The inner and outer limits of the shaded region, on the schematic illustration of
the reservoir, correspond to the radius-of-drainage at 1 hour and 10 hours (the limits of
infinite acting radial flow).

The time interval during which the pressure response resembles infinite-acting
radial flow is easily determined by standard interpretation techniques. Evaluating
the radius-of-drainage r(t) at the time limits is not as straightforward; depending
on the arbitrary definition chosen for r(t), the radius can change by as much as a
factor of 4. It will be necessary to calibrate the radius-of-drainage r(t) by repeated
flow simulations. The block permeabilities contributing to the pressure response
measured up to time ¢ are approximately enclosed by a circular volume centered at
the well defined by a time-dependent radius r(t) written as [3,12,21]:

[
e,

r(t) = A (2)

where A is a constant, k. is the reservoir permeability around the well, ¢ is the
porosity, g is the fluid viscosity, and ¢, is the total compressibility. Depending on the
definition chosen for the radius-of-drainage the value of A varies from 0.023 to 0.07
(for oil field units). Alabert [3], in the context of evaluating the averaging volume
of a well test, and for specified levels of discretization and test durations, found an
optimal Ay value of 0.010 in oil field units.

The averaging power w describes the type of averaging within the volume V(A).
In many cases, this averaging power is close to the geometric average (w = 0). For
practical test durations and for complex heterogeneous permeability distributions,
the type of averaging can differ significantly from the geometric average.

The constant A and the averaging power w are calibrated with the following
procedure (see also [3.4]):

1. Generate n, (20-100) multiple realizations of the permeability field with rele-
vant statistical properties.

2. Forward simulate a well test, with conditions as close as possible to those used
in the field to arrive at k., on each realization to obtain n, pressure response
curves.

3. Deduce an effective permeability k;,i = 1,...,n, from each pressure curve
using established well test interpretation techniques [11].
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4. Compute average permeabilities F(A,w);,i = 1,..., n, for A values between the
practical bounding limits of 0.001 and 0.020 and for w values between practical
bounding limits of -0.5 and 0.5.

5. Choose the pair (A, w,p) that yields the closest agreement between the ref-

erence k;,t = 1,,..,n, values and the approximate E(Ao,,,,wop,),-,i =ik
values.

After establishing appropriate A, and wopt values the goodness of the power average
approximation can be checked by plotting a scatterplot of the k(Appe, wop); values
versus the well test-derived %; values.

The weighted non-linear power average (1) is proposed as a computationally
simple replacement for the full 3-D well-test response. In practice, a well test response
is interpreted to yield an estimate of the effective permeability k. and the averagin
volume parameter A,,, and power w,, are calibrated for the particular geologica
setting. The next step is to impose the well test-derived effective permeability k.,
i.e., the appropriate w-average k(Aopts wopt ), on stochastic models. The technique of
simulated annealing is considered for this simulation.

SIMULATED ANNEALING

In the “annealing™ approach to stochastic simulation there is no explicit random
function model, rather, the creation of a simulated realization is formulated as an
optimization problem to be solved with a stochastic relaxation or “annealing” tech-
nique. The first requirement of this class of methods is an objective (or energy)
function which is some measure of difference between the desired spatial characteris-
tics and those of a candidate realization. The essential feature of annealing methods
is to iteratively perturb (relax) the candidate realization and then accept or reject
the perturbation with some decision rule. The decision rule is based on how much the
perturbation has brought the candidate image closer to having the desired proper-
ties. One possible decision rule is based on an analogy with the metallurgical process
of annealing, hence the name simulated annealing. Technically the name “simulated
annealing” only applies to those stochastic relaxation methods based strictly on sim-
ulated annealing [2,15]; however, through common usage the name “annealing” is
used to describe the entire family of methods that are based on the principle of
stochastic relaxation,

Annealing is the process where a metallic alloy is heated, without leaving the
solid phase, so that molecules may move positions relative to one another and reorder
themselves into a low energy crystal (or grain) structure. The probability that any
two molecules will move relative to one another is known to follow the Boltzmann
distribution. Simulated annealing is the application of the annealing mechanism of
perturbation (swap the attribute values assigned to two different grid node locations)
with the Boltzmann probability distribution for accepting perturbations.

At first glance this approach appears terribly inefficient. For example, millions
of perturbations may be required to arrive at an image that has the desired spatial
structure. However, these methods are more efficient than they might seem as long
as few arithmetic operations are required to update the objective function after a
perturbation; virtually all conventional global spatial statistics (e.g., a covariance)
may be updated locally rather than globally recalculated after a local perturbation.
Also, the power average representation of the well test k. developed earlier is easily
updatable.
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The objective function is defined as some measure of difference between a set
of reference properties and the corresponding properties of a candidate realization.
The reference properties could consist of any quantified geological, statistical, or
engineering property. In the context of this paper the reference properties consist
of traditional two-point variogram/covariance functions and the well test derived
effective permeability. Thus the objective function could be written as:

i=np j=ng

O = hy- z [Cvrr’:)’ercnrr{hi] L) Cvrmh:mion(h‘)]? 5 Z [k::fermcc - k::uii:uh’onr
j=1
(3)

where O is the objective function, ny, is the number of covariance lags h; considered
important, creference(h) is the ith reference covariance value, (CTeahization (h) is the
ith covariance value taken from the candidate realization, ny is the number of well
test-derived effective permeabilities to be reproduced, k::f'"““"' is the jth well test-

=1

derived effective permeability, k::”"""""“ is the jth effective permeability calculated
from the candidate realization using power averages, and A; and A; are relative
weights to ensure that the covariance contribution has the same importance as the
well test contribution.

The starting image is a 3-D array, z(u;),i = 1,..., N, or permeability values.
The annealing methodology to achieve a realization [, z()(u;),i = 1,..., N, with a
low objective function (3) is as follows:

1. Establish the reference components in the objective function: the reference
covariance values CTefereme¢(h,) i = 1,...,ny are based on experimental data
or on an analytical model. The reference effective permeabilities k::-" it
I,...,ng, are the direct result of applying standard interpretation techniques
to the pressure transient response measured in the field.

9. Generate an easily constructed initial realization: the initial realization is either
the output of a more conventional stochastic simulation algorithm or the initial
realization could be generated by assigning each nodal value at random from
the stationary univariate distribution F(z).

3. Compute the realization components in the objective function: the covariance
: : £ JEC el el
values Creatization(h ) 5 = 1 ... ny, and the effective permeabilities k77 ITAhOn
j=1,...,nk, are calculated from the candidate realization.

4. Compute the objective function O based on the reference and the realization
statistics, see (3).

T

Perturb the realization z(u;),i = 1,..., N, to generate a new realization CARIL )
i =1,...,N by swapping the permeability value at any two locations u;, uj,
i#j,0<i,j<N.

6. Update each component in the objective function and recompute the objective
function Op,,, with the perturbation. The change to the objective function is

AQ = Oncw e Oo.’d-
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7. The perturbation is accepted or rejected on the basis of a specified decision
rule. One approach would be to accept all helpful perturbations AO < 0 and
to reject all disruptive perturbations AQ > 0. This choice, which corresponds
to a steepest descent approach, can lead to a local minima. The essential
contribution of simulated annealing is a prescription for when to accept or

reject a given perturbation. The acceptance probability distribution is given

by:
Placcept} = { l';gg ifAO <0

et , otherwise

(4)

All favorable perturbations (AOQ < 0) are accepted and some unfavorable per-
turbations are accepted with an exponential probability distribution. The pa-
rameter ¢ of the exponential distribution is analogous to the “temperature” in
annealing. The higher the temperature the more likely an unfavorable pertur-
bation will be accepted.

Accepting the perturbation causes the image, z(u;).7 = 1,.... N, and the
objective function O to be updated.

8. When the objective function O gets close to zero then the realization is con-
sidered finished since it now honors both the reference covariance and the well
test data; otherwise, return to step 5 and continue the perturbation process.

The idea is to start with an initially high temperature parameter ¢ (say the initial
objective function { = 0) and lower it by some multiplicative factor A (say 0.1) when
enough perturbations have been accepted ( Ky ..y =10 times the number of grid nodes
in the system N) or too many have been tried (K, = 100 - N). The algorithm is
Tt.oi)ped when efforts to lower the objective function become sufficiently discouraging
19].

One remaining issue is to establish the weights A; and A, applied to each com-
ponent in the objective function. The purpose behind these weights is to have each
component play an equally important role in the global objective function. Without
any weighting the component with the largest units would dominate the objective
function. The weights A; and A; are established so that, in average, each component
contributes equally to a change in the objective function AQ. That is, each weight A,
is inversely proportional to the average change of that component objective function:

1
[A0"

i Jay (5)

In practice, the average change of each component |AQ,| can not be computed an-
alytically; however, it can be numerically approximated by evaluating the average
change of M (say 1000) independent perturbations:

1 M
|&Oc| = — loim] ‘—‘Oc|° g AR
M2

{ 8%

(6)

where |AQ,| is the average change for component ¢, O™ is the perturbed objective
value, and O, is the initial objective value. Each of the M perturbations m =
1,..., M arises from the swapping mechanism employed for the annealing simulation.
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Figure 2: The reference distribution of permeability considered as the true reservoir for
the purposes of obtaining the well test response and interpreted effective permeability.

All of the elements needed for integrating well test data are now in place. The re-
sulting realizations obtained after going through the simulated annealing procedure
with the objective function (3) are conditional to both the initial geological /statistical
description and the well test-derived permeabilities. The following example illus-
trates how the methodology is implemented in practice.

AN EXAMPLE APPLICATION

Consider a 2-D example where the the block horizontal absolute permeabilities are
known to follow a lognormal distribution F(z) with a mean of 50.0 md and a variance
of 2500 md?. The distribution of log permeability is characterized by an exponential
normal scores covariance model Cy (h) with an effective range of 25 grid block units.
A 51 unit by 51 unit realization of this lognormal permeability field was generated
to serve as a reference distribution, see Figure 2. The permeability at the central
producer and the four injectors are known. Interpretation of a simulated drawdown
response yields an estimated effective permeability of 102.1 md.

Simulated annealing is capable of generating realizations conditional to the distri-
bution model F(z), the covariance model Cy (h), and the five conditioning data. One
hundred such realizations were generated by annealing with the objective function:

e o 2
0= Z IC‘rr!rrc-m‘.z(hI) = (-rr.'rll'::ntmn(l,ll}]
1=1

where ny, corresponds to the most compact arrangement of 18 lags, see top of Fig-
ure 3. Annealing allows this objective function to go to zero, i.e., the resulting
realizations provide an excellent reproduction of the covariance. The first two real-
izations are shown on Figure 3.

These 100 initial realizations reproduce the measured permeability at the five
well locations. However, a forward simulation of a well test at the producing well
location does not yield the 102.1 md value obtained from the reference image. Fig-
ure 4 shows a histogram of the 100 permeability values. These 100 effective per-
meability values were used to calibrate the parameters A, and w,, that provide
the best numerical approximation to the well test result. The average permeabil-
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Figure 3: The lag vectors used to generate realizations of permeability and the first two
realizations.

ities k(A,w);,2 = 1,...,n, for A values between the practical bounding limits of
0.001 and 0.020 and for w values between practical bounding limits of -0.5 and 0.5
were computed using the 100 initial realizations. The criteria for an optimal pair
(Aopts Wope) Was to minimize the mean normalized absolute deviation and the mean
normalized error [3] defined as:

' k(A w); — ki

mNAD(A,w) = ) 8 (7)
=1 »

mNE(A,w) = | =1 A:(A,‘szz—_ﬂi’," "I (8)
=1 i

mN A measures correlation and m N E measures the bias between the power average
approximation and the true well test values. The optimal pair A,,; = 0.003 and
wWopr = 0.10 was found to minimize both error terms.

Figure 5 shows a scatterplot of the power average numerical approximation and
the true well test-derived effective permeability. Note the lack of any bias (the average
effective permeabilities are 58.3 md in both cases) and the excellent correlation of
0.98. The physical volume informed by the well test can be determined by the
constant A,y and knowledge of the time limits of the infinite acting portion of the
pressure response: Ty, = 1.0 grid units (70.1 feet) and r,,,, = 4.6 grid units (320.0
feet).

The annealing simulation now uses a two part objective function (3). Annealing
is able to generate realizations that lower this objective function to zero. The first
two realizations are shown on Figure 6.

(%]
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Initial Realizations: Well Test-Derived Effective Permeability
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Figure 4: The histogram of 100 effective permeability values from the initial realizations.
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Figure 6: The first two realizations conditional to the five well data,
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Figure 7: The histogram of 100 effective permeability values conditional to the well test
result.

To verify that the calibrated power average is a fair approximation to the actual
well test result a full well test was forward simulated on the final 100 realizations.
Figure 7 shows the distribution of the 100 well test derived effective permeability
values before and after post processing. Note that the distribution of effective per-
meabilities, after post processing, is much closer to the reference value of 102.2 md.

This illustrates that well test effective permeabilities can be imposed on stochas-
tic realizations to a fair degree of approximation. What has not been shown is that
accounting for well test-derived effective permeability actually helps predicting fu-
ture reservoir performance. To illustrate the improvement in future prediction all
201 realizations (the reference, the 100 initial, and the 100 well test conditioned re-
alizations) have been associated to the five spot injection/production pattern shown
on the left of Figure 2 with an injector at all corner locations and a central producer,
All variables except the block absolute permeabilities have been held constant and
the performance of each realization has been simulated with Eclipse [1].

Two response variables are presented here: 1) the breakthrough time, i.e., the
time of first water arrival at the producer, and 2) the final oil in place after 50
years of simulated production (note that the units are important only in a relative
sense). The reference image yielded a breakthrough time of 0.81 time units and
a fractional final oil in place 0.38. The histograms of values obtained before and
after conditioning to the well test data on Figure 8. The results are summarized on
Table 1. Note that the well test conditioned distributions are better centered around
the reference value and the uncertainty as measured by the 95% probability interval
(90975 — go.025) has been reduced.

REMARKS AND CONCLUSIONS

A methodology has been presented to integrate well test-derived properties into
stochastic reservoir models. The methodology consists of generating realizations
with simulated annealing. The objective is to minimize deviations from the initial
variogram/covariance model and yet honor a numerical approximation of the well
test-derived effective permeability. The power average numerical approximation is
useful because it would not be feasible to re-run a flow simulation after each pertur-
bation called for by the annealing technique.
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Figure 8: The histograms of the breakthrough time and the final oil in place obtained
by running flow simulations on the realizations before (to the left) and after (to the right)
integrating the well test data. The black dot in the lower box plot is the reference value,
the thicker vertical line is the median, and the outermost vertical lines represent the 95%
probability interval.

Response Variable 95% Probability Interval  percent
Go.o2s  Gos Go.975 reduction

Breakthrough time reference 0.81

before 045 ' L1 2.15

after 0.57 1.00 1.40 -51%
Final oil recovery  reference 0.38

before 0.35 0.41 0.53

after 0.33 0.37 0.42 -50%

Table 1: Summary of the breakthrough time and final water flow rate before and after
conditioning to include the well test result. The reference values of 0.81 and 0.38 are shown
under the median (¢ggs) column, the 95% probability intervals as established from the 100
flow simulations are shown by the 0.025 and 0.975 quantiles (go.025 and goo7s), and the
percent reduction refers to the width of the 95% probability interval.
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An example shows how the methodology could be implemented in practice. The
significant improvement brought by accounting for the well test data was demon-
strated in terms of distributions of output uncertainty (after performing a water-
flooding flow simulation).

The annealing methodology presented to integrate well test data is quite general.
The method has the potential o integrate many disparate data as long as these data
can be quantified to enter a global objective function. For example, multiple-point
statistics could be used to input curvilinear geological structures and seismic data
could be incorporated by adding another component to the global objective function
[4,8]. Other sources of data that could be incorporated are the results of multiple
rate and tracer tests.
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