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ENGINEERING

Geostatistical Techniques
Improve Reservoir
Management

This is the first of a two-part series on geostatistical techniques. These numerical

techniques allow reservoir engineers and geoscientists to create geologically-realistic

heterogeneous numerical reservoir models for the determination of volumetrics, well

placement and recovery factors. Part 2 of this series will illustrate several field examples.

eostatistical models and
finite difference flow simula-
tions have improved reser-
voir performance prediction
because of their more realistic repre-
sentation of reservoir heterogeneity.
Though geostatistical and flow models

are engineering approximations of the

actual spatial distribution of petro-

physical properties and pore-scale
flow processes, the goal of practical
reservoir modeling is to capture the
geological features that have a first
order effect on reservoir performance.
A 3-D numerical reservoir model is
the repository for understanding the
reservoir architecture and properties.
These numerical models could be con-
structed by simple contouring algo-
rithms. However, knowledge of geolog-
ical processes and experience with
such models indicate the distribution
of reservoir properties has greater vari-
ability. In particular, flow processes are
sensitive to the continuity of extreme
high- and low-permeability features,
such as fractures or thin discontinu-
ous shales. These features may make
up a small volumetric proportion of
the reservoir and yet have an over-

whelming influence on reservoir per-
formance.

0il and gas is produced from poor-
ly known subsurface formations. The
ability to manage these reservoirs is
improved with increased qualitative
understanding of the reservoir
attributes and then with quantitative
numerical models. 3-D numerical geo-
logic models:
® Handle large amounts of geologi-

cal, geophysical and engineering

data.

® Provide consistent analysis and rep-
resentation of these data in three
dimensions.

® Provide direct numerical input to
flow simulation and pore volume
calculation.

® Test and visualize multiple geologic
interpretations.

W Assess uncertainty.

Data integration is a fundamental
principle of geostatistics reservoir
modeling. The goal is to explicitly
account for all available data. Devising
techniques that can accommodate a
greater variety of data is a large part of
the ongoing research in geostatistical
reservoir modeling. An abundancy of

data exists for reservoir modeling.

Some of the data considered are:

m Well log data (surface tops, rock
type, porosity ®, permeability k)
by zone.

® Core data (® and k by rock type)
by zone.

® Sequence stratigraphic interpreta-
tion and layering (a definition of
the continuity and trends within
each layer of the reservoir).

® Trends and stacking patterns avail-
able from a regional geological
interpretation.

® Analog data from outcrops or
densely drilled similar fields (size
distributions, measures of lateral
continuity).

B Seismic-derived attributes (vertical-
ly averaged rock type proportions
and porosity).

® Well test and production data
(interpreted k-thickness, interpret-
ed channel widths, connected flow
paths, barriers).

The uncertainty in the distribution
of rock properties is significant
because this information is sparse rel-
ative to the size of the heterogeneities
being modeled. Numerical models of

by Clayton V. Deutsch, Stanford University, Stanford Calif., and
D. Nathan Meehan, Union Pacific Resources Co., Ft. Worth, Texas
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Proportional thinning/thickening

Truncation/erosion

Offlap: combination of above styles

Fig. 1. Four common correlation
classifications are used to establish the
main directions of continuity within
sach reservoir layer.

the reservoir lithofacies and rock prop-
erties must be constructed to honor
the available data. By considering
multiple realizations, each consistent
with the available information, the
uncertainty in the spatial distribution
of reservoir properties and the reser-
voir response to various actions and
production schemes can be quantified.

This is not a new concept. Sto-
chastic models of physical systems are
used extensively in many scientific dis-
ciplines. The ability to assess the
uncertainty in the reservoir response
to various actions will allow better,
risk-conscious reservoir management.

Approach To Modeling

The specific 3-D modeling process
used will depend on the data and the
time available, the type of reservoir
and the skills of the people. A 3-D
reservoir model is an array of geologi-
cal modeling cells (typically no more
than 100 million) that discretize the
reservoir into relatively coarse cells.
Each cell is assigned a dominant

lithology, an average porosity, effective
22

horizontal permeability and effective
vertical permeability. In many cases
vertical permeability is taken as some
ratio of horizontal permeability. The
areal and vertical extent of the model
is established from the size of the
reservoir being modeled. The vertical
resolution of the geological modeling
cells is chosen small to capture impor-
tant vertical flow effects. Ideally, the
areal cell size would be chosen small
enough to capture horizontal hetero-
geneities. Due to computer limitations
the horizontal cell size is commonly
chosen between 100-1,000 ft.

The reservoir model is filled by
breaking the reservoir into major,
chrono-stratigraphically correlated
reservoir layers. This layering also
attempts to keep geologically “homo-
geneous” rock together. Each layer or
zone is modeled independently and
the layers are later merged. An impor-
tant step in the process is to establish
the stratigraphic correlation structure
or main directions of continuity within
each reservoir layer. The four common
correlation classifications are propor-
tional, truncation, onlap and offlap
(Fig. 1).

A layer-specific, stratigraphic verti-’ .
cal coordinate is defined to restore the

main direction of continuity and to
undo the offsets at major fault loca-
tions. The problem then is to assign’

i Poroslty Parmeatllly
oD oloay TSI
M .
:;% ;
L. -3

Fig. 2. For a profile of vertical porosity
values a limited number of permeability
values exist.
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Fig. 3 A variogram Is a measure of
geological distance in the reservoir

specific to the field under study.

lithofacies, porosity and permeability
in a regular 3.-D Cartesian coordinate
system. The lithofacies may be coded
as a categorical variable and often as a
binary variable, e.g., sand-shale, lime-
stone-dolomite, cemented-noncement-
ed. Porosity and permeability are con-
tinuously varying properties assigned
on a by-lithofacies basis and merged.
Geostatistical techniques for modeling
these categorical and continuous prop-
erties depend on a quantitative mea-
sure of spatial variability.

The Variogram

The essential contribution of geostatis-
tical techniques to reservoir modeling
is the recognition and use of spatial
correlation. For historical reasons,
geostatisticians use the variogram
rather than the more conventional
autocorrelation function to quantify
spatial dependence. The variogram
replaces the Euclidean distance, h, by
a structural distance, y(h), that is spe-
cific to the attribute and the field
under study. The variogram distance
measures the average degree of dis-
similarity between an unsampled
value and a nearby data value,

The porosity variogram for lag dis-
tance h is defined as the average
squared difference of porosity values
separated approximately by h:

2
W = L Y |ow-ou+h
N(h)N{h)[ ]

Where:
MN(h)=The number of pairs for lag h
@{u)=The porosity at location u.
Fig. 2 shows a vertical profile of

MARCH 1996
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Vertical direction

Horizontal direction

0 10 20 30 40 50
Lag distance, (h), ft

Fig. 4. The vertical variogram, which depends on direction, climbs faster than the

horizontal variogram.

porosity values and a limited number

of permeability values. The variogram

for the porosity values is shown in Fig.

3. The variogram can be thought of as

a measure of geological distance, y(h),

vs. actual distance, h, in the reservoir.

From Fig. 3 the following interpreta-

tion can be made.

® The total variability of 8% is the
variance of the porosity data. This
value is known as the sill.

B Short scale geological variability
that explains 2/8=25% of the vari-
ability. This value is sometimes
referred to as the nugget effect.

B At large distances (greater than 30
ft) there is no more spatial correla-
tion and the geological variability
ceases 1o increase. This distance is
known as the variogram range, or
range of correlation.

Fig. 4 illustrates the directional vari-
ograms in the case of an idealized
lithology model. The black ellipsoidal

objects represent shale remnants with-
in a sandstone matrix. The variogram
was calculated on an indicator variable
iu) set to 0 in sandstone and 1 in shale.
Note that the variogram depends on
direction, and that the vertical vari-
ogram climbs faster than the horizon-
tal variogram.

It is often straightforward to infer
the down-well variogram from dense
sampling. The variogram in other
directions, particularly in the horizon-
tal direction from vertical wells, is
often poorly defined. There are some
extraordinary cases with tens to hun-
dreds of wells where the variogram
may be inferred in all directions from
the available data. Horizontal wells
can provide an excellent source of
closely spaced measurements in the
horizontal direction. In other cases a
horizontal variogram with little sup-
port from experimentally calculated
points must be picked.

Fig. 5. In an object-based categorical lithofacies codes are assigned using well-

defined geological objects.
24
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Experience indicates that the
horizontal variogram has a range of
continuity 50-500 times greater than
the vertical range of correlation. The
horizontal-vertical anisotropy in flu-
vial and estuarine reservoirs will
have a 50:1 ratio, and the anisotropy
in carbonate reservoirs would have
a 500:1 ratio.

The variogram theme has many
variations. The traditional variogram
described above is the most com-
mon. The challenge of stochastic
simulation is to fill a 3-D array with
lithofacies, porosity and permeability
values. A few key algorithms have
many variations.

Stochastic Simulation

For Lithofacies

Two classes of methods assign categor-
ical lithofacies codes—object-based or
cell-based.

As the name implies, object-based
are appropriate when geometrically-
clear well-defined geological objects
exist. Fig. 5 shows a realization of an
object-based simulation. The dark col-
ored voxels represent the base of the
sand-filled channels. These models are
constructed by placing objects within
a background matrix following certain
size distributions, a target net-to-gross
ratio and well data.

The cell-based method used most
widely is sequential indicator simu-
lation (SIS), an approach based on
an indicator coding of the lithofa-
cies data:

i(us; k)= 1 if lithofacies k
is present at location u..
=0 if k is not present.

Where:

k = The integer-coded lithofacies

u_ = The location vector of data

number =1,

fu_; k) = The indicator variable.

The SIS algorithm allows filling a
3-D array with indicator variables to
honor local well data, global propor-
tions and indicator variograms defin-
ing spatial continuity. The popularity
of the SIS algorithm is due to its sim-
plicity and ability to honor different
types of data.

The SIS algorithm may be de-
scribed by the following four steps:
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Fig. 6. The sequential indicator simulation algorithm for filling a 3-D array is simple and
versatile in its ability to handle different types of data.

® Assign the well data to the closest cell.

® Establish a random path to visit
all of the cells.

® Visit each uninformed cell to:

* Find nearby cells that have been
informed either earlier in the ran-
dom path or by well data.

» Estimate the probability of each
lithofacies at this cell location.

* Draw a simulated value from the
conditional distribution.

B Check the results.

Fig. 6 shows a cross section through
a 3-D model created with the SIS algo-
rithm. In this case the dolomitic (dark
color) facies have a greater anisotropy
than the sandy facies.

Stochastic Simulation

For

The sequential Gaussian simulation
(SGS) algorithm is commonly used to
build the 3-D porosity model. This
algorithm is analogous to the SIS algo-
rithm except that the lithofacies proba-
bilities are replaced with a Gaussian
distribution defined by a mean and
variance determined by the nearby
porosity data.

Although this algorithm works with
the mathematically-friendly Gaussian
or normal distribution, the histogram
of the porosity data need not follow a
Gaussian distribution. They can,
instead, be easily transformed to a
Gaussian distribution for SGS and then
retransformed.

Stochastic Simulation

For Permeability

Special considerations must be made
when modeling absolute permeability.

tial correlation (variogram) is impor-
tant (for the same histogram, a salt-
and-pepper distribution vs. a highly
stratified distribution present widely
different flow behavior). Also there are
fewer permeability data than porosity
data available. Permeability is correlat-
ed with porosity by building the ®-
model first and then building the k-
model in a way that honors this
correlation.

For example, consider the problem
of assigning permeability to every foot
interval in the well illustrated in Fig. 2.
The data necessary to address the per-
meability prediction problem, aside
from geological knowledge of the
lithofacies types, are the profile of
porosity values, the porosity-perme-
ability cross plot and the permeability
variogram. The cross plot and vari-
ogram are constructed with all avail-
able core data. Six cored wells were
used for the display in Fig. 7.

The variability in the cross plot is
not measurement error but an intrinsic
property of porous media. Permeability

and other factors. The spatial variabili-
ty measured by the variogram is also
an intrinsic feature of porous media.
The physical and chemical processes
that control permeability also impose
the feature that locations close together
have more similar permeability than
locations far apart.

Rather than a sequential algorithm
like SIS or SGS, the permeability pre-
diction problem can be treated as an
optimization problem. Two objective
functions can quantify the consistency
between a realization and the calibra-
tion data. Cross plot consistency can be
quantified by defining porosity-perme-
ability classes and comparing the frac-
tion of calibration data in each class to
the fraction of the realization points in
each class:

o =§‘4 [f,..sz

Where:

f = Fraction or proportion.

¢ = Calibration.

r = Realization.

Variogram consistency can be
quantified by measuring the deviation
between the calibration variogram and
the realization variogram:

0:=3, [Fea-r)]’
cnses

0, is the sum of the squared verti-
cal separation between the black dots
and the line on the right side of Fig. 8.

The concept is to turn the perme-
ability prediction problem into an

depends on porosity, grain size, sorting

T “'-‘{:.? PO e SRR

e N

Fig. 7. The profile of porosity values, the porosity-permeability cross plot and the
permeability variogram for permeabillity prediction are constructed from core data.

Extreme high and low values have a
great impact on fluid flow and the spa-
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optimization problem with the

objective function being the weight-

ed sum of O, and O,. The technique

of simulated annealing is used to

solve this optimization problem with

the following steps.

® Establish an initial permeability
realization that honors the core
data, i.e., assign a permeability
value to each location by drawing
from the cross plot given that loca-
tion's porosity.

® Calculate the initial objective func-
tion, 0, and O,.

® Randomly choose a non-data loca-
tion and consider perturbing the
permeability to a new value by
drawing from the cross plot.

® Evaluate the new objective func-

|oworsq Porosy Pormeatiiing ACEW
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Fig. 9. Permeability realization is the result
of multiple perturbations of an inltial
permeabllity that honors the core data.
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calibration variogram and the realization variogram.

tion. If it has decreased then

accept the change.
® Stop if the objective function is

close to zero. Otherwise go to the
previous step and continue the per-
turbation process.

Normally, the number of attempt-
ed perturbations is 10-100 times the
number of locations. Fig. 9 shows
one permeability realization for the
example problem. Fig. 10 shows the
reproduction of the cross plot and
variogram. Conventional techniques
such as regression-type transforms
or statistical techniques that disre-
gard spatial correlation do not honor
the available data as well as the
results shown here. This approach is
applied for 3-D modeling of perme-
ability once the 3-D porosity model
has been constructed.

The simulated annealing-based
method for permeability prediction
offers many advantages. It accounts
for correlation with porosity, honors
observed patterns spatial variability
and provides the possibility of inte-
grating more complex data, such as
wel.l—test denved propemes

® Reservoir management decisions
are improved when geologically-
realistic numbers are available.

® A staged or hierarchical modeling
approach is appropriate. Large
scale features, such as faults and
layering, are modeled first and then
the detailed distribution of rock
properties (lithofacies, porosity and
permeability) are added.

B The variogram is a geostatistical
tool that relates reservoir-specific
geological distance to Euclidean or
physical distance.

® Stochastic simulation techniques
create realizations of rock property
distributions that honor the vari-
ogram, well data and seismic data.

® Uncertainty may be measured by
processing multiple realizations.
The geostatistics usage will grow

for several reasons, because
academia has become less dogmatic
about the theory and mathematical
notation underlying geostatistics, an
increasing number of practical
examples are available to support
geostatistical techniques and cus-
tomer demand has prompted com-
mercial software vendors to include
geostatistical tools in integrated and
easy-to-use programs.
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