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Kriging with Strings of Data'

Clayton V. Deutsch’

The concept of a random function and, consequently, the application of kriging cells for the implicit
assumption thar the data locations are embedded within an infinite domain. An implication of this
assumption is that, all else being equal, outlying data locations will receive greater weight because
they are seen as less redundant, hence, more informative of the infinite domain. A two-step kriging
procedure is proposed for correcting this siring effect. The first step is to establish the total kriging
weight attributable 1o each string. The distribution of that total weight to the samples in the string
is accomplished by a second stage of kriging. In the second stage, a spatial redundancy measure
ty 15 used in place of the covariance measure in the data-data kriging matrix. This measure is
constructed such that each datum has the same redundancy with the (n) data of the string to which
it belongs. This paper documents the problem of kriging with strings of data, develops the redun-
dancy measure v, and presents a number of examples.

INTRODUCTION

The short scale variability in the spatial distribution of petrophysical vari-
ables is being increasingly modeled with geostatistical conditional simulation
techniques (Haldorsen and Damsleth, 1989). That is, alternative high resolution
3-D realizations are generated which reflect the level of heterogeneity observed
in the data. The level of heterogeneity or spatial variability is quantified by
variogram/covariance models. Geostatistical simulation techniques make use of
kriging to model local conditional distributions of the variable being simulated;
simulation proceeds by sequential drawing from such conditional distributions
(Deutsch and Journel, 1992, p. 123; Joumnel 1989).

Adopting a random function (RF) model {Z(u), u € study area A} and
using kriging amounts.to assume that the study area A is embedded within an
infinite domain (Deutsch, 1993). At first glance, this assumption has no inherent
limitations since all locations outside A4 are never explicitly considered. A prac-
tically important consequence, however, is reflected in the kriging weights as-
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signed to data contiguously aligned along finite strings. As shown in Fig. 1, the
outlying samples can receive a significantly greater weight than central samples.
The variogram range is as long as the string; the location being estimated is
beyond that range. This overweighting becomes less important as the point being
estimated gets closer to the string and as the relative nugget effect increases (this
effect is fully documented in Deutsch, 1993).

The reason for outlying samples to be overweighted is that the data-data
(left hand side) kriging matrix sees such samples as less redundant than the more
centrally located samples. Consider the data location set (n): {u,, a =1, ...,
n}, where u, is a central location and u, is an outlying location (see Fig. 2),
then:

plu,, (n) < p(uy, (n) (1)
where p(h) is the stationary correlogram of RF Z(u), and

Data Points Along a String (with Ordinary Kriging Weights)

|0.233

|o.108
|o.061
0.043

0.036 Point Being Estimated

0.036
0.043
" |o.061
|o.108
|o.233

Fig. 1. Data points along a string with the ordinary kriging
weights. A spherical variogram model was used with a 20%
relative nugget effect and a range equal 1o the length of the
string. The point being estimated is beyond that range (from
Deutsch, 1993).

outlying location central location

Fig. 2. Outlying and central locations within a set of data loca-
tions.
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= 1 <
Pg, () = - 2 p(uy = uy)

is the average correlation (redundancy of sample z(u,) with the data set (n)).
The sample at the outlying location u, is seen as less redundant than the sample
at the central location u,;. The kriging weight given to sample z(u,) would then
be increased correspondingly and artificially whereas, in actuality, that sample
is no more or less redundant in average over the string (n) than any other sample.
We are assuming that the string (n) has no internal clustering which would
Justify considering some samples as more redundant than others.

The artifact weighting is not as pronounced with simple kriging (SK). For
example, SK applied in the case shown in Fig. 1 would give a weight of zero
to all data points since the point being kriged is beyond the range of correlation.
The artifact weighting appears, however, as the point gets within the range of
correlation of the data.

This edge effect of kriging is practically important. Strings of data are
frequently encountered in mining and petroleum applications where data are
collected along drillholes or wells. Short strings are created when a *‘long”’
length of drillhole data is truncated by stratigraphic limits or the boundaries of
a local search ellipsoid.

Although this odd weighting behavior is valid in a theoretical RF frame-
work with no boundaries, it is not what a practitioner anticipates. In the case
of a bounded stratigraphic layer, there is no volume of interest outside the limits
justifying overweighting the end values. In the case of a limited search neigh-
borhood, there are data beyond the limits of the data strings but these data need
not be reflected by the end points of the search neighborhood. Moreover, one
goal of ordinary kriging is to re-estimate locally the mean (Journel and Rossi,
1989); assigning more weight to the end points of strings would be contrary to
that goal. The artifacts caused by this overweighting are exacerbated when the
data values present a trend. In particular, a bias may ensue when the variable
has relatively high or low values near the top and bottom of the string (often
the case in contact controlled mineralization, or in fining upwards sequences).

EMPIRICAL SOLUTIONS

There are a number of empirical solutions to this problem (Deutsch, 1993).
The first obvious solution is to use only two samples from any one string of
data. In this case, both samples are equally redundant and equally informative.
A disadvantage of this approach is the arbitrary elimination of valuable data.

Another idea is to wrap each finite string of data when building the data-
data (left-hand side) kriging matrix. Consider n contiguous datai = 1, ..., n,
aligned in a string, each separated from its neighbors by a vector h,. After
wrapping the covariance between any two data points i and j(i = j) is
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C,=C-h) 2)

with: k = min {(j — i + n), (i = j)}

It is important to note that none of the data locations are moved; the above
calculation simply modifies the data-data covariance values

Clu, ~wgae=1,...,m,=1,...,n

in the left-hand side kriging matrix so that all points in the string are equally
redundant within that string.

The ad hoc partial solution of **wrapping’” continuous strings of data has
been adopted in other image processing and geophysical applications where the
implicit assumption of an infinite domain has the same effect (Aki and Richards,
1980). Wrapping the data is sometimes referred to as the decision of *‘circular
stationarity.”’

The assumption of an infinite domain is a fundamental aspect of any RF
model and, consequently, of kriging. The kriging weights always reflect this
assumption; the effects are more pronounced, however, when dealing with finite
strings of contiguous data. The objective of this work is to present a modification
to the kriging equations which eliminates these non-intuitive weights.

THE PROPOSED SOLUTION

The circular stationarity (or **wrap the string™’) solution consists of increas-
ing the average redundancy term p(u,, (n)) of the outlying sample at location
u, by reducing its Euclidean distance u, — u, to the other samples.

Capitalizing on the circular stationarity solution, the correlation function
p(h) could be corrected to ensure that all samples within the same string (n)
have exactly the same average redundancy. Journel (private communication) has
suggested that the correlation function be replaced by the measure:

I, u’) = p@" —u) + [p@', (n) — p(u, (n)] 3)
vu, u' € (n)

where (n) is the set of locations of the data actually used in the kriging. Note
that the set of data (n) may change from one location being estimated to another.

When kriging the unknown value z(u,) from the dataset (n), the data-data
left-hand side of the kriging system is constructed with r,,,, instead of p (h). The
right-hand side correlation values are unchanged; they are the original data-to-
unknown correlation values p(u; — u,).
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Some Properties of r,,

1. Using the redundancy measure (3), the average redundancy of any sam-
ple z(u,), u, € (n), is seen to be constant:

l n"
= .
i (U, Ug)

Ty (U, (n))

p((n), u,) + p((n), (m) — p(u,, (n)) = pl(n), (n)
vu, € (n) 4)

2. The correction (3) amounts to increasing the redundancy of outlying
samples, and decreasing that of central samples. Indeed:

rop(u, u’) = ry (@', w) = 2[p’, (n)) — p(u, (n)]

which is greater than 0 if p(u’, (1)) = p(u, (n)), i.e., if u is more outlying
within the string (n) than u’. Note that the measure r,, is asymmetric. This
implies that [I — r,,(u — u')] is not a distance measure as opposed to the
semivariogram y(h) = 1 — p(h).

3. The redundancy measure r,,(u, u’) is exactly 1.0 foru = u'":

ray(u, u’) = p(0) = 1
In addition,
reu, v’) = 1 vu, u’ and (n)

Indeed, since y(h) = 1 — p(h) is a distance measure:

y(@ —W,) < y(@=w) +y@"—u)
Thus:

=pld —u;) =2 —pa—nf) — pit" =)

plu—u) =pu—u)+p@ —u) —1
Averaging over all u, € (n) yields:

p(u, (n) = p(u —u') + p(u’, (n) — 1
That is,

p(u —u) +p', ) — pu, (1) = ry(u, ) < 1, ged

Note, however, that r,,(u, u’) can be negative.

Positive Definiteness

The data-data matrix, constructed with the redundancy measure r,, instead
of the correlation measure p, must be positive semi-definite to ensure uniqueness
and existence of a solution. That is,



2 2 NN, ug) =0 WAL, A, (1)

ag(n) Bein)
Expanding in terms of p:
E Z huhﬂr(n){uus “ﬁ)

ae(r) ge(n)

= 2 X ANMNpug + 2 X N Agp(us ()

ae(n) geln) aeln) Ge(n)

- 2 2 N Asp(u,, ()

ae(n) fe(n)

= “z;'n} ,Sez(:n} AaNg o (u,, ug) + (“z[:n} P\u) : “z{]m Asp(ug, u,)
- ( ﬂ§m ka) + Em A, B(u,, ug)
= .E.,, B:Jm Ao Asp(ug, uf) = 0, VA, AB, ¥(n) (5)

Therefore, r,, is positive semi-definite if p is a positive semi-definite correlation
function.

Finite Domain Kriging

Correction for the string, or finite domain, effect is done by replacing the
data-data covariance values p(u, — ug) by the redundancy measure r,(u, —
ug), leaving the data-unknown right-hand side vector unchanged. The corrected
estimator is:

n

Z* ) = X v.Z(u,) 6)

with the corrected kriging system:

BEJI valrim(ug, u,) + py =plug —w),aa=1,...,n
s§| vg = 1 (7)

where p, is a Lagrange parameter accounting for the constraint on the weights
Vg.

The measure ry,, is positive semi-definite, thus, system (7) yields a unique
solution as long as no two data locations coincide.



Kriging with Strings of Data 629

The price for the correction of p into 7y, is the loss of the kriging property
of exactitude. Data exactitude would call for v, = 1, vy = 0, VB # ay,
whenever the location u, identifies a datum location u,,, € (n). System (7) would
then be written:

py = 0, when a = «
{. 0 &

Ty (Mg By) = p(0, — Uy, Vo # o

which is true only for r,, = p, i.e., if no correction is applied to the original
correlation function p(h).

Even if estimation is not performed at data locations, the lack of exactitude
may create artifact discontinuities next to data locations (see later section). One
may consider restoring data exactitude by extending the correction to the right-
hand side of the kriging system (7); however, it can be shown that this amounts
to reverting to the traditional ordinary kriging system, and hence forfeiting the
string effect correction.

Estimation Variance

The estimation variance of the linear estimator Z* (uy) is:
ok, = E{[Z(uy) — Z*(uo)’}
1 =22 vp(ug —u,) + > %} Vavgp(Ug — U,)

Il

Accounting for relation (5)
2 %: vovgp(ug — u,) = 2 %: Vo Valom(Ug, U,) = 2 Vep(u, —u,) —

Thus:
ob =1 — Zv,plig—u) —py =0 &)

This estimation variance calculated from the correlation p (h) is necessarily non-
negative, even with the weights », and Lagrange parameter y, determined from
the modified kriging system (7) instead of the traditional OK system. At a datum
location u, = u,,, however, the estimation variance (9) may not be zero since,
in general, z*(ug) # z(ug).

THE CASE OF MULTIPLE STRINGS

If the data configuration includes several strings, Journel’s redundancy mea-
sure (3) should be applied to each string separately and, consequently, kriging
of type (7) should be performed on each.
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More precisely, consider a dataset consisting of L strings of n; data each;
hence: n = E;n;. A modified kriging system of type (7) is applied to each string
of data, leading to the estimator for string /:

ny

z¥%,) = 2 NZ@E) (10)
using the (n;) locations u!’ in string /. The corresponding corrected kriging
system is:

n
8@ ) + = o — D=

=

Next, consider the L string average values:

- 1 ni

Ziy = — stz - oo L

n o= 1
and kriging using these average values:
L —
Zu,) = 5. Wiy (12)

with the (uncorrected) kriging system:

L
JE w Bl )+ p=p@g, D, I=1,...,L
‘=1

25wy =1 (13)

and: 5 (uo, 1) = nl 2 p(, - ul)
e

ny ny

all’, f)=L 2 2

" ()
u; ' —u
n;nfﬂ=la=~lp( B cz)

Last, use the weights w, to recombine the L estimators (10) which were corrected
for their respective string effect:

E

z**(u) = 2 wZ*"(m,) (14)
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Remarks

® The estimator (14) can be written as:

L " "
Z**@,) = L o L NPZW) = X kZ(u,) (15)
= = a=1
withk, = w\Y if u, estring /, and E” _, k, = E,&,E, A = 1. This estimate
differs from both the traditional (uncorrected) OK using all n data, and a globally
corrected kriging that would use a unique redundancy measure ry,, as in system
(7).

® Since none of the L estimators (10) are exact, the recombined estimator
(14) is not exact. Again, the string effect correction comes at the price
of loss of the exactitude property.

® Using the weights k,, « = 1, ..., n, and the correlogram p(h), one
can calculate the estimation variance corresponding to estimator (14).

SOME EXAMPLES

Single String Case

Figure 3 compares the kriging weights obtained with ordinary kriging and
with **finite domain kriging"* (FDK) using the r,,, redundancy measure. In both
cases, the variogram model considered is spherical with a 20% nugget effect
and a range equal to the length of the string. Note how *‘finite domain kriging””
reduces the artificially higher ordinary kriging weight given to the end sample
of the string: as expected, when the point to be estimated is beyond the range
of correlation, all corrected weights are equal (0.091 = 1/11).

To evaluate the loss of exactitude, the evolution of the central datum weight
(A for OK, p; for FDK) and the extreme datum weight (), for OK, p, for
FDK) as the point being estimated is farther away from the string is graphed in
Fig. 4. When the point being estimated, u,, coincides with the central datum
location u;, the OK weight is one and all other OK weights are zero ensuring
exactitude of the OK estimator; in contrast, the FDK weight v, is 1.056 and »,
is —0.142. The OK weight given to the sample at u; drops suddenly from 1.0
to less than 0.5 for |uy — u,| > 0; the OK exactitude is obtained by a discon-
tinuity at the datum location. When the distance |u, — u,| reaches the correlation
range, all FDK weights become »; = »g = 0.091, while the OK weights show
the string effect: Ay = 0.233 >> \; = 0.035. The question is: Of the loss of
exactitude or the string effect, which is most harmful in practical applications?
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Ordinary Kriging Weights Finite Domain Kriging Weights
o lo.233 ol  o.091
g |o.108 o 0.091
o] Jo.osr o |0.091
ol o043 o 0.091
0096 Point Being Estimated 0.091 Point Being Estimated
o] Jopos- — — — — — — — . o RO~ (e e s i, .
o] |o.038 o[ o091
o] |0043 . 0.081
| 0.081 ] 0.091
o lo.108 o 0.091
g |o.233 o 0.091
Aol oaar v _t -0.006
o]  Jooss o Jo.0e7
o [oo7a o lo.103
| loo7s o lo.125
o] lo.0s4 0.139
Ayl 0:087— —ePoint Being Estimated v,yle 0-143-*Point Being Estimated
d 0.084 o 0.139
o] Joo7e o] lo.125
o] o074 o o103
o] |o.084 o] |o.067
8 lo.137 of-0.006

Fig. 3. The ordinary kriging weights and the kriging weights using r,,, in the data-data covariance
matrix are shown. In the top case the point being estimated is beyond the range, while in the bottom
case the point being estimated is within the range of correlation of the data.

Multiple Strings Case

Figure 5 relates to a data configuration containing two strings of equal size
(five data each). The point being estimated is 3 units away from the left string,
6 units away from the right string. The string length is 5 units. The variogram
model used is spherical with zero nugget and range equal to 18 units, so any
location of the configuration of Fig. 5 is within the range of any other location.
The string effect is observed on the OK weights of both strings; it is corrected
by FDK to the point of generating slightly negative weights (—0.00820) for the
end points in the left string. The sum of the OK weights for the left string
(0.692) is marginally different from the corresponding sum of the FDK weights
(0.695), that is FDK simply redistributes the total OK weight for the string to
correct for the string effect.
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Ordinary Kriging Weights Finite Domain Kriging Weights

Kriging Weight

Distance From String Distance From String

Fig. 4. Variation of the central weights (A, »;) and the extreme weights (A, »,) as the distance
|lug — ug| between the point being estimated and the central datum location increases. OK results
are on the left, FDK results are on the right.

Ordinary Kriging Weights
0.146 | g I; 0.08s
0.126 | *|  Point Being 0.045
0.148 :I . 0.048
0.126 N | Esteind 0.045
0.146 | g o]  Jooss
Finite Domain Kriging Weights
-0.008 |*| | 0.029
0232 Point Being , 0.082
0.247 . 0.083
0292 Estimated j__J 0.082
-0.008 0.029

Fig. 5. The ordinary kriging weights and the finite domain kriging
weights for two strings of equal size. The point being estimated is 3
units away from the left string and 6 units away from the right string.
The variogram model is spherical with zero nugget effect and 18 units
range.
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In Fig. 6 the right string is reduced to a single datum and the point being
estimated is 4.5 units halfway from both strings. The variogram model is the
same as used for Fig. 5. Note again the string effect on the OK weights and the
similarity of both OK and FDK weights given to the single datum right string.

Loss of Exactitude

The data configuration of Fig. 6 is considered again in Fig. 7 with the
same variogram model. The point to be estimated, u,, is made to vary from the
central datum location u, of the left string to that of the right string u,. Figure
7 gives the evolution of the two weights (A, and A, for OK, »; and », for FDK)
as the point being estimated approaches u,, i.e., as the distance |u, — u,]
increases from zero to 9 units. The variogram model is the same as used for
Fig. 5 and 6, i.e., spherical with zero nugget and 18 units range. Ordinary
kriging is an exact interpolar in that forug = u;, A, = land \; = 0, Vi # 1.
In contrast for u, = u,, the FDK weights are »;, = 1.22 and », = —0.020. At
the other extreme when u; = u,, both OK and FDK estimators are exact (A,
= v, = 1, Ay = »; = 0). Indeed, since the right string is reduced to a single
datum, there is no redistribution of the weight over that string done by FDK,
and hence no loss of exactitude.

Ordinary Kriging Weights
0.149 | .
0079 e Point Being
0086 | |* . . |o.4s8
Py Estimated
0.149 | 0
Finite Domain Kriging Weights
0.029 IJ:
0.159 | o| Point Being L
0.163 | 0 B lo| 0.461
0.159 I & Estimated ”
0.029 | |*!

Fig. 6. The ordinary kriging weights and the finite domain kriging weights for two strings
of unequal size. The point being estimated is 4.5 units halfway from both strings. The
variogram model is spherical with zero nugget effect and 18 units range.
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|¢]|1:|.1.I
s

_Ordinary Kriging Weights

Kriging Weight

Kriging Weight

W
0 1 2 3 - - 7 8 9

Fig. 7. Evolution of the weights for the left (A, #,) and the
right (A;, »,) central data points as the distance |u, — u|
between the point being estimated and the central datum lo-
cation in the left string increases. OK results are on the top,
FDK results are below.
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Again, the practical question is whether or not the correction of the string
effect as seen on Fig. 6 is worth the loss of exactitude shown in Fig. 7. In cases
of block estimation where there is no requirement of data exactitude, or a high
nugget effect (say greater than 20%) where OK exactitude is obtained by a
discontinuity at each datum location, the answer would be in favor of correcting
for the string effect.

Irregularly Spaced Data

Figure 8 considers a more realistic 2-D data configuration with four strings
with, respectively, seven, one, three, and seven samples. The point being es-
timated is halfway from samples 4 and 10, 3 units away from either one. The
variogram model is spherical with zero nugget effect and 18 units range. The
simple kriging, ordinary kriging, and finite domain kriging weights are given in
the table at the right of Fig. 8. Note the overall similarity of the three sets of
weights.

It seems that the string effect of traditional kriging (SK or OK) is much
attenuated when many strings are involved. For example, the OK weight (0.015)
for end sample 1 is lower than the corresponding weight (0.095) for the central

Kriging Weights

Sample#  SK oK FDK

1 0.017 0.015 0.003

2 0.047 0.046 0.070

3 0.078 0.077 0.102

4 0.096 0.005 0.114

A2 5 0.090 0,090 0.103

A 13 s 0.071 0.071 0.071
7 0.058 0.058 0.003

2 .8 4 8 0.264 0.264 0.242
3 9 15 9 0.091 0.091 0.120
10 0.120 0.121 0.144

4 2 10 16 1 0.155 0.155 0.120
5 1 A7 12 0028 0025  -0.005
13 0013 0013 0012
.6 A8 14 00m 0.011 0.015
> 15 0011 .01 20.017

3
&
s
g
&
g

Simple Kriging (SK) Variance: ol =04918
Ordinary Kriging (OK) Variance: ol =04919
Finite Domain Kriging (FDK) Variance: “:u = 0.4985

Fig. 8. Irregularly spaced data configuration: the 18 simple kriging, ordinary kriging, and finite
domain kriging weights are given in the table. The variogram model is spherical with zero nugget
effect and 18 units range.
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sample 4, yet the FDK weight for that end sample 1 is even lower (0.003), that
is FDK is doing its job. Samples 10 and 11 show a pronounced string effect
(0.155 > 0.121 for OK) corrected by FDK (0.120 < 0.144).

Note that because each string is considered separately in FDK, see Eq.
(10), there is a symmetry of FDK weights within each string, e.g., FDK weight
9 is the same as FDK weight 11; this is not the case for SK or OK.

The estimation variances corresponding to the three sets of weights are
given at the bottom of Fig. 8. As expected, the smallest estimation variance is
that of SK followed by OK then FDK; however, the FDK variance is only
marginally greater than the OK variance.

CONCLUSIONS

The implicit assumption of an infinite domain as called for by the proba-
bilistic random function model causes kriging to give proportionally higher
weights to end samples of data strings. This effect is called the “*string effect."”
The string effect arises because kriging sees these end samples as less redundant
than central samples, everything else being equal. The string effect appears more
pronounced when there are a few isolated strings than if there is a cluster of
strings.

If there is no reason to consider that such end samples are more repre-
sentative of the actual area of investigation, the string effect must be corrected.
A redundancy measure which considers all data within a string as equally re-
dundant is proposed to replace the traditional correlogram function. This redun-
dancy measure is to be used only in the left-hand side matrix of the kriging
systems which characterizes the redundancy between data, and the traditional
correlogram function should be kept for building the right-hand side correlation
values between data and the unknown.

Introduction of this redundancy measure allows correction of the string
effect at the cost of loss of the exactitude property of traditional simple and
ordinary kriging. The loss of exactitude is generally small and, more impor-
tantly, irrelevant if block kriging or kriging in the presence of an appreciable
nugget effect. In contrast, the string effect of traditional kriging may create
severe artifacts or even biases if the end samples of strings tend to be richer or
poorer than central samples, which is a case often encountered when the strings
represent drillholes intersecting a complete mineralization body with end sam-
ples being generally poorer in grade.

ACKNOWLEDGMENTS

The author would like to thank Professor A. G. Journel of Stanford Uni-
versity for his original suggestion of the spatial redundancy measure r,, and
helpful discussions on this subject.



REFERENCES

Aki, K., and Richards, P., 1980, Quantitative Seismology, Theory and Methods (Nol. 1 and 11):
W.H. Freeman and Co., San Francisco.

Deutsch, C., 1993, Kriging in a Finite Domain: Math Geol., v. 25, n. 1, p. 41-52.

Deutsch C., and Journel, A., 1992, GSLIB: Geostatistical Software Library and User's Guide:
Oxford University Press, New York.

Haldorsen, H., and Damsleth, E., 1990, Stochastic Modeling: J. Pet. Technol., p. 404-412.

Joumel, A., 1989, Fundamentals of Geostatistics in Five Lessons. Volume 8 Short Course in
Geology: American Geophysical Union, Washington, D.C.

Journel, A., and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, New York.

Joumel, A., and Rossi, M., 1989, When Do We Need a Trend Model in Kriging? Math Geol., v.
21, n. 7, p. 715-739.



