Kriging in a Finite Domain'

Clayton V. Deutsch®?

Adopting a random function model {Z(u), v € study area A} and using the normal equations
(kriging) for estimation amounts to assume that the study area A is embedded within a infinite
domain. At first glance, this assumption has no inherent limitations since all locations owtside A
are of no interest and simply not considered. However, there is an interesting and practically
impartant consequence that is reflected in the kriging weights assigned to data contiguously aligned
along finite strings; the weights assigned to the end points of a string are large since the end points
inform the infinite half-space beyond the string. These large weights are inappropriate when the
finite string has been created by either stratigraphic/geological limits or a finite search neighbor-
hood. This problem will be demonstrated with numerical examples and some partial solutions will
be proposed.
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INTRODUCTION

Two commonly encountered situations where finite strings of contiguously
aligned data are used in kriging are shown on Fig. 1. In the first case, when
strings of measurements taken along a drillhole are truncated by geological or
stratigraphic boundaries, the study area A is clearly finite. In the second case,
when strings of data are truncated by the boundaries of a local search ellipsoid,
the area A may be infinite but the local neighborhood is not.

Figure 2 illustrates the counter-intuitive weighting scheme that will result
when kriging (Journel and Huijbregts, 1978; Matheron, 1971) with a finite string
of data. The profile of the ordinary kriging weights is shown next to the string.
The variogram is a common spherical model with a range equal to the length
of the string, Note that the point being estimated is beyond the range of the
variogram and yet the implicit declustering of kriging causes the weights to
change considerably along the vertical extent of the string with the outermost
samples receiving a disproportionately large weight. Further note that the kriging

"Received 28 February 1992; accepted 13 May 1992.
? Department of Applied Earth Sciences, Stanford University, Stanford, California 94305,
*Presently with Exxon Production Research Co., P.O. Box 2189, Houston, Texas 77252-2189.

41

OB82-8121/93/0100-004 1507.00/1 © 1993 Intemational A iation for Math | Geology



Fig. 1. Two commonly encountered situations when finite strings of contiguously aligned data are
used in kriging. In the top figure, the shaded area represents a stratigraphic layer of interest. The
shaded area in the bottom figure represents the limits of a local search neighborhood.

weights will remain unchanged as the point being estimated moves further away.
Kriging yields this type of weighting because of the implicit assumption that
the data are within an infinite domain—the outermost data inform the infinite
half-space beyond the data string and hence receive greater weights. As the
relative nugget effect increases the weight given to each end point decreases;
that is, the central samples are considered relatively less redundant.
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Data Points Along a String (with Ordinary Kriging Weight)

:

Nugget = 20%

Nugget = 80%

Fig. 2. A typical situation where the point being kriged is one or more dimensionless
distance units (one dimensionless unit is the length of the finite string) away from
the string, the spherical variogram has a range equal to one dimensionless unit, and
there are 11 equally spaced data points along the string.
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In all three cases of Fig. 2, the point being estimated is beyond the range
of correlation. As the point being estimated gets closer to the string the declus-
tering becomes less important. This is illustrated on Fig. 3 where the point being
estimated is 1.0, 0.5, and 0.25 dimensionless units from the string. The prox-
imity to the central samples becomes more important than the declustering as
the point being estimated gets closer.

A spherical variogram model has been used to demonstrate the weights
assigned to finite strings of data. The over-weighting effect is more pronounced
with more continuous variogram models, i.e., a Gaussian variogram model,
with the same practical range, shows more over-weighting of the end points
than the spherical model. An exponential variogram model, with the same prac-
tical range, shows slightly less over-weighting.

In practice, ordinary kriging is often used to filter the global stationary
mean; had simple kriging (SK) been used, the artifact weighting is not as pro-
nounced. For example, SK applied in all cases shown on Fig. 2 would give a
weight of zero to all data points since the point being kriged is beyond the range
of correlation. The declustering, and the extra weight assigned to the outer
samples, becomes important as the range of correlation increases. This is illus-
trated with a spherical variogram with no nugget effect on Fig. 4. The outermost
samples are weighted more as the range is increased from one dimensionless
unit (the length of the string) to four units.

Although this odd weighting behavior is theoretically valid, it is not what
a practitioner anticipates. In the case of a bounded stratigraphic horizon, there
is no volume outside the limits justifying overweighting of the end values. In
the case of a limited search neighborhood, there are data beyond the limits of
the data strings but these data need not be reflected by the end points of the
search neighborhood. Moreover, one goal of ordinary kriging is to locally re-
estimate the mean; assigning more weight to the end points of strings is contrary
to that goal.

The artifacts caused by this over weighting is exacerbated when the data
values present a trend. In particular, a bias may ensue when the variable has
relatively high or low values near the top and bottom of the string (often the
case in contact-controlled mineralization, in fining upwards sequences, . . .).

EMPIRICAL SOLUTIONS

Four empirical solutions to this problem are proposed below. They are all
based on approaches to trick the normal equations into not assuming an infinite
domain.

An Obvious Quick Fix

One obvious solution is to use only two samples from any one string of
data. In this case, both samples are equally redundant and equally informative
of the infinite domain. The principle disadvantage of this approach is that this
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Data Points Along a String (with Ordinary Kriging Weight)

Distance = 1

Distance = 0.5

Distance = 0.25

Fig. 3. The kriging weights are seen to change considerably as the point being
estimated nears the string. The kriging weights are illustrated when the point is 1.00,
0.50, and 0.25 dimensionless units from the string. The nugget effect is 20% in all
Cases.



*Point Being Kriged
Range = 1
Distance=0.5
Simple Kriging Weights
*Point Being Kriged
Range = 2
Simple Kriging Weights
*Point Being Kriged
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Fig. 4. The simple kriging (SK) weights are shown for a spherical
variogram model as the range is increased from one dimensionless
unit to four dimensionless units. The nugget effect is zero and the
distance of the point to the string is 0.5 dimensionless units in all
cases.
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may result in too few data to allow a reliable estimate at each unsampled lo-
cation.

Extend the String

The string can be extended by adding phantom data at each end and then
removing the weights assigned to the phantom data. A larger ordinary kriging
system with non-existent samples at each end point is solved, then the weights
assigned to the non-existent samples are discarded and the remaining weights
are restandardized to sum to 1.0. There are a number of implementation prob-
lems with this approach, some of these being:

* The “*second’’ outer points may also receive a significant weight. Adding
phantom data (with the same volume support) may not entirely remove
the artifact weighting.

* The local direction vector of the string must be known so that the phan-
tom samples are assigned the correct location.

* Any given data configuration may contain multiple strings with different
numbers of data in each string. Adding phantom data with the same
support to the end of each string would disproportionately weight the
smaller strings. Ideally, the phantom samples would have a variable
support dependent on the number of samples in a string.

* An octant search could generate multiple strings from the same drillhole
or well. It would not be straightfoward to check all pathological cases
of this situation. Moreover, missing samples in a string would further
complicate the situation.

Use Simple Kriging:

The effect is not as pronounced with simple kriging; therefore, SK with
the mean determined by local estimation over a finite volume ¥ of interest could
be applied. The idea is to proceed stepwise:

Identify the local mean to the ordinary kriging of a finite volume V centered
near the point being estimated. Given n nearby data z(u,), « = 1, ... , n, an
estimate of the local mean is written as:

m* = 2 v z(u,) (1)

a=1

with m* the local mean, z(u,), « = 1, ..., n, the local data, and v, & = 1,
., n, the weights given by the ordinary kriging system:



48 Deutsch

n

2 r)Cug — ) + poy = C(V,u), a=1,...,n
2 vg(u) = 1 )
g=1

with C(V, u,) = 1/|V| [,Cu — u,)du being the average V-data location
covariance.
Compute the local estimate with simple kriging using the local mean es-
timated from the prior ordinary kriging. The estimate at local u is written as:
W = X Elemy) — m*] + m* (3)
with £,, @ = 1, ..., n the simple kriging weights given by the SK system:
2 E@Cu; —u) = Cu—u)a=1....n @)

The final weight assigned to each of the local data may be obtained from expres-
sion (3) above:

"
+ azl PﬁZ(uﬂ)

W = X £ |20,) - El vgz(uy)

Thus, the final weight A, « = 1, ..., n, assigned to each datum is:
M=£a+|1—§§|ea]-un 5)

Note that the sum of the final weights £ _ | A, is equal to one, i.e., the estimator
z*(u) (3) has the same unbiasedness properties as ordinary kriging. Further,
note that as the sum of the SK weights £, approaches 1.0 the effect of the prior
ordinary kriging of the mean is filtered from the estimate.

The hope with this approach is that the weights for estimating a finite block
V will not show the same artifact overweighting of the outermost points on the
string. However, the artifact overweighting is due to the declustering in the left
hand side of the kriging system (2) and the final weights A, still show the artifact
over-weighting. This is illustrated on Fig. 5 where a zero nuggest effect spherical
variogram with a range equal to the length of the string has been used. The
kriging weights for the block mean, at the top, show a significant overweighting
of the outermost samples. The simple kriging weights, in the center of the figure,
do not show the effect because of the relatively short range and the importance
of the right hand side closeness covariance values C(u —u,), a =1,...,n.
The final weights, at the bottom of the figure, are a combination of the two
previous sets of weights.



Fig. 5. An illustration of the effect of ordinary block kniging to estimate
the local mean followed by point a simple kriging using that local mean.
The variogram is a spherical model with no nugget effect and a range
equal to one dimensionless unit (the length of the data string). The
block V is one unit by two units and the point being estimated is 0.5
unit from the string.
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The combination of ordinary kriging to estimate m* and then simple kriging
(with m*) to estimate the local value does not entirely remove the extra weight
given to the end points. However, this overweighting is significantly less when
using ordinary kriging.

Wrap the String

Another idea is to wrap each finite string of data, i.e., connect the two end
points when building the declustering (left hand side) kriging matrix*.

Consider n, contiguous data i = 1, ..., n, aligned in a string each
separated from its neighbors by a vector h,. The covariance between any two
data points i and j (i = j) is,

Cf.f = C(khsj
with:
k= min {(j =i+ n), (i —j)} (6)
None of the data points are actually moved; the above calculation simply mod-
ifies the data-data covariance values C(u, —ug), ¢ =1,... ,n,8=1,...,

n, in the left-hand side kriging matrix so that all points in a string are equally
redundant’.

Implementing this correction and repeating the cases shown on Fig. 2 yields
exactly the same result in all cases, i.e., an equal weight of 0.091 for all samples
regardless of the nuggest effect. This makes sense since the point being kriged
is beyond the range of correlation and all data points are now considered equally
redundant. Repeating the cases shown on Fig. 3, i.e., where the point being
estimated gets closer to the string yields the results shown on Fig. 6. The only
thing changing within Fig. 6 is the proximity of the data values to the location
being estimated (the right-hand side covariance values C(u —u,),a =1, ...,
n in the kriging system). The screen effect, due to the proximity to the unknown,
is seen to dominate the kriging weights.

The ad hoc partial solution of **wrapping”’ continuous strings of data has
been adopted in other image processing and geophysical applications where the
implicit assumption of an infinite domain has the same effects.

CONCLUSIONS

The assumption of an infinite domain is a fundamental part of kriging.
Kriging weights always reflect this assumption. In many cases, this assumption
has no inherent limitations. When considering a finite domain, however, that is

*Wrapping the data is equivalent to the **circular stationary"’ decision adopted by certain techniques
in statistics and geophysics (Aki and Richards, 1980).

*Interestingly, this correction imparts a perfect banding to the data-data covariance matrix. This
may allow a faster numerical inversion.
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Fig. 6. The same cases as Fig. 3 are shown on this figure. The difference
is that the declustering of kriging has been removed. The kriging weights
are seen 1o change considerably as the point being kriged nears the data.
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physically bounded as in the case of a stratigraphic horizon or artificially created
by a search ellipse, the implicit assumption of an infinite domain can lead to
odd kriging weights. The odd weights are particularly noticeable when dealing
with finite strings of data (see Fig. 1). In these cases, the over-weighting of the
end points of the strings can lead to poor kriging estim 5.

A number of partial solutions have been proposed. These solutions all
attempt to change the data configurations so that the kriging weights better reflect
the finite domain,
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