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ABSTRACT One of the greatest challenges in earth sciences data pro-
cessing, and an area where geostatistics has contributed extensively, is the
integration of data of diverse types, scales, supports, and accuracies.

We suggest that integration starts by coding the information in a com-
mon [0, 1] format of either indicator or uniform score transforms and prior
cumulative probability values (or cdf’s). This coding preserves the spatial
ranks (hence structures) of the data. Kriging and stochastic simulation can
be performed in that uniform space and the results back-transformed to the
original data units. We also show how prior probability distributions from
direct and cross h-scattergrams coded in the standard [0,1] data format
can be weighted to produce posterior probability distributions.

1. Introduction

A typical feature of earth sciences is the multiplicity of data types con-
tributing to the understanding of any single phenomenon. Data originate
from a variety of sources related to different attribute values measured on
different volume supports or time spans, at different scales and with differ-
ent accuracies. Characteristically, because of accessibility and cost, there is
a shortage of “hard” data defined as the most direct or accurate measure-
ment of the (principal) variable(s) of interest. Because of that shortage,
all related secondary data must be used accounting for their respective
information content and discounting information redundancy. One of the
greatest challenges in earth sciences data processing is the integration of
data of diverse types, scales, supports, and accuracies.

The major roadblock in data integration is the difference in the format
(not only measurement units) under which each data type is presented.
Some information types are interpretive in nature yet could be critical in
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where F(z) = Prob{Z(u) < z} is the cumulative distribution function
(cdf) of the stationary random function (RF) model Z(u), inferred from
the sample cdf.

— The distribution of V (u) is uniform in [0,1]. Indeed:

Prob{V(u) <v} = Prob{F(Z(u))<v}= Prob{Z(u) < F~l(v)}
F(FYv)=v ,Yve|01]]

as long as the cdf F(z) is invertible which excludes severely discontin-
uous histograms presenting large spikes. Recall that ties can be broken
by considering their neighborhood values.

_ Consider n data values z(ug),@ = 1,...,n, and their rank orders
r(u,), with r(-) =1 for the lowest datum and r(-) = n for the largest.
The standardized rank v(:) = r(-)/n is the uniform transform (1).

— The Spearman rank correlation is but the traditional linear correla-
tion calculated on the uniform transform V. Similarly, the rank cross-
covariance Cy; v, (h) = Cov{Vi(u), V2(u + h)} measures the degree of
monotonic dependence between the two original variables Z 1(u) and
Za(u + h), no matter their different types or supports. This uniform
score (cross)covariance is unaffected by the respective univariate dis-
tributions of Z; and Z, it depends only on the bivariate (spatial)
relations between Z;(u) and Z(u + h).

— The normal score transform, Deutsch and Journel (1992, p. 138),

Y (u) = G (F(Z(u)) = G™(V(u)

starts by a uniform transform followed by a standard normal quantile
transform (G~!). That second transform is useful only if one wishes
to call on the congenial but restrictive properties of the Gaussian RF
model. If kriging and stochastic simulation can be performed on the
uniform score transform V(u) and the results back transformed by
F~1, then there is no advantage to the additional transform G,

2.1. KRIGING OF RANKS

Uniform score values can be estimated by (co)kriging using the correspond-
ing uniform scores (cross)covariances:

v*(u) = Z Aav(q) (2)
a=1

The result can be interpreted as the estimated rank of the unknown original
value z(u). An estimate of z(u) is then given by the back transform:

2*(u) = F7'(v"(u)) (3)
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the understanding of the primary phenomenon, some data are categorical
(e.g., facies types), some are numerical (e.g., concentration values), some
appear as constraints (e.g., stoichiometric inequalities), and some are prior
probability distributions valued in [0,1]. A standardization of formats and
units that does not tamper with the information content would be an im-
portant first step towards data integration. A methodology for merging the
data, in a common format, would follow.

An important aspect to remember when coding information is that in-
formation is goal-dependent: what counts in a secondary variable value, say
zs(u,) for a datum of type s at location u,, is the information it carries
relative to the primary variable (the goal), say zy(u) at possibly different
locations u # u,. When the goal changes, the information carried by da-
tum z,(u,) changes. A piece of information may be considered “hard” for
one application and “soft” or even irrelevant for other applications.

The probabilistic language and methodology is unique and universal in
that they are not linked to any particular field of application or data type.
Probability values are unit-free; in their cumulative form they are standard-
ized in the ultimate standard interval [0, 1]. The concept of prior probability
distributions, say of Z(u) given datum Z,(u,) = zs(u,), allows a common
coding of diverse data related to the same goal, say evaluation of z(u). The
concept of Bayesian updating provides a methodology, or at least a model
for developing a methodology, for merging prior distributions into a single
posterior probability distribution. All original data and the final posterior
probability distribution are coded as cumulative probability values in the
interval [0,1]. From the posterior cumulative distribution function (ccdf)
probability intervals can be derived, simulated values can be drawn for the
unsampled value, or a single “best” estimated value can be retained for any
given optimality criterion.

2. Uniform Score Transform

The first task in standardizing continuous data of different types, supports,
or scales is to get rid of their different units through an invertible transform
that allows the original units to be recovered at any time. This is done
traditionally by considering the standard residual Y = (z —m)/o where m
and o are the mean and variance of the original variable Z. Indeed, the
linear coefficient of correlation is the covariance of such standard residuals.
As for filtering the mean and variance, we may want to filter out the entire
distribution (histogram) of the variable Z by considering its standard rank
transform or uniform scores defined as:

V(u)=F(Z(u)) € [0,1] (1)
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— That estimate is exact; indeed at any datum location: v*(u,) = v(u,),
hence z*(u,) = z(u,), as long as the cdf transform F(-) is invertible.

— The problem with the kriging (2) is that it does not ensure that the
resulting estimates v*(u) are valued in [0,1]. A sufficient condition
would be to ensure that no weight )\, is negative and that they sum
up to one, Rao and Journel (1996), and others.

— Typical of kriging, the rank estimates although unbiased (mean 0.5)
are smooth with variance less than 1/12, the variance of a [0,1] uni-
form distribution. Consequently, the backtransformed values z*(u) are
median-unbiased with a distribution different from the original cdf
F(z) and smaller variance. To correct for this problem, the estimates
v*(u) can be themselves rank-transformed under the constraint of data
reproduction, Journel and Xu (1994).

2**(u) = F(v*(w) + A(w) - [ (L(e* (W) - F' (0" (w)]  (9)

where L(v) is the cdf of all kriged values v*(u), thus the L(v*(u))’s
are uniformly distributed in [0,1], A(u) = [k (u)/oKmaz]* € [0,1] is
a relative correction factor ensuring data reproduction; at any datum
location the kriging variance related to v*(u,) = v(ua) is 0% (u,) =
0, hence A(u,) = 0 and 2**(u,) = FY(v(ua)) = 2(Ua), 0%, 0 I8
the largest of all kriging variances 0% (u), w > 0 is a correction level
parameter; the larger w the more gradual the correction away from the
data locations,

— Except close to the data locations where A(u) is small, 2**(u) =
F~YL(v*(u))), hence the histogram of the z**-estimates approximates
the original z-cdf F(z). Therefore the estimator Z**(u) is now mean-
unbiased with the correct variance, that of F'(z).

— Z**(u) is not minimum error-variance, only V*(u) has that property.
Although the correction (4) restitutes the correct global variance to
the field of z**-values it does not ensure reproduction of the Z or even
V-covariance. Such reproduction calls for stochastic simulation

2.2. SIMULATING THE RANKS

Rather than retaining the smoothed kriged value v*(u) defined in relation
(2), consider correcting for the missing variance by drawing a (simulated)
value y(!(u) from any distribution with mean v*(u) and variance equal
to the kriging variance 0% (u). For example, a uniform distribution in the
interval [v*(u) + a/2] with @ = /12 - ox(u) might be considered. That
simulated value y(*)(u) is then used as a v-datum for kriging and simulation
at all subsequent nodes of the grid A. It can be shown that the field so

simulated, {y"'(u),u € A} for realization # [, will have the same covariance
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as that used in the kriging of the v*(u)’s, that is, the V or rank order
covariance Cy (h), Journel (1993).

There remains to enforce a uniform [0,1] distribution to the simu-
lated values y("'(u) while preserving the two properties of data exactitude
y¥(u,) = v(u,) and covariance Cy(h) reproduction. This is done by a
rank-preserving transform similar to (4):

v®(u) = yO(u) + A(w) - [20 (W) — " (w)] (5)

where L()(y) is the cdf of all values y!”(u),u € A, of realization [, A(u) is
as defined in relation (4). Again, at any data location, A(u,) = 0, hence
vW(u,) = ¥y (ua) = v(u,). Away from the data locations: v (u) =
LW (y"(u)), hence the histogram of the v (u)’s approximates a uniform
[0,1] distribution.

Last, the simulated ranks v!)(u) are back transformed into z-values:

20 (u) = F (O (u)) (6)

These z()-simulated values are such that (1) z-data are honored z!(u,) =
F~Y(v(ug)) = z(ua), (2) the z-cdf F(z) is reproduced, entailing unbiased-
ness, and (3) the z-rank covariance Cy (h) is reproduced.

The previous kriging and simulation of uniform scores can be extended
to cokriging and cosimulation of the respective uniform scores of several
covariates Z;(u), Zz(u), . ... The distinct advantage of working with uniform
scores, besides the ultimate standardization of all data types to the same
marginal uniform [0, 1] distribution, is the extreme robustness of the rank
order statistics involved.

3. A Small Example

Figure 1 shows a location map, histogram, and cumulative distribution of
29 data. The 29 data locations are shown on a 50 by 50 grid of reference
true values (from GSLIB (Deutsch & Journel 1992)). The histogram of the
29 data values together with a smoothed histogram model are shown in the
upper right of Figure 1. The cumulative distribution F'(z) of the 29 data
values is shown in the lower right. The cumulative distribution F(z) can
be seen as a graphical relationship between the Z values (valued between
0.01 and 100) and the V rank transformed values (valued between 0.0 and
1.0). As illustrated, a Z-value of 2.3 is transformed to a V-value of 0.64.
The 29 V rank transformed values are now considered; the Z values can be
retrieved at any time.

The omnidirectional semivariogram of the V' data is shown on Figure 2.
The sill of this semivariogram is the variance of a uniform distribution, i.e.,
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Figure 1.
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Figure 2. Isotropic semivariogram of rank transform of 29 data shown on Figure 1.

1/12 = 0.0833. The semivariogram model has a nugget effect of 0.0033, a
first spherical structure with a sill of 0.05 and range of 6.0, and a second
spherical structure with a sill of 0.03 and range of 25.0.

Simple kriging of the rank transformed data on the 50 by 50 grid using a
global mean of 0.5 yields the results shown on Figure 3. The characteristic
smoothing of kriging is evident on the map, histogram, and variogram. The
histogram departs significantly from the input uniform distribution of the
data. The variance of the kriged estimates is only 17% of the data variance

of 1/12 = 0.0833.

The kriged values are then transformed under the constraint of data




180 A.G. JOURNEL AND C.V. DEUTSCH

mean 0.488
o081 flil| varance 0.0144

I
a0 ..fnum
02

0.103
0083
Y 008
004

0023

0.00

o 1o 20 30 a0
0 10 20 30 40 50 Bistance

Figure 3. Gray-scale map, histogram, and semivariogram of kriged values. The
solid semivariogram curve is the model and the black dots are the experimental
values,
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Figure 4. Gray-scale map, histogram, and semivariogram of transformed kriged
values. The solid semivariogram curve is the model and the black dots are the
experimental values,

reproduction, see relation (4), to yield the results illustrated on Figure 4.
The map and variogram are still smooth but the histogram is much closer
to the uniform V data histogram.

As described above in Section 2.2, a sequential uniform simulation can
be considered where the simulated values are drawn from a uniform dis-
tribution with mean equal to the kriged rank v*(u) and variance equal
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Figure 5. Gray-scale map, histogram, and semivariogram of simulated rank values.
Simulated values are from sequential uniform simulation.
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Figure 6. Gray-scale map, histogram, and semivariogram of transformed simulated
rank values.

to the kriging variance o%(u), i.e., from the interval [v*(u) £ a/2] with
a = v/12-0(u). Figure 5 shows the results. As predicted by theory, (Jour-
nel 1993), the covariance and variance is reproduced. The histogram is not
reproduced; there are simulated values less than 0.0 and greater than 1.0
(reset to 0.0 or 1.0 in the histogram display of Figure 5). Transforming
the simulated values, under the constraint of data reproduction, yields the
results illustrated on Figure 6. The map and variogram show little change
but the histogram is now close to the uniform distribution.
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Figure 7. Gray-scale map, histogram, and semivariogram of Z simulated values.

The simulated rank values can be back transformed (according to the
distribution on Figure 1) to obtain a realization of Z values; see Figure T.
The gray scale representation of the realization is similar. The histogram of
7 values is well reproduced except for the tails of the distribution. These
tails are due to simulated rank values outside of the interval [0.0,1.0]. The
7 semivariogram from the realization and the 29 data are also shown. The
sample semivariogram of the rank transform, refer back to Figure 2, is more
stable; this is a definite advantage of working with robust transforms such
as the rank.

4. Calibrating and Weighting Information

A datum value, say z,(u+ h), no matter its type s, whether categorical or
continuous, is relevant to estimation of an unknown, say zp(u) at location
u a vector h away, only if its dependence to that specific unknown has
been established through some prior model. Traditionally that model takes
the form of a (cross)variogram or correlogram model py +(h) between the
two random variables Zy(u) and Z,(u + h). That correlogram model is
fitted from a few available h-scattergrams built from available pairs of data
{zo(u;), zs(ul)} approximately separated by the same vector h, see Figure 8.
We suggest that there is much more valuable information to retain from any
experimental h-scattergram than the mere coefficient of correlation po.s(h).
For example, after proper scattergram smoothing (Deutsch, 1996), one can
extract from a h-scattergram various prior distributions for Zy(u) given a
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datum of type s a vector h away, see Figure 8:
wos(t|zs, h) = Prob{Zy(u) < t|Z,(u+h) =2} ueA (7)

where A is the stationary area over which the h-scattergram is deemed
representative.

— wys(+) is a cdf, hence is valued in [0,1]. It is a function of both z, and
h. The subscript Os recalls that it carries information of type s related
to a variable of type 0.

— In soft indicator kriging, Deutsch and Journel (1992, p. 85), prior cdf’s
are also used but they are limited to h = 0, i.e., to co-located informa-
tion. The prior cdf’s (7) generalize the concept of probability coding
of information to all pairs 0s and all separation vectors h.

— For further standardization, the two data sets zp(u) and z4(u’) could be
uniform score-transformed prior to derivation of prior rank cdf’s of type
(7). Figure 8 shows a h-scattergram of the standardized ranks (uniform
scores) of two variables Z;(u) and Z,(u + h); the rank correlation is
r = 0.812. The range of the rank V,(u+ h) has been discretized into 10
decile classes and the corresponding conditional cdf’s of Vi (u) retrieved
and shown at the right; the variances of, of these two prior cdf’s are
shown by the bar chart on top of the scattergram.

4.1. INTERPOLATING PRIOR CDF’S

The information available on the pair 0s would be rarely enough to inform
all possible separation vectors h. Just like traditional variogram or correl-
ogram models py,(h) are interpolated from experimentally available values
pos(hi), prior cdf’s wy,(t|zs,h) at lags |h| not informed by enough data
could be interpolated from available information at bracketing lags. Con-
sider, for example, in a given direction a lag h;, such as hi_; < h; < hj4;
if the prior cdf’s wy, are available at lags h;_1 and h;4; but not at lag h;,
the latter could be interpolated as:

J
wos(t|zy, h;) = 3 [wos(t|2s, hiz1) + woy(t|24, hig1)] Vi, 2,

4.2. UPDATING PRIOR CDF'S

Consider estimation of the unknown zy(u). Relevant information arises from
diverse data types s = 1,...,S at different neighboring locations u,,. Let
these data be:

zalog, Has =1,. 0 n, wa'= ], JoLe




184 A.G. JOURNEL AND C.V. DEUTSCH

0.1

Os
0.0

1.0

0.8
0.6
;°u.44
0.2 N
0.0 : - i
0.0 0.2 0.4 0.6 0.8 1.0 8 /
VS(U‘F"I) op i =
172,83 486,878 .9 10 Pty M rryy v
9 /
10 (4 J
|

Figure 8. h-scattergram of vy(u) vs, v,(u + h). The two variables are uniform
scores of original variables z(u), z,(u + h). The range of variability of v,(u + h)
has been divided into 10 classes of equal probability. The 10 conditional ¢df’s of
vo(u) given v, are given to the right. The corresponding ten conditional variances
are given on top of the scattergram.
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The previous exercise of information calibration and interpolation yields
the n = Zf=1 ny prior cdf’s:

wﬂa(tlza(ua.)!uﬂ, -y ll), Qg = 13-”tns y P 1? sS

The problem is to update these n prior cdf’s into a single “posterior” cdf
for the unknown Zj(u). Short of a rigorous updating which would require
knowledge of the joint (S + 1)-variate distribution of Zy(u), Zs(u,,), a
weighting of the n prior cdf’s should possess the following properties:

L. result in a licit posterior cdf, i.e., a non-decreasing function of the
threshold ¢,

2. preserve hard data exactitude, i.e., at any datum location u = U,
where the prior cdf w,(-) has zero variance o2, (2,(ug,), ua, —u) = 0,
then the posterior cdf should identify that prior cdf.

3. give more weight to those prior cdf’s corresponding to original data
z4(Uq,) most “related” to the unknown zg(u); a measure of that rela-
tion could be the coefficient of correlation itself rg,(u,, — u) directly
available from the calibration stage, see Figure 8.

4. account for information redundancy: two prior cdf’s might correspond
to extremely redundant data, hence should not contribute both to the
posterior cdf at the detriment of a third “independent” prior-cdf.

The following linear weighting scheme features the 3 first properties:

S n,
Prob{Zy(u) < t|(n)} = Z Z Aa, Wos(t]24(a, ), ha,) (8)
s=1a,=1
2
with ¢ Aa, = _].__ f rUs(hOn) > O’hﬂk =ug, —u

C aga(zs(um)shm) -
C being a constant ensuring 3" A,, =1

— The posterior cdf (8) being a positive linear combination of cdf’s, with
2 Aa, = 1, is a licit cdf, see Figure 9.

— At a hard datum location u,, where 02,(24(ta,), hy,) = 0, Aae =T,
hence the posterior cdf is identified to the corresponding prior cdf, i.e.,
Zy(u) = E{Zy(u)|z,(ua,)} with probability one.

The prior cdf’s corresponding to original data Z4(uq,) with largest rank
correlation r§,(ha,) with Zy(u) receive greater weight. Note that any neg-
ative correlation between Zj(u) and Z,(u,,) is already factored in the
calibration of the prior cdf wy,(t|2,(ua,), hy, ).

Unfortunately, the weighting system (8) does not account for redun-
dancy between the n original data z,(u,,) as would, for example, a kriging
system. One could consider using the weights of cokriging of 2p(u) using
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Figure 9.  Weighting prior cdfs into a posterior cdf for the unsampled value at
location marked by a question mark. The 8 prior cdfs are given at the right together
with their variance o® and rank correlation r with the unknown. The 8 original
data all relate to the variable being estimated, their uniform scores are given on
the location map at the top left.

the original data z,(u,,); this would require prior modeling of the matrix
of (cross)covariance functions relating the (S + 1) variables Zj(u), Z;(u).
The advantage of this latter approach is that the E-type estimate (con-
ditional expectation) resulting from the posterior cdf would identify the
direct cokriging estimate of zy(u).

The distinct feature of the approach (8) to deriving posterior cdf’s is
speed: the only substantial cost is establishing the various prior cdf’s wy,(-)
to be used repetitively at any node u. This prior calibration step is similar
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to that of establishing a matrix of crosscovariance functions to be used for
kriging at any node.

The convex weighting system (8) entails that the resulting posterior
conditional variance is no lesser than the smallest prior variance. Linear
weighting of prior cdf’s allows weighting the influence of each datum taken
one at a time, it does not account for the multivariate (N > 3) effects
such as information 2 improving considerably on information 1 relative to
variable 0. One could extend the concept of prior cdf’s to conditioning 2 or
more data values such as:

wUM'(tlza: Zs'y h: h’) i~ Pf‘Ob{Zu(ll) S tlZ_,{ll + h) = Zgy Z.'I'(u ik h.’) = zs’}

The problem becomes then one of inference of such multiple points or mul-
tiple events probabilities, Guardiano and Srivastava (1992).

5. Conclusions

Integration of information should start by a common coding of the diverse
data types. We suggest using the standardized ranks of any ordered vari-
able, or uniform score transform, which standardizes all data types to the
same univariate uniform distribution in [0,1]. Kriging and/or stochastic
simulation can be performed in that uniform space and the results back-
transformed to the original space. Prior probability distributions as ob-
tained from sample h-scattergrams also represent standardized data valued
in [0, 1]; these can be weighted to produce a posterior probability distribu-
tion for the unknown suitable for estimation or stochastic simulation. It
is suggested that prior distributions be derived not only from co-located
(h = 0) data pairs but also from those h-scattergrams (h # 0) sufficiently
informed. Prior cdf’s at other lags h can be interpolated just like experi-

mental sample variograms at specific lags h are fitted to yield a model y(h)
valid for all h.
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