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An Improved Perturbation Mechanism for
Simulated Annealing Simulation1

C. V. Deutsch2 and X. H. Wen3

Simulated annealing (SA) is being increasingly used for the generation of stochastic models of
spatial phenomena because of its flexibility to integrate data of diverse types and scales. The major
shortcoming of SA is the extensive CPU requirements. We present a perturbation mechanism that
significantly improves the CPU speed. Two conventional perturbation mechanisms are to (1) ran-
domly select two locations and swap their attribute values, or (2) visit a randomly selected location
and draw a new value from the global histogram. The proposed perturbation mechanism is a
modification of option 2: each candidate value is drawn from a local conditional distribution built
with a template of kriging weights rather than from the global distribution. This results in accepting
more perturbations and in perturbations that improve the variogram reproduction for short scale
lags. We document the new method, the increased convergence speed, and the improved variogram
reproduction. Implementation details of the method such as the size of the local neighborhood are
considered.
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INTRODUCTION

In the SA approach to stochastic simulation, creation of a realization is for-
mulated as an optimization problem to be solved by the numerical optimization
technique of simulated annealing. Seminal references for the application of these
techniques to spatial problems include Farmer (1992), Geman and Geman (1984),
Kirkpatrick, Gelatt, and Vecchi, (1983), and Metropolis (1953). Other papers
focused on the geostatistical aspects of this problem include Deutsch and Cock-
erham (1994) and Datta-Gupta, Lake, and Pope (1995).

The key elements of the application of SA to the creation of stochastic
realizations are (1) a method to generate an initial realization, (2) a quantitative
objective function, (3) a perturbation mechanism, (4) a fast approach to update
the objective function after each perturbation, and (5) a set of rules that deter-
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mine which perturbations are kept. The focus of this paper is on the perturbation
mechanism.

In practice, the initial realization is almost always generated by assigning
the value at each cell by drawing randomly from the global distribution.

Local fast updating of the objective function is critical for the practical
implementation of simulated annealing-based simulation algorithms. This is pos-
sible for most spatial statistics including the variogram, indicator variograms,
and multiple-point spatial statistics.

An equally important implementation consideration is the perturbation
mechanism. The two most common perturbation mechanisms are (1) swap the
values at two randomly chosen locations, and (2) replace the value at a randomly
chosen location by a value drawn from the global histogram. Although these
approaches permit simulated annealing-based simulation to converge, we show
dramatic convergence and CPU-speed improvements by adopting an idea used
in techniques such as the Gibbs sampler (see Geman and Geman, 1984), or
iterative simulation techniques (see Srivastava, 1994).

The idea is to randomly choose a location to perturb and then draw a new
value from a local conditional distribution instead of the global distribution. We
describe the use of median indicator kriging with nearby cell values to build
this local distribution. The CPU and convergence advantages will be docu-
mented. We then apply the new method to the Walker Lake dataset (topographic-
based data introduced in Isaaks and Srivastava, 1989) to illustrate the practical
application of the proposed perturbation mechanism.

THE PROPOSED METHOD

After selecting a grid node to perturb, a local distribution (ccdf) is con-
structed by median indicator kriging with the values at nearby grid node loca-
tions. Median indicator kriging, or the mosaic model, is convenient for two
reasons: (1) we do not assume a parametric shape for the conditional distribution,
and (2) the cost of building the local distribution is minimized by considering
a single indicator variogram. Further, because the configuration of local data
can be kept the same everywhere (except near the edges of the grid) kriging
weights are calculated only once at the beginning. The perturbation mechanism
consists of drawing a new value from the local conditional distribution.

Kriging weights are obtained by using the median indicator variogram and
a small local template that excludes the collocated grid node that is being per-
turbed (Fig. 1, upper left). The kriging weights provide a direct estimate of
local proportions of categorical variables. For continuous variables, there is a
need to provide a continuous ccdf model between the available quantile values.
A straightforward linear interpolation between the global minimum, the available
quantiles, and the global maximum is considered.
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In summary, the implementation steps for this perturbation mechanism are
illustrated (Fig. 1) and described below:

1. Establish kriging weights for a template of points (excluding the location
being perturbed) using the median indicator variogram.

2. Sort the data within the template in ascending order, z(1), z(2), z(3), . . .,
z(n), with kriging weights: w(1), w(2), w(3)) . . . , w(n).

Figure 1. An illustration of how local distributions at location j' are constructed by applying kriging
weights to local data. Two examples are shown: A, with values that are in a relatively high area,
and B, with values that are in a relatively low area.
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5. Linear interpolation allows a complete specification of the relation be-
tween F(z) and z. More elaborate "tail" extrapolation methods could
be considered for highly skewed data distributions with limited data
(c.f. Deutsch and Journel, 1992).

6. Lastly, a new candidate value znew(uj) is drawn for location uj from
this local ccdf. This candidate value is more likely to be accepted than
a value drawn from the global distribution because it is consistent with
other cell values in the local neighborhood. Moreover, because this
value is drawn from a local conditional distribution built by kriging, the
variogram of the perturbed model is more likely to be improved.
Note that a candidate value znew(uj) is drawn from the global distribution
if the variance of the local distribution is greater than that of the target
histogram. An explanation for this exception is given later.

The weights at the top of Figure 1 consider an anisotropic spherical var-
iogram model. Two different sets of local data, hence conditional distributions
(A and B) are shown in Figure 1.

IMPLEMENTATION

The revised perturbation mechanism was implemented in a simulated an-
nealing-based simulation program. We start with a small 100 by 100 2-D ex-
ample (Fig. 2). The target histogram for this initial example is standard normal
(mean 0, variance 1). The target variogram is a "typical" isotropic variogram
consisting of a 20% nugget effect and a single spherical variogram structure
with a range of 20 grid nodes.

Simulation with the new perturbation mechanism reaches the target thresh-
old of 0.005 in 28 CPU seconds on an Silicon Graphics Indigo 2 workstation
(approximately twice as fast as a 200 MHz PC), that is, in just over 200,000
perturbations. Convergence with the old perturbation mechanism takes more
than twice as long, and we see that the objective function decreases very slowly

where the weights w(1), w(2), w(3), . . . , w(n) sum to one, cp(0) at zmin is
0.0, and cp(n + 1 )at zmaxis 1.0.

4. Establish intermediate ccdf values:

3. Calculate the cdf values for each datum:
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after 500,000 perturbations (Fig. 2, bottom). For comparison, sequential indi-
cator simulation (median IK approach in sisim program) takes 18 sec for this
10000 cell problem.

Note the excellent reproduction of the small-distance variogram lags with
the new perturbation mechanism (Fig. 2, right center). The old perturbation
mechanism, drawing from the global distribution, leads to many unaccepted
perturbations once the large-scale features of the realization are established,
hence, slow convergence.

Initial Variance Inflation

Another characteristic feature of the new perturbation scheme is that the
objective function initially climbs above the starting objective function before
decreasing as the temperature is lowered (Fig. 2, bottom). The explanation for
this is due to the initial random realization and the approach to get the local
distribution: at the start, because of randomly located high and low values, (1)
the local distributions can have greater variance than the global distribution, (2)
more extreme values are drawn, and (3) these extreme values are kept because
of the initial high temperature.

One approach to overcome this initial "variance inflation" is to draw from
the target global distribution if the variance of the local distribution is too high,
i.e., greater than the variance of the target histogram. The objective function
vs. number of perturbations is shown (Fig. 3) for three options: (1) draw from
global distribution—solid line, (2) draw from local distribution—short dashed
line, and (3) draw from local unless variance too high—long dashed line. The
hybrid approach keeps the objective function from climbing and leads to equally
low final objective function values.

Size of the Template

The only additional parameter required with this revised perturbation mech-
anism is the size of the template, ntem; the median indicator variogram can be
identified to the z-variogram, the kriging weights can be precalculated, and the
local distributions constructed automatically.

Six realizations are shown (Fig. 4) that were constructed using different
template sizes. The top left realization, constructed with a template with two
grid nodes aligned in the Y (vertical) direction, shows an artifact vertical band-
ing. The template should have at least one grid node in each principal direction.
The remaining realizations appear quite similar indicating that a large template
may not be required.

There is a small CPU penalty for using a larger template, that is, it takes
some CPU time to assemble the local data into a distribution. A perturbation
with ntem = 4 takes 5 % more CPU time to consider than simply drawing from
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Figure 3. Objective function versus number of perturbations for three options: (1) draw from global
distributions—solid line, (2) draw from local distribution—short dashed line, and (3) draw from
local unless variance too high—long dashed line.

the global distribution. A perturbation with ntem = 40 takes 45% more CPU
time. From this perspective, a smaller template is to be preferred. A larger
template, however, considers more spatial information and requires fewer per-
turbations to achieve convergence. The CPU time vs. template size can be
plotted (Fig. 5) to determine a minimum CPU value. The results on Fig. 5 are
tpyical, that is, a significant decrease in CPU time for using the local pertur-
bation mechanism and a gradual increase in CPU time for templates larger than
8-12.

CPU Speed Improvements

The speed improvement depends on the desired objective function value.
The comparisons (Fig. 2, bottom; Fig. 3) are representative of many experi-
mental runs. There is a small improvement by using the local updating for large
stopping values of the objective function. For small stopping values, there may
be dramatic improvements in CPU speed because drawing from the global dis-
tribution (OLD method, Fig. 2) is inefficient at reaching low objective function
values.

CPU time is shown (Fig. 6) to a minimum objective function of 0.025,
which is quite high, on a Silicon Graphics Indigo 2 workstation for models of
different size. In all cases, the objective function includes a histogram and a
variogram with 99 lags. The solid line is time with the old perturbation mech-
anism and the dashed line is with the new perturbation mechanism. Note the
linear scaling of CPU time with the size of the model. This figure implies that
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Figure 4. Six realizations using different template sizes: note the artifacts when two data are used
(aligned vertically) and the similarity of the remaining realizations.



Figure 6. The CPU time to a minimum objective function of 0.025
on a SGI workstation. The solid line is the old perturbation mech-
anism and the dashed line is the new perturbation mechanism. Note
the linear scaling of CPU time with the size of the model. Note also
that the final objective function value of 0.025 is quite high. It would
take the old perturbation mechanism significantly longer to achieve
a lower objective function value of, say, 0.01.

Figure S. CPU time (Silicon Graphics Indigo 2) vs. template size for 10000 cell example
to reach objective function of 0.01. Minimum CPU value of 25.44 is at template size of 8.
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there is marginal improvement with new perturbation mechanism; however, the
new procedure allows a lower final objective function that would take signifi-
cantly longer with the old mechanism.

CASE STUDY

A case study using the southwest quadrant of the Walker Lake dataset
(Isaaks and Srivastava, 1989) is shown to further illustrate the practical appli-
cability of the proposed approach. Figure 7 shows the reference grid of 130 X
150 elevation-related data values, a sample location map of 100 data used for
the conditional simulation, a histogram of the 19,500 reference values, and the
median indicator variogram and fitted isotropic model. Although the full set of
Walker lake data show significant anisotropy in the —15/75 directions, this
quadrant shows no significant anisotropy. The median indicator variogram is
used because of its robustness with respect to the highly skewed data distribution
and the appropriateness for the proposed perturbation mechanism.

As a reference, Figure 8 shows a realization of sequential indicator simu-
lation. Median indicator kriging with nine thresholds (based on the deciles) was
used. The realization matches the spatial character and long range trends of the
reference distribution (Fig. 7, upper left). The minor mismatch between the
input variogram and that of the final realization is common in sequential sim-
ulation procedures.

Figure 9 shows results simulated annealing simulation using the proposed
perturbation mechanism (top) and the conventional perturbation mechanism (bot-
tom—drawing from global distribution). Note how the median indicator vario-
gram of the proposed method is much closer to the input model, particularly at
short distances. Also note the more "patchy" appearance of the realization
generated using the local mechanism (similar to the sequential simulation result
in Fig. 8). The improved result of the new method is also shown by the objective
function in Figure 10; the result is much lower that the conventional method.

A quantitative comparison of realizations from different methods could be
attempted using measures of spatial entropy (Journel and Deutsch, 1993) or,
perhaps, multiple point statistics or the results of flow simulation (Deutsch,
1994).

CONCLUSIONS

The practical application of simulated annealing methods to geostatistical
simulation problems depends on careful implementation. The improved pertur-
bation mechanism, borrowed from other iterative simulation methods, leads to
better reproduction of small scale variogram lags, faster convergence, and con-
vergence to lower final objective functions than historically attainable.
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Figure 10. The objective function (total of all components) vs. the number of perturba-
tions. The result of drawing from the local distributions is labeled "new" and the results
from the conventional approach is labeled "old."

The sole additional parameter is the number of nearby cell values to use
in building the local distribution. We showed that a template size of 8-12 values
balanced the improvement brought by the local perturbation mechanism with
the additional CPU cost of building local distributions with a large number of
nearby values.

This improvement is necessary to achieve the full potential of simulated
annealing methods to integrate data of diverse types and scales together with
conventional geostatistical constraints such as the histogram and variogram.
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