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Entropy and Spatial Disorder’

André G. Journel’ and Clayton V. Deutsch?

The majority of geostatistical estimation and simulation algorithms rely on a covariance model as
the sole characteristic of the spatial distribution of the attribute under study. The limitation to a
single covariance implicitly calls for a multivariate Gaussian model for either the artribute itself or
Jor its narmal scores transform. The Gaussian model could be justified on the basis that it is both
analytically simple and it is a maximum entropy model, i.e., a model that minimizes unwarranted
structural properties. As u consequence, the Gaussian model also maximizes spatial disorder (be-
yond the imposed covariance) which can cause flow simulation results performed on multiple sto-
chastic images to be very similar; thus, the space of response uncertainty could be too narrow
entailing a misleading sense of safety. The ability of the sole covariance to adequately describe
spatial distributions for flow studies, and the assumption that maximum spatial disorder amounts
to either no additional information or a safe prior hypothesis are questioned. This paper attempis
to clarify the link between entropy and spatial disorder and to provide, through a detailed case
study, an appreciation for the impact of entropy of prior random Sunction models on the resulting
response distributions.
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INTRODUCTION

Although extensively used in thermodynamics and information theory (Kull-
back, 1968; Jaynes, 1985a,b), the concept of entropy has only been recently
introduced in geostatistics (Christakos, 1990). Christakos (1990) introduces en-
tropy as a measure of the uncertainty of a prior distribution model; the principle
is to maximize that uncertainty (entropy) beyond the statistics that are considered
known. The intent is that the prior random function model should only account
for known statistics. If those statistics reduce to the covariance function then,
it can be shown that the maximum entropy random function model is Gaussian.
However, whenever enough data are available to allow inference of a covariance
model they also usually provide valuable additional information: in which case
the maximum entropy prior random function model may no longer be Gaussian.

A case study will demonstrate that alternative prior random function models
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sharing the same covariance model could lead to much larger uncertainty in the
response variables of transport simulations, such as effective permeability,
breakthrough times, or oil/water sweepage.

ENTROPY OF CONTINUOUS DISTRIBUTIONS

Let f. = f.(zy, 22, - .. , 2,) be the n-variate probability density function
(pdf) of the n random variables (RVs) Z;, i = 1, ..., n. The uncertainty
associated to the distribution f. is measured by its entropy defined as (Shannon,
1948; Christakos, 1990):

Hy = E{-Inf.(z), . .-+ 2)}

= —S‘m s = I £y oe o5 @IV v 5 2 degs et KD

Since the function —In (y) increases as y decreases, the smaller the pdf value
f(zy, . .., z,) the larger its contribution to the entropy measure H. The greater
the uncertainty, the more spread and the smaller the pdf values f., the larger the
entropy.

Univariate pdf
For n = 1, Eq. (1) defines the entropy of a univariate continuous distri-
bution with pdf f(z):

H, = —S _ Inf@)f(@) de @

All intervals within which the pdf f(z) is zero are excluded from the integral.
Classical results include (Shannon, 1948; Jones, 1979):

* The bounded pdf with maximum entropy is the uniform distribution,
i.e., f(z) = 1/(b — a) for z € [a, b] and f(z) = O otherwise. The entropy
is H; = In (b — a) which decreases to — o as the interval [a, b] becomes
narrower corresponding to greater certainty.

® For a fixed variance, the unbounded pdf that maximizes entropy is the
normal (Gaussian) distribution. In practice, most histograms are bounded
and very few can be considered as normal. However, a normal score
transform can be applied and the previous result holds for the normal
pdf of the transforms.

Bivariate pdf

For n = 2, or for two random variables Z(u) and Z(u + h) separated by
a given vector h, the entropy associated to the stationary bivariate pdf f,(z, Z)
is:
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Hf(h)=—§ S [In fu(z, ) fulz, 7)) dz d2’ 3)

The previous univariate results extend to the bivariate case:

* For bounded random variables, maximum entropy is obtained for the
uniform or rectangular bivariate pdf,

* Among all bivariate pdfs sharing the same covariance function C(h) =
Cov {Z(u), Z(u + h)} or the same covariance matrix E{(z — m)(z —
m)’ }, the Gaussian pdf maximizes entropy. Thus, if the only prior struc-
tural information (spatial statistics) retained is the covariance function
C(h), the maximum entropy random function (RF) model is the Gaussian
model.

* Different bivariate pdfs may share the same covariance C(h) and yet
have different entropy functions Hy(h), or they may share both covari-
ance and entropy functions. One could also imagine different bivariate
pdfs with the same bivariate entropy and different covariance functions.

ENTROPY OF DISCRETE DISTRIBUTIONS

The integral Egs. (2) and (3) of entropy call for continuous pdfs and are
used only for analytical developments. In most practical applications, the vari-
able Z(u) is either categorical (e.g., rock types) or, if continuous, is discretized
into a finite number of classes, e.g., the classes of its histogram.

Let Z be a discrete RV that can take K outcome values (or be valued in K
predefined classes) with probabilities p;, k = 1, ..., K, such that Lf_ ,p, =

The entropy attached to this discrete probability set is defined as:

K
H= —kg'l (lnplp =0 @)

Similarly, consider the stationary discrete RF Z(u) with for stationary mar-
ginal probabilities the set { p,, k = 1, ..., K}, and for bivariate probabilities
the set:

Pix(h) = Prob {Z(u) € category k, Z(u + h) € category k'}
independent of us k, k' = 1, ..., K (5)

Note that ££.p, ,.(h) = p, = Prob {Z(u) € category &}, for all h.
The entropy associated to that set of bivariate probabilities is defined as:

K
H(h) = —é:] *EAI [In py 4 (M)]py 4 (h) = O (6)

Some remarks:
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* The discrete case entropy is nonnegative because discrete probabilities
can not be greater than 1, whereas in the continuous case the entropy
can be as low as —oco,

e [f the RV Z(u) is not naturally categorical but is made discrete through
classification, that class definition impacts the entropy value as defined
in Eqs. (4) or (6). Hence, before comparing the discrete entropies of
originally continuous distributions, care should be taken to standardize
the class definition.

® Forlagh = 0: p, .(0) = 0, vk # k', and: py (0) = p,. Thus, Eq. (6)
entails:

K
mm=3§MMmEH @)

The univariate entropy represents the lower bound of the bivariate en-
tropy, i.e., H(h) = H(0), vh. This lower bound can be seen as the case
corresponding to perfect correlation: Z(u + h) = Z(u).

® For lagh = +o0, and two very distant RVs Z(u) and Z(u + h) can be
considered as independent, hence:

pk,k‘(+m) = PiPx's Vk. k'
and from Eq. (6):

K K
H(e) = =% 2 [Inp, + Inplppic
K K K K
= _k§I pi In py kg} Py — kgl Py In pye k§| pe = 2H(0)
H(o) = 2H(0) ®)

For most well-behaved nonperiodic pdfs, for which p; ;-(h) decreases con-
tinuously as |h| increases along any direction, the bivariate entropy measure
H(h) will increase with |h|. For this class of bivariate cdfs, the entropy measure
H(h) is increasing in the interval [H(0), H(+)], i.e.,

H(h) € [H(0), 2H(0)] )
Thus, a standardized relative measure of bivariate entropy is:
H(h) — H(0)
= , 100
Hy (h) Ho €1 (10)

The upper bound (maximum entropy) Hz(o0) = 1 corresponds to the case of
two independent variables, i.e., to maximum unpredictability, which results
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from maximum spatial *‘disorder’’ or ‘‘disorganization.”” On the other hand, if
a particular class of z-values, say, k, corresponding to small z-values, persists
over long distances h, then the distribution of z in space presents a feature or
“‘spatial order’” that helps predicting unsampled z-values. As defined above,
spatial disorder increases with the entropy (uncertainty) measure H (h) or Hg(h).

The measure Hy(h) is to be compared with the relative semi-variogram, a
measure of (bivariate) spatial variability defined as:

1E{[Z + h) — Z@F} C©O) - Ch)
2 C(0) il c(0)

with C(h) being the stationary covariance function Cov {Z(u), Z(u + h)} and
C(0) the corresponding variance.

vr(h) = efo, 1] (11

SPATIAL ENTROPY

Building on the similarity of Eqs. (10) and (11), one can define an average
bivariate entropy over a field A of measure |A| as:

e 1
Hp(A, A) = — s du 5 Hp(u — u') du’ € [0, 1) (12)
|4 Ja A
In pracuce the field A would be discretized by n locations of coordinates u,,
i=1,...,n,and the space mtegral (12) approximated by:
Hy(4, 4) = ; _ZI -Z. Hg(u, — u) (13)
i=1j=

When A — oo, Hg(A4, A) — 1, since Hg(o) — 1.

Equations (12) and (13) are similar to the expressions defining the disper-
sion (expected spatial) variance of Z(u) within the field 4, (Journel and Hu-
ijbregts, 1978, p. 67):

|
D*(0/4) = E{S*(0/4)} = ¥(A4, A) = TP E du S y(u —u)da' (14)
A A
with §?(0/A) being the randomization of the spatial variance

s2(0/4) = &% S [z(u) — m,d2 du, and m, = g z(u) du
A

N

4] ||

The average relative entropy measure Hy(A4, A), defined in (12) could be used

as a global measure of bivariate spatial entropy (disorder) over the field A.

However, whether this measure will prove more useful than the little used
dispersion variance (14) is yet questionable.

Note that the measure Hy (4, A) utilizes only bivariate entropy when a full
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measure of spatial entropy should use a multivariate entropy function. However,
just as multivariate pdfs are rarely accessible in practice, multivariate entropy
functions are not likely to be practical.

CASE STUDY

In the following case study, an exhaustively sampled reference image will
be reproduced through stochastic simulations based on RF models differing by
the statistics which constrain them. It will be shown that different models though
sharing the same covariance function C(h) and the same univariate pdf lead to
realizations with different spatial entropy (spatial disorder) and, more impor-
tantly, result in a different assessment of the response uncertainty.

Figure 1 is an image of cross-stratified sands and silty sands from a dis-
tributary-mouth bar taken from p. 151 of Sandstone Depositional Environments
(Scholle and Spearing, 1982). The grayness of the image has been arbitrarily
scaled through a monotonic function into permeability values to yield the discrete
histogram of Fig. 2. With the discretization shown with 1.0 millidarcy classes,
the entropy of that histogram is, according to Egs. (4) or (7):

H(0) = 2.035

For the rest of this study, the data and image of Fig. 1 will be considered
as the *‘true’’ reference to be reproduced.

Fig. 1. Original core image: a scanned photograph of core from a distributary-mouth
bar sequence (from Scholle and Spearing, 1982, p. 151). The darker gray levels corre-
spond to a greater proportion of clayey/silty material. The actual image is approximately
6 inches by 3 inches.
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Fig. 2. Distribution of the reference permeability values (md).

The reference image of Fig. 1 is discretized into 225 X 125 square pixels.
For each separation vector h, all pairs of pixels separated by h have been scanned
and the exhaustive proportions p, ,.(h) defined in (5) have been calculated; the
categories k, k' correspond to classes of 1 md interval. The corresponding
experimental (exhaustive) bivariate entropy H(h), as defined in (6), has been
calculated. For example, for a unit vertical (azimuth = 0) lag, the bivariate
entropy is:

H(1, 06 =0) = 3.247
The corresponding relative entropy, from Eq. (10), is:
Hg(1, 8 = 0) = 0.60

This represents a substantial increase from the minimum value 0 in the interval
[0, 1].

The exhaustive set of relative entropy values Hg(h) for all vectors h within
a square area A with side 100 lag units (pixels) is plotted in the upper left of
Fig. 3. The plot gives Hg(h) = Hz(|h|, 8) in polar coordinates, with |h| being
the modulus and # the azimuth of h; the origin Hg(0) = 0 is plotted at the center
of the figure.

The spatial average (13) of the relative entropy over the square area A is
(see also Table I):

He(A, A) = 0.953

As discussed above this value represents a summary of bivariate spatial entropy
(spatial disorder) over a window of size A.
Note the strong vertical to horizontal anisotropy shown on the entropy map
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with a slight dip of about 10° also visible on the reference image of Fig. 1.
The central streak of low entropy values correspond to the greater continuity of
the reference image in the horizontal direction. The anisotropy is further illus-
trated on the two sections, along the vertical (§ = 0) and horizontal (§ = 90)
directions, shown below the entropy map on Fig. 3. Note the very steep increase
to the stable maximum sill value of 1.0.

The relative variogram map, i.e., the polar plot of the measure of spatial
variability yg(h) defined in (11), is given in the upper right of Fig. 3. The two
corresponding vertical and horizontal sections are shown below the variogram
map. The relative variogram map appears less smooth than the entropy map and
offers a better resolution of the important anisotropy seen on Fig. 1.

We now attempt to simulate the reference image of Fig. | using various
RF models conditioned by various global statistics such as the covariance C(h)
= C(0)[1 — yz()]. No local conditioning has been considered, that is, no
samples are retained from the reference image.

In an actual study, the simulations must be made conditional to local data,
whether hard (e.g., wells) or soft (e.g., seismic). The point of this paper,
however, is the comparison of results obtained from RF models with different
spatial entropy. This point is better made if not blurred by the effects of con-
ditioning. Indeed, if conditioning is dense enough all realizations of any RF
model would look alike, regardless of the entropy or any other characteristic of
the RF model.

Gaussian Model

The reference permeability values are first transformed into a standand
normal distribution through a normal scores transform. Then a multivariate
Gaussian RF model is adopted for these normal scores transforms. This Gaussian
RF model is fully characterized by the variogram of the normal scores transforms
shown in Fig. 4. The experimental (exhaustive) variogram of the refelm
normal scores has been modeled by the nested sum of three structures, a nugget
effect of 0.20, a short scale exponential structure contributing 0.55 of the total
unit variance and a larger scale spherical structure contributing 0.25; both strue-
tures are anisotropic:

BN Y
Y, ) = 0.20 + 0.55 Exp( (10) + (,1_6) )
hx ’ h.‘f‘ $
+0.25 Sph( (180) " (YE) ) 15

with Exp (h) = 1 — exp (—h) and Sph (h) = 1.5h — 0.5k’ forh < I; =
otherwise. h, and hy are the horizontal and vertical coordinates.
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Fig. 4. Normal scores variogram and fitted model. The variograms
refer to the normal score transforms of the reference data of Fig. |
along the vertical (upper set of curves) and horizontal directions
(lower set). The solid lines are the model fits.

The sequential Gaussian simulation algorithm and GSLIB program sgsim
(Deutsch and Journel, 1992) was used to generate 100 simulated realizations of
the permeability normal scores field, conditioned to the previous variogram
model. These normal scores realizations are then back-transformed using the
reference permeability distribution of Fig. 2. Consequently, all back-trans-
formed realizations exactly reproduce the original histogram of Fig. 2. The first
two generated permeability realizations are shown on Fig. 5. The relative en-
tropy and variogram corresponding to the first realization are given on Fig. 6.

Figures 5 and 6 are to be compared to Figures 1 and 3, respectively. Note
the characteristic ‘‘salt-and-pepper’’ appearance of the Gaussian images, a con-
sequence of the maximum entropy character of the underlying RF model. The
entropy map of Fig. 6 is darker with much less features that the reference entropy
map of Fig. 3, which indicates that the reference image, beyond its covariance,
has more organization (spatial structures) than exposed by the Gaussian model.

The slight 10° dip of the structures seen on Figs. 1 and 3 is not reproduced
on Figs. 5 and 6 for the simple reason that only the vertical and horizontal
reference variograms were retained and modeled.

Comparing the two sets of maps and graphs on Fig. 6, it is once again
evident that the variogram measure of spatial variability offers more resolution
that the (bivariate) entropy measure.

Table 1 lists the average spatial entropy measure Hg(A, A) and dispersion
variance Yz (A, A), for the reference image and the Gaussian realizations. “*A™
represents a square area of side 100 unit lags. The average entropy, Hg(4, A),
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Fig. 5. Two realizations from the Gaussian model. The unit scale, in millidarcies, is
the same as that used for the reference image of Fig. 1.

of the Gaussian image 1 is seen to be larger than that of the reference image
(0.994 > 0.953), although the relative difference appears small due to the poor
resolution of the entropy measure.

Mosaic Model

The mosaic model represents an interesting alternative to the Gaussian RF
model in that it is also fully characterized by a single covariance function, yet
its multivariate distribution is non-Gaussian.

The “*mosaic’’ model is a bivariate mixture of two binormal distributions

B oL R o
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with common univariate Gaussian distribution. The first binormal distribution
has a correlation coefficient of 1 (i.e., all values are equal) and the second a
correlation coefficient of 0 (i.e., all values are independent). A mixture of these
two bivariate Gaussian distributions with proportion p(h) yields the following
bivariate cumulative distribution function (Marechal, 1984):

Prob {Y(u) = z, Y(u + h) < 2'} = p(h)G(min (z, 2))
+ 1 - pMIGE@GE) (16)

where ¥(u) represents the stationary RF model with standard normal cumulative
distribution function (cdf): G(y) = Prob {¥Y(u) =< y}, vu.

The previous bivariate distribution (16) corresponds to a RF model Y(u)
such that Y(u) and Y(u + h) are equal with probability p (h) and independent
with the complement probability [1 — p(h)]. It can be shown that the correlo-
gram and all indicator correlograms of the RF ¥ (u) are all equal to p(h):

Cy(h)

—— = p(h 17

C,0) p(h) (17)
with Cy(h) = Cov {¥(u), Y(u + h)}
Ci(h; y. ¥)

L2222 = p(h), vy, ¥ 18

Ci© y,y) Py il

with C;(h; y, ¥') = Cov {I(u; y), I(u + h; y)} and I(u; y) = 1 if Y(u) < y:
= 0 if not.

Thus, from its very definition, the mosaic model is expected to show less
entropy (spatial disorder) than the Gaussian model with the same correlogram
p(h).

The mosaic RF Y(u) is used to model the normal score transforms of the
permeability reference data. The correlogram p(h) is identified to the model
1 — y(h) defined in (15).

Realizations of the mosaic model can be obtained by sequential indicator
simulation, identifying all indicator correlograms to the unique correlogram p (h)
(see Eq. (18); Journel, 1989, p. 34). These realizations have a standard normal
univariate cdf G(y), hence must be backtransformed into simulated permeability
values using the reference distribution of Fig. 2.

One hundred realizations of the mosaic model were generated using the
program sisim of GSLIB (Deutsch and Journel, 1992); the first two generated
realizations are given in Fig. 7. Once again, all realizations share the original
histogram of Fig. 2. The relative entropy and variogram of the first realization
are given on Fig. 8.

Figures 7 and 8 are to be compared to Figs. 1 and 3 for the reference and
to Figs. 5 and 6 for the Gaussian model. Remember that all images share the
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Fig. 7. Two realizations from the mosaic model. The unit scale, in millidarcies, is the
same as that used for the reference image of Fig. 1.

same histogram, i.e., the same proportion of high/median/low permeability val-
ues, and the same variogram model (15) for normal score transforms. Hence,
any difference is due to the implicit RF model beyond histogram and covariance.

The visual difference between the Gaussian and mosaic realizations is quite
striking, with the mosaic realizations presenting clearer spatial structures (less
entropy). From Table I, it appears that the mosaic model images have lower
average bivariate relative entropy than the Gaussian model images.
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Table I. Measures of Spatial Disorder”

Gaussian model Mosaic model Indicator model
Reference
image 1 2 1 2 1 2
HelA, A) 0.953 0.994 0.985 0.962 0.938 0.928 0.913
Yald, A) 0.974 0.999 1.014 1.008 1.021 1.033 0.955

“The average relative entropy and variogram measures are defined over a square area A of side 100
pixels.

Multiple Indicator Model

One should question retaining the covariance as the sole spatial character-
istic of an image (or equivalently the covariance of its normal scores transform).
By extracting more structural information from the reference or sampled image,
one should be able to reproduce more of the spatial features of the reference
image. Experience has shown that whenever sampling allows inference of the
attribute covariance C(h) it also allows inference of its indicator covariances of
type (18), at least for threshold values z, z' that are not too extreme. Thus,
consider simulation of the reference image of Fig. 1 by retaining some of its
indicator covariances/variograms.

Seven threshold values z, = 0.1, 2.5, 5.0, 7.5, 10.0, 15.0, and 30.0 md,
k =1, ..., 7 were retained which correspond to the 0.20, 0.35, 0.48, 0.60,
0.67, 0.80, and 0.92 quantiles of the exhaustive reference distribution of Fig.
2. The indicator RF is then defined for each threshold z; as:

I(u; z) = 1, if permeability Z(u) = z; = 0 if not

The corresponding experimental (exhaustive) variograms in the vertical and
horizontal directions, together with their fitted models are given in Fig. 9. All
models are standardized to a unit sill with the following combination of nugget
effect, short range exponential structure, and longer range spherical structure:

yi(h; 7)) = Go(zp)

h, 2 hy 2
G E"p( (a.(zo ¥ (b.(m)

) + )
C»(z) Sph S %
+ G (%) Sp ( (ﬂz(zt)) (bz(Zx)) ) vl

with Exp () and Sph ( ) defined as in (15).
Table II gives the corresponding model parameters. Some remarks:
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Table II. Reference Indicator Variograms Parameters”

Exponential structure Spherical structure
Threshold
k quantile Gl ) Gi) a ) by ) Gl() ax( ) byl )
1 0.20 0.17 0.50 18.0 7.8 0.33 100.0 10.0
2 0.35 0.11 0.54 47.7 14.4 0.35 150.0 15.0
3 0.48 0.13 0.58 90.0 18.0 0.29 170.0 17.0
+ 0.60 0.13 0.61 90.0 14.5 0.26 160.0 16.0
5 0.67 0.12 0.68 108.0 17.4 0.20 91.0 12.8
6 0.80 0.12 0.68 108.0 15.2 0.20 85.0 12.0
7 0.92 0.22 0.69 144.0 21.5 0.09 66.0 1.2

“The ranges a;( ), by( ), as( ), by( ) are expressed in pixel units. The relative sill values Gyl ),
C,( ), G ) are dimensionless.

* The relative nugget effect is larger for the two extreme threshold values
(first and last); however, the ‘‘destructuring” of extreme values is not
symmetric, as would be implied by a Gaussian model (Journel, 1989,
p. 33): the nugget effect for the 0.20 quantile is different from that for
the 0.80 quantile (0.17 # 0.12).

* The relative contribution, ranges and anisotropy ratios, of the medium
range exponential structure increases consistently from the first to last
threshold.

¢ The relative contribution of the larger range spherical structure decreases
consistently from the first through the last threshold.

* Therefore, high and low permeability values are less correlated than the
medium values, with low values being better correlated than high values.
These remarks are somewhat corroborated by visual inspection of Fig. .

One hundred realizations of the multiple indicator model were generated
using the program sisim of GSLIB (Deutsch and Journel, 1992); the first two
realizations are given in Fig. 10. The relative entropy and variogram of the first
realization are given in Fig. 11.

Figures 10 and 11 are to be compared to Figs. | and 3, to Figs. 5 and 6,
and lastly, to Figs. 7 and 8. Remember that all images share the exact same
histogram of permeability values, that of Fig. 2.

The indicator model-generated images have the least entropy: compare the
upper left entropy maps of Figs. 11 and 3, (see Table I). Identifying a limited
number, seven in this case, of indicator variograms is not equivalent to identi-
fying the attribute variogram: that latter variogram for the indicator model is
seen to differ markedly from the variogram of the reference image, compare the
right parts of Figs. 11 and 3.
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Fig. 10. Two realizations from the multiple indicator model. The unit scale, in milli-
darcies, is the same as that used for the reference image of Fig. 1.

The question then arises as to which prior RF model to retain, the ones
(Gaussian, mosaic) yielding high entropy and reproducing the attribute vario-
gram, or the one (multiple indicator) yielding too low entropy? The maximum
prior entropy paradigm would lead us to chose the Gaussian model. However,
stochastic images are not generated for their own sake and clearly not to measure
their entropies; in most applications these images are further processed to yield
some prediction statement. Thus, our analysis of the alternative RF models
should go well beyond entropy, variogram measures, and visual inspection of
the consequent stochastic images.
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Flow Modeling

Waterflood simulation was performed on all 300 images (100 realizations
from each of the three RF models). The 2-D images were taken to represent
vertical cross-sections between an injecting and a producing well.

The constant porosity grid blocks are initially saturated with oil and then
subjected to a water flooding with no-flow boundary conditions on the upper
and lower boundaries of the cross-section. The Eclipse flow simulator [1984]
has been used for the flow simulations. Both wells operate at constant bottom
hole pressure, straight line relative permeabilities were used, and both the oil
and water have a unit mobility ratio. The following two flow response variables
were isolated to characterize the flow characteristics of each image:

* The effective permeability of the image. This parameter is computed
once the oil is completely swept from the image and the water flow rate
has stabilized. This response variable provides an overall steady state
flow characteristic of the image.

* The time at which the water cut reaches 90%. This response is a measure
of sweepage and late flow characteristics of the image.

The flow simulation exercise described above was also carried out using
the reference spatial distribution (Fig. 1). The reference effective permeability
was 8.33 md and the time to achieve a 90% water cut was 3.70 time units.

Figure 12 shows the histograms of effective permeability obtained from the
three RF models being considered. Figure 13 shows the histograms of the time
to reach 90% water cut obtained from the three RF models. The effective perme-
ability and the time to achieve 90% water cut have a correlation of about —0.75
in all three cases.

Table III gives the mean, standard deviation (¢), minimum and maximum
value of the flow response variables for the three sets of simulations.

Observations

® The actual reference time value (3.70 time units) is not within the range
of the 100 Gaussian model-derived response values and barely within
the ranges of the mosaic and indicator model-derived distributions. The
reference effective permeability (8.33 md) is only barely in the range of
the Gaussian model derived-distribution and fits only slightly better in
the ranges of the mosaic and indicator model-derived distributions.

® Although all 300 realizations of the permeability field reproduce exactly
the reference univariate distribution (Fig. 1) they all yield distributions
which centers (mean or median) deviate considerably from the reference
value. Moreover, the Gaussian model is inaccurate in the sense that it
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Fig. 12. Distribution of effective permeabilities obtained from
the (a) Gaussian, (b) mosaic, and (¢) indicator RF models.
The dot location gives the reference image value (8.33 md).
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Fig. 13. Distribution of late breakthrough times obtained from

the (a) Gaussian, (b) mosaic, and (¢) indicator RF models.
The dot location gives the reference image value (3.70 time
units).




352

Journel and Deutsch

Table II1. Statistics of the Distribution of Flow Response Values for the Three RF Models Con-

sidered
Effective permeability Time to 90% water cut
RF model Mean o Min/max Mean a Min/max Entropy (%)
Gaussian 11.8 2.1 7.2/18.2 2.11 0.45 1.18/3.48 0.994
Mosaic 11.4 24 6.3/18.8 2.34 0.78 1.14/6.81 0.962
Indicator 14.0 6.1 5.0/35.0 241 1.30 0.71/7.15 0.928
Reference inage 8.33 3.70 0.953

generates distributions of response values that do not even contain the
true values.

Maximum entropy of the RF model does not entail maximum entropy
(largest variance) for the response distributions: exactly the reverse is
observed in Figs. 12 and 13 (Table III). Maximum entropy of the input
model may entail bias and severe inaccuracies in the prediction of re-
sponse values and related margins for errors.

The distributions of response values need not be Gaussian, nor even
symmetric: see the indicator model-derived histograms of Figs. 12 and
13,

The multiple indicator RF model is imprecise, in the sense that it yields
the largest variance for the posterior response distribution; but that im-
precision allows accuracy, in the sense that these distributions do include
the actual response values. Ideally, we would like a RF model whose
consequent response distributions are both precise and accurate.

DISCUSSION

A possible reason for the actual effective permeability (8.33 md) to be
so low may be the cross-bedding of the low (white) permeability streaks
visible on Fig. 1 and their concentration next to the left vertical well.
Such information is not accounted for in any of the three RF models. If
the 10° dip of the direction of maximum continuity was considered and
the continuity of the low indicator RVs increased (e.g., by setting the
relative nugget effect Cy(1) to zero in Table II), the multiple indicator
RF model would likely have yielded better results, i.e., response distri-
butions better centered on the actual values.

Purposely not to confuse the discussion on entropy, the stochastic sim-
ulations were made nonconditional to local data, e.g., the producer and
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injector well data. In practice, no matter the RF model chosen, the
realizations will be made to honor local data whether originating from
well logs or seismic data (impedance or velocity); consequently, the
realizations would be less different one from another and also more
accurate, i.e., closer to the actual image: consequently, the posterior
response distributions would be both more precise and more accurate.

The principle of maximum entropy for the RF model is debatable beyond
traditional information coding applications. Indeed, in spatial applica-
tions, it would entail choosing the RF model that yields images/reali-
zations with the least spatial organization beyond that imposed by the
data spatial statistics and values. The error is the assumption that a model
with no spatial structure or organization is the least committing. This is
certainly true when decoding a message, it is not for spatial applications
in the earth sciences. Adopting a pure white noise model (the ultimate
in disorganization!) represents a very particular and precise model not
necessarily adequate or conservative for the application intended.

Maximum entropy of the RF model does not entail maximum entropy
of the response distributions; in fact, the contrary is observed for the
flow performance predictions studied above.

There is much more actual information to be collected from data than a
mere covariance of normal score transforms. In which case, the maxi-
mum entropy RF model is not Gaussian. The unequaled analytical prop-
erties of the Gaussian RF model are no excuse for ignoring possibly
critical information such as indicator covariances and spatial connectivity
of extreme data values (see Journel and Alabert, 1989).

In spatial applications what could replace the principle of maximum prior
entropy? One could think of a principle of maximum entropy of the
response distributions once all prior information has been accounted for.
The prior information should include all local data whether hard or soft,
and structural information which may go well beyond a mere covariance.
Maximizing the response entropy, i.e., uncertainty of the response values
is necessarily application-specific. The response distributions depend on
the specific transfer function which processes each input realization of
the RF model Z(u). Most often that transfer function is highly complex
and is not analytically defined, e.g., a flow simulator; then, the task of
determining a priori the RF model Z(u) that maximizes response entropy
becomes hopeless. Instead, one should concentrate on building RF models
and/or stochastic simulation algorithms that can handle a large variety
of information sources accounting for their imprecision. Note that more
prior information does not necessarily entail a narrower (more precise)
distribution of response values because the RF model is likely to change
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as more information is considered. Geologists know that the true com-
plexity of a field is gradually revealed as more information becomes
available.

CONCLUSION

The property of maximum entropy of the Gaussian RF model is conditional
to retaining a single covariance function from the data. In the earth sciences,
the most interesting processes are the ones that present characteristic spatial
structures that cannot be described by a single covariance function; rather, geo-
metric shapes and a series of indicator covariances characterizing spatial con-
nectivity would be needed. Then, the maximum entropy RF model is no longer
Gaussian.

In any case, maximum entropy of the RF model distribution does not entail
maximum entropy of the response distributions obtained from processing real-
izations of that RF model. For some applications, using a maximum entropy
RF model may lead to inaccurate prediction of response values and an over-
optimistic (narrow) assessment of uncertainty of such prediction. Too narrow
probability intervals may not contain the “‘true’” value.

The entropy to be maximized is that of the response (output) distributions,
not that of the input realizations of the RF model. A pure white noise model
may be maximum entropy; however, when processed through flow simulators
it may yield very low entropy response distributions both inaccurate and impre-
cise.

It is suggested that research effort be dedicated to building fiexible families
of RF models that can accommodate a large variety of prior information other
than a mere covariance and, in particular, fuzzy and uncertain data. Also the
time to randomize global statistics such as the histogram and covariance is long
overdue.
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