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Summary

Stochastic reservoir models must honor as much data as possible to be reliable numerical

models of the reservoir under study. Traditional stochastic imaging techniques’ are ill-

suited to reproduce complex geological/morphological patterns and engineering data

from well tests. The simulated annealing technique offers promise as a complementary

tool to incorporate such information into stochastic reservoir models.

This paper presents the current state of annealing as applied to reservoir modeling.

Comparative studies indicate cases when simulated annealing should be used instead

of, or as a complement to, stochastic simulation.

Introduction

Stochastic reservoir modeling is becoming commonly used to describe and visualize

reservoir heterogeneities.1–3 The idea is to generate 3-D images of the reservoir litho-

facies and rock properties that, ideally, would honor all available data (core measure-

ments well logs, seismic and geological interpretations, analog outcrops, well test in-

terpretations, . . . ). Potentially, there area large number of plausible realizations that

1Stanford Center for Reservoir Forecasting, Applied Earth Sciences, Stanford U.
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honor such data. The idea is to retain a few realizations and process them through

a flow simulator with the envisaged production scheme. The resulting distribution of

important production response variables can then be used for decision making.4–7

However, there is no single stochastic modeling algorithm that can simultaneously

honor all types of available information. Some algorithms are well suited for discrete

or categorical information such as lithofacies types; others are suited for information

carried by continuous variables like porosity, saturation, and permeability. Certain

information like production data or effective properties derived from well tests, cannot

be easily incorporated into the reservoir model. Ahnost always, a stochastic reservoir

modeling exercise will involve a hybrid

number of available algorithms.

Simulated annealing is an algorithm

technique combining the $est features of a
$
I

initially developed for the) solution of com-
‘., . .

binatorial optimization problems. The type of problem typicaHy, considered involves

finding the optimum ordering of a system with a large number of components. An

optimum ordering is one that minimizes some global cost or objective function. In the

context of stochastic reservoir modeling, the components could be a reservoir attribute

like porosity defined for blocks of constant size. The cost or objective function could

be a measure of how close the ordering (spatial arrangement of the block porosity val-

ues) reproduces the pattern of spatial correlation (variogram) inferred from an outcrop

study. Finding an optimum ordering is equivalent to generating a numerical model.

Recent interest in using the simulated annealing technique for reservoir character-

ization was triggered by a paper written by C.L. Farmer .8 The technique capitalizes

on two new ideas. First, the imaging problem is set up as an optimization problem,

Second, the optimization problem is solved with simulated annealing. This formalism

allows the ability to account for diverse types of information by building objective

functions more complex than merely identifying a variogram model. For example, one
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part of the objective function could be to match statistical properties inferred from

data available within the. actual reservoir or from other control patterns such as those ,

interpreted from outcrops. A second part of the objective function could be to match

an average (effective) property inferred from a well test.

Reasonable care must be taken to limit the complexity of the objective function,

otherwise, the computational effort may become too large to obtain a solution in a

practical amount of time. There is some evidence to suggest that simulated annealing

could be associated as a post-processor to existing stochastic simulation methods al-

lowing the reproduction of information of different types, see hereafter and I)eutsch,

1990.9

The goal of this paper is to document the implementation details and the cur-

<~[:$j~tti~mlllated annealing as applied to stochastic reservoir modeling. The.....—a

background and physical principles of simulated annealing are explained. The inl-

plementation of Farmer8 is discussed in some detail. The extension of annealing to

traditional geostatistical conditioning (i e., reproduction of t he histogram, variograrn,

and conditioning data) is presented with another algorithm based on a Maximum A

Posteriori probability approach. 1°’*1 A number of important implementation steps and

limitations of the annealing algorithm are then uncovered. Some examples are pre-

sented using a variety of techniques. Finally, in light of its strong and weak points, the

future applications of simulated annealing are discussed.

Annealing Background

Posing stochastic simulation as an optimization problem %11s first for a translation

of the desired geological, statistical, and engineering properties of the reservoir model

into some numerical quantities. Next, reference properties and corresponding numerical

quantities must be established from data and/or control patterns. An objective function
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is defined as a weighted sum of differences between the properties of any simulated

image and the previous reference values. The optimization problem consists of lowering

the objective function enough so that the image has all or most of the desired properties.

The solution of such an optimization problem is sometimes possible using the sim-

ulated annealing technique. The central idea behind simulated annealing is an analogy

with thermodynamics, specifically with the way liquids freeze and crystallize, or metals

cool and anneal. At high temperatures the molecules can move freely, As the temper-

ature is slowly lowered the molecules line up in crystals which represent the minimum

energy state for the system.

Metropolis and his coworkers 12 developed the idea of numerically simulating molec-

ular behavior. From concepts developed in thermodynamics and statistical physics it is

known that a system will change from a configuration of energy El to a configuration
-( E~-.E,)

of energy E2 with probability p = e k~T
. The system will always change if E2 is

less than El (i.e., a favorable step will always be taken); however, it may sometimes

take an unfavorable step. The application of this probability distribution in the nu-

merical simulation of systems composed of many parts has come to be known as the

Metropolis algorithm. More generally, any optimization procedure that draws upon

the thermodynamic analogy of annealing is known as simulated annealing.

In the early 1980’s Kirkpatrick et al.13 and independently Cerny*4 extended these

concepts to combinatorial optimization, i.e., they formulated an analogy between the

objective function and the free energy of a thermodynamical system.15’16 A control

parameter, analogous to temperature, is used to control the iterative optimization

algorithm until a state with a low objective function (energy) is reached.

One of the first direct applications to spatial phenomena was published by Geman

and Gemanl I who applied the method to the restoration of degraded images. About the

same time Rothman17 applied the method to nonlinear inversion and residual statics
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estimation in geophysics. Independent research by C.L. I?armers led to the publica-

tion of a simulated annealing algorithm for the generation of rock type models. This

triggered considerable interest in the method amcmg geostatisticians? ~l”~la

The essential components of an annealing algorithm are the objective function,

a procedure to update the objective function, a perturbation mechanism, and some

empirical procedure for lowering the temperature or reducing the control parameter

(the temperature),

The general algorithm may be described with the following steps:

1, Generate an initial image. This could be the result of a prior simulation algorithm

or possibly an image with the nodal values drawn at random from the desired

univariate distribution.

2. Establish an initial control parameter c and a schedule for lowering it as the

looping progresses. The magnitude of the starting control parameter may be set

to the value of the initial objective function.

3. Perturb the image. For example, swap the attribute value assigned to two differ-

ent. grid nodes.

4. Compute a new objective function O.eW, For example, the objective function”

could be the squared difference between the variogram of the image and that of

a prior model.

5. Establish the acceptance probability distribution:

{‘d1, ‘ if OneW < OO[d
P{accept} = * _on,w

ee , otherwise

6. Draw from that probability distribution, If the perturbation is

update the image and reset the objective function OO[d= On~W,

accepted then
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7. Return to step 3 until the objective function is low enough or there has not been

any significant improvement in many successive iterations.

The control parameter c or temperature must not be lowered too fast or else the

image may get trapped in a sub-optima] situation and never converge. However, if low-

ered too slowly then convergence may be unnecessarily slow. The specification of how

to lower the control parameter is known as the “annealing schedule”. There are mathe-

.11,15 ho~vever, they arematically based annealing schedules that guarantee convergence,

too slow in practice. The following empirical annealing schedule is one possibility.81*6

The idea is to start with an initially high control parameter co and lower it by some

multiplicative factor A whenever enough perturbations have been accepted (l{aCC,Pt) or

too many have been tried (Km..). The algorithm is stopped when efforts to lower the

objective function become sufficiently discouraging. The following parameters describe

this annealing schedule:

I<aC.,Pt:

s:

AO

the initial control parameter.

the reduction factor O < ~ <1.

the maximum number of attempted perturbations at any one value of the con-

trol parameter (on the order of 100 times the number of nodes). The control

parameter is lowered by A whenei’er lf~aT is reached.

the acceptance target. After K accept Perturbations are accepted at any one of its

value the control parameter is lowered by J. (on the order of 10 times the number .

of nodes).

the stopping number, If 1{maz is reached S’ tirnw then the algorithm is stopped

(usually set at 2 or 3).

: a low objective function indicating convergence.
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This type of annealing schedule is used for all implementations presented in this paper.

Another implementation corresponds more closely to a Bayesian approach whereby

only downhill steps (ones that lower the objective function) are taken; no annealing

schedule is needed, see hereafter and, Doyen.*”

Numerical Rocks

Consider the numerical modeling of integer coded rock types.

The proportion of each rock type is honored at the beginning by randomly assigning

rock types at all nodes according to their respective proportions. Wherever the rock

type is known, e.g., at the well locations, the rock type is set to its known value and
.

never changed in the subsequent annealing algorithm; thus conditioning to well data is

obtained by construction.

A two-point histogram and/or a correlation function for some specified number of

lags and directions enter the objective function to control the simulation.

A two-point histogram for a specific lag and direction vector h specifies the prob-

ability of each possible transition. For example, if there are two rock types (1 and 2)

there are four possible transitions from the rock type at location u to the rock type at

location u + h, In general, given n integer coded rock types there are n2 classes in the

two-point histogram.

A complete two-point histogram contains all the univariate and bivariate informa-

tion. More precisely, it contains all the direct and cross indicator covariance information,6’19

Experimental data may not be enough to infer such a two-point histogram; they could

then be computed from control patterns obtained from independent measurements (e.g.,

an outcrop study or a catalog of geological features). The control pattern conditions

all spatial features of the simulated realizations; therefore, it must be appropriate.

A possible objective function could be defined as the sum of the squared differences
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between the control statistics and the image statistics, for example:

[

““g 2.3’=’1E~=l(tijl - ‘~j[) 2
0= ~

1=1 ~~~~ nl 1
where n is the number of rock types; nl~~ is the number of lags considered in the two-

point histogram; tijland t~jl are the numbers of pairs switching from code i to code -j

at lag vector 1 for the image and the” control pattern respectively; nl is the number of

pairs at lag vector 1.

Virtually all of the computational effort is taken to update the objective func-

tion; the time needed to choose two locations at random is negligible. Therefore, it is

important to code this part of the algorithm with a minimum number of arithmetic

operations.

Different realizations, i.e., conditional simulations, are achieved by starting with

different random images.

An example control pattern is shown on the upper left of Figure 1. This control

pattern represents classes of air permeameter measurements taken on a vertical slab of

Berea sandstone of dimensions 2 x 2 foot, 20 The continuous distribution of permeability

values was divided into six classes for the purposes of this demonstration. An example

random image, 40 by 40 pixels, is shown on the upper right of Figure 1. The two-

point histogram, for 15 lags, in two directions aligned with the coordinate axes was

computed and retained to control the generation of the simulation shown on the lower

left. Although the general features are reproduced, the strong diagonal banding is not
.,. ,

Weil”re~roduced. The realization shown on the lower right of Figure 1 was created by

choosing the two directions parallel and orthogonal to the banding, Choosing suitable

directions and lags that enter the objective function is an important aspect of annealing.
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Cent inuous Variable Simulations

Farmer’s’ algorithm may be used to simulate continuous variables by defining classes, as

already done for the previous Berea sandstone example, Another alternative objective

function is to reproduce traditional geostatistical constraints. That is, a conditional

simulation is an image that honors a given histogram, variogram model, and the data

values at their locations.6’21

In the following implementation, the initial image is created by filling all non-data

nodes with values drawn at random from a specified histogram, This histogram is

preserved in the final images since only the spatial locations of the values are changed,

not the values themselves. The conditioning data values are honoured by fixing them in

the initial image and never perturbing them in the subsequent optimization. The final

requirement of matching the variogram is achieved through the simulated annealing

algorithm.

The objective is for the actual variogram

ymo~e~(h). The following objective fuxlction

conditional simulation:

Yactua[(h) to match the Varhwm model

should approach zero to achieve such a

There is no requirement to standardize each deviation by the model variogram value

at each lag. This is done here to give more weight to closely spaced (small variogram)

values,

The initial image is modified by swapping pairs of nodal values zi and ~j chosen at

random, where neither node i nor node j are conditioning data. The annealing schedule

documented earlier is used. Note that a control pattern is not needed; the variogram

model can be inferred from the available conditioning data.

The more directions and lags considered in the objective function the longer it will
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take to calculate and update; consequently, the algorithm will be slower, An efficient

coding of the objective function is necessary to speed up the algorithm, For example,

one should update rather than recalculate the variogram at each step, i.e., if the value

zj is getting swapped into a specific node and zi is getting swapped out, the lag at

h is updated by subtracting the previous contribution from zi and adding the new

contribution due to zj:

~new(h) = ~./d(h) + * [(z-‘j)’ ‘(z- zi)’] “

where z is the value at a lag distance h from the node being altered, and N(h) is the

number of pairs separated by lag (vector) h. Of course this updating has to be carried

out at two locations: the location where zi is coming from (where Zj is going) and the

location where ~j is coming from (where ~i is going). Further, note that this must be

done for all lags and directions called for in the objective function,

When all the pairs are considered without distinction in a one-part objective func-

tion, the original local conditioning data aresomewhat overwhelmed. That is, although

the conditioning data and overall variogram are matched, there is no specific condition

to match the variogram involving conditioning data. Experience has shown that the

results are more realistic and aesthetically pleasing when a two-part objective function

is considered where all the pairs which involve at least one conditioning datum are

considered as a second part of the objective function. This is illustrated on Figure 2

where realizations generated with” a one part objective function “present discontinuities

near the wells. Realizations generated with the oh ject ive function separated into two

components show improved continuity near the wells.

Annealed images can be obtained with a very low objective function, that is, the

variogram model can be reproduced very closely, Figure 3 shows the variograrn d. the
. .

beginning, half way through, and at the end of the simulation shown at the lower left

of Figure 2,

10
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The indicator formalism3’z* is useful because it allows specification of the continu-

ity of the extreme values. The objective function could be set up as the cumulative

deviation of the actual and modeled indicator variograms. The implementation of

Srivastava18 considers such an objective function. As before, the initial image is gener-

ated with the correct histogram and the conditioning data are set in the image, never

to be changed. Then, all the nodes are visited in a path spiraling away from the con-

ditioning data. At each simulated node the probability distribution of the attribute

value is constructed with indicator krig~ng,6 A Monte Carlo realization from that condi-

tional distribution then replaces the node value. The objective function is recalculated

only after all nodes have been visited. If the objective function is low enough, or if

some maximum number of loops is exceeded, then the image is finished; otherwise, the

spiraling path is repeated,

The Maximum A Posterior Variant

Bayesian classification schemes provide a variant to the simulated annealing algorith.m.~0~22 ~23

While the approach is suitable for discrete or categorical variables, the application to

~

continuous variables is not straightforward. The method described below for generating

rock type images is due to the recent work of Doyen.l”

As in annealing, the algorithm starts with an image that has the conditioning data

fixed and the correct proportion of each rock type. A random path is established that

sequentially visits each node, much the same as Srivastava’s approach .*8 At each node
. . . . .

location all the rock types are considered and the one that lowers the objective function

the, most is kept. This cycling over all the grid nodes is continued until the objective

function does not change significantly.

The resulting image is called a

The primary difference between this

Maximum A Posteriori (MAP) lithologic model.

approach and Farmer’s algorithm is that the MAP

11
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approach cannot jump out of a local minimum, i,e,, it corresponds to a steepest descent-

type approach. The rationale is that in stochastic simulation the goal is not a ,global

minimum; the goal is to make a census of images (realizaticms) that have the statistical,

geological, and engineering properties that are considered important.

Figure 4 shows MAP models based on the same ‘control pattern as the numerical

rocks example presented earlier (Figure 1). The MAP realization attempting to match

the two-point histogram in directions parallel to the coordinate axes fails to reproduce

the general banding aspect of the control pattern. Once again the resulting image is

much better when the directions are chosen to capture the essential features of the

control pattern.

An interesting aspect of Doyen’s paperl” is the incorporation of seismic information.

A two part objective function was considered; the first part was the deviation of the rock

simulated types from that indicated by a seismic impedance profile and the second part

was the deviation of the two-point histogram from that inferred from a control pattern.

This two-part objective function yields images that are simultaneously constrained by

the seismic data and the statistical properties of the reservoir,

The method is impractical with continuous variables because finding the contin-

uous value which most significantly reduces the global objective function would be

prohibitively expensive.

Implementation

As already mentioned, the annealing schedule is quite important, If the image is

cooled too quickly then it may freeze before cmvergence, that is, before all conditioning

statistics are correctly reproduced. Conversely, if the image is cooled too slowly, besides

the issue of computer time there is that of convergence toward a single global optimum

which, would defeat the objective of providing alternative realizations.

12



Research is not advanced enough to present an automatic method of obtaining

such a schedule, Note that the schedule parameters cannot be changed independently

of one another. For example, if the reduction factor A or cooling rate is lowered the

stopping number S must be increased, otherwise, the algorithm may stop iterating

before convergence.

Experimentation

annealing schedule.

researchers *’15is on

than fine tuning the

is the only method currently available to establish an appropriate

This can be tedious and time consuming. The main focus of

achieving a more parallel computing approach in hardware rather

annealing schedule. That is, if computers with hundreds or even

thousands of processors could be employed the optimum could be reached no matter

how slow the cooling schedule.

There are properties analogous to the thermodynamic properties of specific heat

and entropy that could be measured to assist in customizing the annealing schedule,

For example, the specific heat can be used to recognize when the system is beginning

to converge. The temperature should not be lowered when the convergence is rapid.13

A rather difficult synthetic example was constructed to test the annealing algorithm.

The 200 by 100 pixels control pattern, shown at the top left of Figure 5, consists of

many superimposed geological-like structures. Most simulation algorithms would have

difficulty in simultaneously reproducing all aspects of that image, e.g., the fault like

structures, the alteration caps on the elliptical shapes, and the anisotropic discontinuous

bodies entirely within the elliptical shapes.

The two images shown on the bottom of Figure 5 were created by retaining the two

point” histogram for 25 lags in four directions. The images succeed in capturing many

of the control pattern features.

In one of the simpler examples presented earlier (Figure 4) the MAP simulation

method worked almost as ,well as the annealing algorithm. However, in the present
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example there are many conflicting goals and the MAP algorithm gets stuck in various

local minima before converging to reasonable images, Figure 6 shows two such MAP

realizations. This indicates that if the control pattern is complex it may be necessary

to implement the full simulated annealing algorithm rather than the simpler and faster

MAP simulation method.

The addition of more information into the objective function is one of the major

advantages to the annealing algorithm, For example, it is possible to consider all config-

urations of a 2 by 2 pixel configuration. This 4-point histogram or partial quadrivariate

information would add important details about the short scale structure. Such quadri-

variate information has been extracted from the control pattern shown on Figure 5,

A realization that honors this statistical control is shown on Figure 7. The general

character of the control pattern is well reproduced even though only very short scale

information has been used.

Comparison of Annealing to Other Methods

The Berea sandstone examplezo presented on Figure 1 may also be approached with a

Gaussian simulation and an indicator simulation technique3*21 Table 1 summarizes the

computer requirements for a single 40 by 40 simulated image.

$PE 23565

0 The sequential Gaussian simulation considered a maximum of 16 previously simu-

lated grid nodes for the derivation of each conditional distribution and subsequent

simulation of a grid node. All other parameters do not affect the speed.

● The ~equential Indicator simulation used nine threshold values discretizing the

range of variability of the permeability and again a maximum of 16 data for the

simulation of a grid node.

14



Sequential Gaussian Simulation

Sequential Indicator Simulation

Simulated Annealing:

Simulated Annealing:

Simulated Annealing:

Simulated Annealing:

Farmer’s

Farmer’s

Algorithm

Algorithm - stripped down

MAP algorithm

MAP algorithm - stripped down

W 23565

10.9

41.0

2332,9

336.6

302.0

39.1

Table 1: The computer requirements for one 40 by 40 simulated image (seconds on a DEC

5000-200 workstation).

●

●

●

●

Farmer’s algorithm considered 4 directions and 15 lags in the objective function.

The algorithm was executed using the annealing schedule presented earlier.

The stripped down Farmer’s algorithm considered only 4 lags in each of the 4

directions. Thus, 16 actual lags were used in the objective function corresponding

more closely to the 16 data used with the sequential Gaussian and sequential

indicator algorithms. However, the resulting images are not as good as when

using the full 15 lags in each direction.

The MAP algorithm considered 4 directions and 15 lags when selecting the opti-

mum classification at each point.

The stripped doum MAP algorithm considered only 4 lags in each of the 4 di-

rections to more closely correspond to the sequential Gaussian and sequential

indicator algorithms.

In all cases the statistics required, whether variograms or two-point histograms,

were derived from the Berea cent rol pattern. No initial data was used.
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Figure 8 shows one realization from each of the algorithms using standard softwares?4

From this figure we would either choose the simulated annealing simulation or the MAP

simulation. The advantage of the Gaussian and indicator simulaticms is that a prior

exhaustive control pattern is not necessary.

One can argue that the images on 1 ~gure 8 are not directly comparable because

they have been generated with two different objectives:

1.

2.

‘The Gaussian and Indicator images are generated with a stochastic simulation

algorithm which aims at sampling from random function models constrained by

specific statistics. These images are intended to visualize the spatial uncertainty

left once these statistics have been honoured,

The annealing and MAP images are generated with an optimization algorithm

which aims specifically at identifying the conditioning properties or statistics. It

is possible that, whatever the initial random image, these algorithms may zoom

toward the same class of final “optimal” images, thus failing to reflect spatial

uncertainty, in particular that associated with the reliability of the control pattern

used.

Clearly, if best reproduction of one specific control pattern is the goal then optimization

techniques are preferable. In reservoir modeling, any control pattern provides but a

general mold for the actual reservoir; the goal is not to reproduce exactly that image

but to evaluate the various realizations possible around that mold. This important

distinction between simulation and optimization is being actively investigated.

Further Applications of Annealing

“ The annealing objective function allows the flexibility to impose constraints that cannot

easily be expressed in terms of bivariate statistics. The biggest potential is for annealing

16



to be used in conjunction with a tailored simulation algorithm, i.e., initially capture as

much information as possible with a faster more traditional simulation algorithm and

then finish the simulations with annealing to capture difTicuIt information like complex

geological patterns or production-type data.

One outstanding potential is associated with the inability of stochastic simulation

techniques to handle effective properties inferred from well tests. It may be possible to

formulate a post-processing annealing algorithm that will locally alter initial simulated

images such that their statistical properties are minimally modified while forcing it to

match the effective properties inferred from a well test.

Annealing could also be used to extend dimensionality, e.g., geologists can con-

veniently draw 2-D cross sections; however,” a consistent 3-D image from such cross-

sections is tedious to hand draw. Annealing could be used to in-fill the complete 3-D

distribution conditional to the geological interpretation and statistics available from

several 2-D cross sections,

The application of simulated annealing to stochastic simulation is a good example

of cross fertilization between different scientific disciplines. There are many other com-

binatorial optimization problems, outside the realm of stochastic modeling, that may

benefit from its application,

Conclusions

The application of simulated annealing to stochastic reservoir modeling has been pre-

sented in some detail. A number of examples have shown that the method generates

high quality realizations albeit with considerably more computer time that conventional

techniques.

The major advantage of annealing is that additional information can be accounted

for by simpiy adding a contribution to an objective function. One example of matching

17



partial quadrivariate statistics was presented. This work also points the way to other

applications such as the incorporation of seismic data, and effective properties inferred

from pressure transient well tests.

The current concept is to start with a fast tailored simulation algorithm such as

Boolean, Gaussian, or indicator methods to capture the broad features. Then, anneal-

ing can be applied as the jinisher to incorporate information and details not possible

with tailored algorithms.

There remain questions about whether simulated annealing realizations succeed to

image the spatial uncertainty prevailing beyond the properties (data) contained in the

objective function. It could be that these realizations, being based on an optimization

principle, are too close to each other offering a biased and non-conservative image of

actual uncertainty.
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Nomenclature

c =

o=

AO =

~(h) =

N(h) =

z =

t~j[ =

T=

E=

kb =

C[ =

co =

A=

I<maz =

Kac,.pi =

s=

Subscripts

i=

j=

model =

actual =

new =

old =

control parameter in simulated annealing

objective function

a low objective function indicating convergence,

variogram value for direction vector h

number ,of pairs corresponding to direction vector h

reservoir attribute (e.g., permeability)

two-point histogram

temperature

Gibbs free energy

Boltzmann constant

correlation for lag 1

the initial annealing control parameter.

the control parameter reduction factor.

maximum number of swaps at given control parameter.

acceptance target number of swaps.

the stopping number.

grid node location/irldex

grid node location/index

prespecified model value

experimentally calculated value

function at a new level of iteration

function at- an old level of iteration

$PE 23565
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Figure 1: An example application of Farmer’s algorithm: the upper left image is a 40 by 40

pixel control pattern; the upper right image is an initial random image; the lower left image

was created by retaining the two-point histogram, for 15 lags, in the two coordinate directions;

the lower right image was created by choosing the two directions parallel and orthogonal to the

banding.
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A One Part Obiectke #2 A

Figure 2: An example of simulating interwell variability using simulated annealing. The top

two realizations were generated with a one part objective function. Note the discontinuities near

the wells. The bottom two realizations were generated with the objective function separated

into two components: the pairs involving at least one conditioning datum and those involving

only simulated points. Note the impro~ed continuity near the wells,
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Figure 3: An example of the actual variograms at the beginning, half way through, and at the

end of a simulated annealing conditional simulation. These results correspond to the generation

of the lower left image on Figure 2.
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Figure 4: An example application of the Maximum A Posteriori (MAP) algorithm: the left

image was created by retaining the tw~point histogram, for 15 lags, in the two coordinate direc-

tions; the lower right image was created by choosing the two directions parallel and orthogonal

to the banding.
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Figure 6: An example application of the Maximum A Posteriori (MAP) algorithm: the two-

point histogram was taken from the control pattern shown on Figure 5. Two alternate images

are shown. Note that these images have not converged to images that have the desired statistical

properties of the control pattern.

,

Figure 7: An example application of simulated annealing conside~ing only partial quadrivari-

Ite information. This image reproduces the general features of the control pattern shown on

Figure 5.
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Figure 8: The Berea control pattern, one Gaussian simulation, one indicator simulation, a full

simulated annealing simulation, a stripped down simulated annealing simulation, a full M?,P

simulation, and a stripped down MAP simulation, No initial conditioning data was used.
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