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Abstract

Application of the truncated Gaussian method for categorical variable simulation requires the calculation of an
appropriate normal scores variogram for generating the Gaussian random ®eld. In the case of only two categories,

the appropriate variogram can be determined by inverting the indicator variogram model from the bivariate
Gaussian distribution. Even though no closed-form relation exists for such inversion, the proper normal scores
variogram can be obtained through numerical integration via a series approximation. The procedure is illustrated

with a small simulation example demonstrating the close reproduction of the variogram of the categorical data.
# 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stochastic simulation is being increasingly utilized

for modeling the spatial distribution of categorical and

continuous attributes, such as lithofacies and soil

types, or porosity and permeability (Srivastava, 1995;

Damsleth and Omre, 1997). The procedure consists of

generating alternative, high resolution 3D images/re-

alizations, which mimic the heterogeneity expected in

the real media and inferred from the available data.

Such heterogeneity or spatial variability is usually

quanti®ed by two-point variogram or covariance

models, which are at the heart of geostatistical simu-

lation algorithms. The goal of stochastic simulation is

then the reproduction of such models of spatial depen-
dence.

A routinely encountered situation is that of a binary
0/1 regionalized indicator random variable (RV) J(u;
sk) coding the presence or absence of a particular litho-
facies sk at a location u within the study area A:

J�u; sk�
�
1; if S�u� � sk;
0; if not

8k � 1; : : : ,K; u 2 A:

where the categorical RV S(u) can take K mutually
exclusive and exhaustive outcomes {sk, k = 1, . . . , K}.

Similarly, a regionalized indicator RV J(u; z) could
code the event of a petrophysical attribute Z(u) being
greater than a particular threshold zk:

J�u; zk�
�
1; if Z�u� > zk
0; if not

8k � 1; : : : ,K; u 2 A:
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where K threshold values {zk, k= 1, . . . , K} discretize
the variability of the Z attribute.

Various algorithms exist for generating a number L
of realizations { j (l)(u), u $ A}, l= 1, . . . , L of the indi-
cator random function (RF) {J(u), u $ A}; the most

common and straightforward being sequential indi-
cator simulation (Journel and Alabert, 1988). Another
alternative is to truncate a realization { y (l)(u), u $ A}

of a standard normal RF {Y(u), u $ A} to create an in-
dicator realization { j (l)(u), u $ A} (Journel and Isaaks,
1984; Matheron et al., 1987):

j �l��u� �
�
1; if y�l��u� > y0;
0; if not

with y0 being some threshold value. The only data
available are indicator data, yet the covariance model

CY(h) of the Gaussian RF {Y(u), u $ A} to be trun-
cated is needed for generating the realization { y (l)(u),
u $ A}.

One could use for CY(h) the (standardized to unit
sill) indicator covariance model CJ(h) inferred from the
categorical data. This practice leads to a mismatch
between the target indicator variogram model CJ(h)

and the variogram of the resulting simulated indicator
values { j (l)(u), u $ A}. Such mismatch becomes larger
for indicator variograms related to lithofacies with

small proportions, that is when the threshold value y0
deviates signi®cantly from the zero median. In ad-
dition, Matheron (1989) showed that it is not consist-

ent to use the same variogram type (e.g. spherical) for
the Gaussian RF {Y(u), u $ A}, as the target indicator
variogram CJ(h) inferred from the sample indicator

data.
Alternatively, the original categorical data are trans-

formed to continuous pseudo normal scores data, as in
Xu and Journel (1993), and CY(h) is substituted by the

covariance inferred from such data. The resulting
pseudo normal score values depend critically on the
procedure used to despike the original indicator data,

i.e. break the ties between binary values. Random
despiking leads to a too-high nugget e�ect and par-
ameters for a despiking algorithm, which ranks the cat-

egorical data according to local areal proportions, are
di�cult to establish.
In the case of a single threshold y0 separating only

two lithofacies, the normal scores covariance CY(h) is

directly linked, through a one-to-one relation, to the
lithofacies indicator covariance CJ(h) (Journel and
Isaaks, 1984). However, such relation exists only for

the case of only two lithofacies. A standard Gaussian
RF Y(u) is fully speci®ed by its sole covariance model
CY(h), hence it cannot be used to identify more than

one indicator covariance model CJ(h).
One way around this limitation would be to consider

a series of Gaussian RFs Yk(u), k = 1, . . . , K, each

used to simulate (after truncation) a nested set of only
two lithofacies; i.e. simulate each set nested into a pre-

viously simulated set. This approach can be used only
to simulate lithofacies nested one into another.
An approximation consists of inverting the single co-

variance model CY(h) from some average of the
(Kÿ 1) indicator variograms, in the case of K lithofa-
cies. It is this single average indicator variogram that

would be reproduced through simulation, not any par-
ticular lithofacies indicator variogram model.
Recent e�orts to extend the truncated Gaussian

method for simulation of multiple (K>2), non-nested,
lithofacies call for multiple Gaussian RFs. Contrary to
the case K= 2, simulation of multiple, non-nested,
lithofacies involves a highly non-unique inversion.

Iterative procedures based on trial and error selection
of the input normal scores covariances and cross co-
variances between the multiple Gaussian RFs have

been reported in the literature (see, for example, Loc'h
and Galli, 1997).
This paper recalls the one-to-one relationship

between CJ(h) and CY(h) in the case of only two litho-
facies and proposes a power series development to ap-
proximate it.

2. Theoretical framework

Consider a stationary standard (zero mean and unit
variance) multivariate normal RF {Y(u), u $ A}. The

univariate and bivariate cumulative distribution func-
tions (cdfs) are:

G� y� � ProbfY�u�Ryg � p, 8u 2 A

where y = Gÿ1( p) is the standard normal p-quantile
and

G�rY�h�; y, y 0� � ProbfY�u�Ry, Y�u� h�Ry 0

where rY(h) = CY(h) = E{Y(u)Y(u+ h)} is the covari-
ance of the Gaussian RF Y(u), fully characterizing its
multivariate distribution.

Next, consider the indicator RF J(u; y0) de®ned by
truncating the Gaussian RF Y(u) at the p0 quantile:

J�u; y0� �
�
1; if Y�u� > y0 � Gÿ1�p0�;
0; if not

The resulting stationary indicator RF J(u; y0) has
the following moments:

. Mean mJ:

mJ � EfJ�u; y0�g � ProbfY�u� > y0g � 1ÿ p0:

. Variance sJ
2:

s 2
J � VarfJ�u; y0�g � mJ�1ÿmJ� � p0�1ÿ p0�:
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. Non-centered indicator covariance KJ(h; y0):

KJ�h; y0� � EfJ�u; y0�J�u� h; y0�g
� ProbfY�u� > y0, Y�u� h� > y0g
� G�rY�h�; y0, y0� � 1ÿ 2p0: �2�

The non-centered indicator covariance KJ(h; y0) is
actually the two-point distribution function of the
Gaussian RF {Y(u), u $ A}. The centered indicator co-
variance CJ(h; y0) is then:

CJ�h; y0� � KJ�h; y0� ÿ �1ÿ p0�2

� G�rY�h�; y0, y0� ÿ p0�1ÿ p0�: �3�

Inversion of Eq. (2) or Eq. (3) provides the normal
scores covariance rY(h) as a function of the non-cen-
tered indicator covariance KJ(h; y0):

rY�h� � G ÿ1�KJ�h; y0� ÿ �1ÿ 2p0�; y0� �4�
or as a function of the centered indicator covariance
CJ(h; y0):

rY�h� � G ÿ1�CJ�h; y0� � p0�1ÿ p0�; y0�: �5�

Conversely, the relation linking KJ(h; y0) to rY(h) is
determined by integrating the bivariate Gaussian den-
sity over the area delineated by Y1>y0 and Y2>y0
(see hatched area in Fig. 1):

KJ�h; y0� �
�1
y0

�1
y0

gY1Y2
�h; y1, y2� dy1 dy2 �6�

where gY1Y2
( y1, y2) is the bivariate density function of

two Gaussian RVs Y1=Y(u) and Y2=Y(u + h) separ-

ated by vector h (Anderson, 1958):

gY1Y2
� y1, y2�

� 1

2p
��������������������
1ÿ r 2

Y�h�
p exp ÿ y 2

1 ÿ 2rY�h�y1y2 � y 2
2

2�1ÿ r 2
Y�h��

� �
: �7�

Unfortunately, integrals of Gaussian densities, such

as in Eq. (6), do not have closed-form analytical ex-
pressions. The task is then to approximate KJ(h; y0)
through a numerical integration procedure, and then
inversion of Eq. (6) with respect to rY(h) for a given

value of h. Note that rY(h) is constrained by
ÿ1RrY(h)R1 and that the integral in Eq. (6) is
monotonic in rY(h).
A power series expansion approach is proposed

hereafter for numerically evaluating Eq. (6). First, the
coe�cients for the power series approximation of

CJ(h) in terms of CY(h) are computed, and then the
power series is reverted to obtain a development of
CY(h) in terms of CJ(h).

3. Implementation

The ®rst step towards simplifying Eq. (6) is to per-

form a 458 rotation and scaling of the original vari-
ables Y1, Y2 in order to eliminate the cross terms from
the exponential integrand.

Consider the following change of variables:

u � y1 � y2

2
��������������������
1� rY�h�

p and v � y2 ÿ y1

2
��������������������
1ÿ rY�h�

p :

The original variables are then written as

y1 � u
��������������������
1� rY�h�

p
ÿ v

��������������������
1ÿ rY�h�

p
,

y2 � u
��������������������
1� rY�h�

p
� v

��������������������
1ÿ rY�h�

p
with Jacobian:

J�u, v� �
�����
��������������������
1� rY�h�

p ÿ ��������������������
1ÿ rY�h�

p��������������������
1� rY�h�

p ��������������������
1ÿ rY�h�

p
����� � 2

��������������������
1ÿ r 2

Y�h�
q

:

The limits of integration are now modi®ed as fol-
lows:

. For y1=y0 and y2=y0: u= u0=y0/(
��������������������
1� rY�h�

p
).

. For y1=+1 and y2= +1: u= +1.

. For y2=y0 and y1 $ (ÿ1, +1): v = v1=

ÿ (uÿ u0)
������������������������������������������������1� rY�h��=�1ÿ rY�h��

p
.

. For y1=y0 and y2 $ (ÿ1, +1): v = v2=

(uÿ u0)
������������������������������������������������1� rY�h��=�1ÿ rY�h��

p
.

Substituting the expressions for y1 and y2 into the
numerator of the bivariate density (Eq. (7)) yields

ÿ� y21 ÿ 2rY�h�y1y2 � y 2
2� � ÿ2�1ÿ r 2

Y�h���u 2 � v 2�:

The integral in Eq. (6) giving the non-centered indi-
cator covariance KJ(h; y0) is then simpli®ed to

Fig. 1. Bivariate scatterplot of Y1 versus Y2: non-centered in-

dicator covariance KJ(h; y0) is integral of fY1Y2
( y1, y2) over

hatched region.
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KJ�h; y0� � 1

p

�1
u0

du

�v2
v1

exp�ÿ�u 2 � v 2�� dv

where integration is now performed over the hatched

region in Fig. 2.
Note that the lines bounding the area of integration

are tangent to the circle of radius d = y0/
���
2
p

centered

at the origin. From symmetry of the domain of inte-
gration, the previous expression reduces to

KJ�h; y0� � 2

p

�1
u0

du

�v2
0

exp�ÿ�u 2 � v 2�� dv �8�

with u0=y0/(
��������������������
1� rY�h�

p
)

and v2=(uÿ u0)
������������������������������������������������1� rY�h��=�1ÿ rY�h��

p
.

The normal scores correlogram rY(h) does not

appear explicitly in the integrand, instead it is
accounted for in the limits of integration u0 and v2.
The second step is to convert to polar coordinates

(see Fig. 3) de®ning

u � r cos�yÿ o � and v � r sin�yÿ o �

where r is the radial distance of p = (u, v) and
a= yÿo is the polar angle. Note that y is the angle
between the u axis and the line from p to the origin,

and o is the angle between the u axis and the radius
perpendicular to the line bounding the area of inte-
gration (Fig. 3). The new area of integration can be
then de®ned by considering that a $ [0, p/2ÿo], hence
y $ [o, p/2] and that rrr0=d/cos y, hence r $ [d sec y,
+1).
Substituting the expressions for u and v into the

exponent of the integrand Eq. (8) yields

ÿ�u 2 � v 2� � ÿ�r 2 cos2�yÿ o � � r 2 sin2�yÿ o �� � ÿr 2:

Hence, Eq. (8) for the non-centered indicator covari-
ance becomes

KJ�h; y0� � 2

p

�p=2
o

dy
�1
d sec y

reÿr
2

dr

� 1

p

�p=2
o

eÿd
2 sec2y dy �9�

where, in this situation, the calculation has been
reduced to a single integration.

The third step involves another change of variables
in order to use series expansion, by introducing the
new variable t=

�������������������
sec2yÿ 1
p

. From Fig. 3 and the de®-
nition of the limit of integration v2=

(uÿ u0)
������������������������������������������������1� rY�h��=�1ÿ rY�h��

p
, one can see that

tan f �
��������������������
1� rY�h�
1ÿ rY�h�

s
:

Therefore,

tan o � tan

�
p
2
ÿ f

�
�

��������������������
1ÿ rY�h�
1� rY�h�

s
:

The area of integration is now modi®ed as follows:

. For y = o: t= t0=
������������������������1ÿ rY�h��

p
=
����������������������1� rY�h�

p
. For y = p/2: t= tan p/2c t= 0.

The non-centered indicator covariance expression
(Eq. (9)) then becomes

KJ�h; y0� � eÿd
2

p

�0
t0

eÿd
2t 2

t 2 � 1
dt �10�

where dt is expressed in terms of dy using the fact that
sec2yÿ 1 = tan2y, hence

Fig. 2. Area of integration in terms of independent variables u

and v de®ned after 458 rotation and subsequent scaling of

original variables y1 and y2.

Fig. 3. Conversion to polar coordinates: r is radial distance of

p(u, v) and y is polar angle.
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@ t

@y
� sec2y�)@y � @ t

t 2 � 1
:

Application of power series expansion at t= 0 (see,
for example, Apostol, 1967), leads to:

KJ�h; y0� ��1ÿ p� ÿ eÿd
2

p

�t0
0

eÿd
2t 2

t 2 � 1
dt

1�1ÿ p� ÿ
XN
n�1

bnt
n
0 �11�

where N is the number of terms retained in the series
approximation, and coe�cients bn are evaluated as

bn � 1

n

eÿd
2

p
@ �n���eÿd 2t 2 �=�t 2 � 1��

@ t

or, equivalently, as

bn � �ÿ1���nÿ1�=2��e
ÿd 2 =np�

X �nÿ1�=2
k�0 �d 2k=k!�

, if n odd,

bn � 0, if n even:

Direct reversion of the series equation (Eq. (11))
leads to a power series for
t0=

������������������������������������������������1ÿ rY�h��=�1� rY�h��
p

(see, for example,

Abramovitz and Stegun, 1972):

t0 �
XN
n�1

any
n �12�

where y= CJ(h)p0(1ÿ p0) + p0(1ÿ p0) and an are coef-
®cients de®ned as:

an � ÿ
X

nÿ1
i�1 aib�n, i �
b�n, n�

with b(n, n) being the nnth element of a matrix B con-
taining the coe�cients bn.
The value of rY(h) is then obtained by simple alge-

bra as:

rY�h� �
1ÿ t 20
1� t 20

: �13�

Note that, even if the series involves N terms the

actual number of non-zero terms is (Nÿ 1)/2.
Remark: The resulting normal scores correlogram

values rY(h) must constitute a positive de®nite covari-
ance table for any lag h. This could be checked a pos-

teriori by verifying that the Fourier transform of the
numerically derived correlogram rY(h), i.e. the corre-
sponding spectral density function, is non-negative for

all possible lags h (see, for example, Christakos, 1984).
Note that for certain indicator covariance models
CJ(h; y0), such as a Gaussian model that behaves like

a parabola near the origin, the resulting normal scores
correlogram model rY(h) may not be positive de®nite,
since it behaves like a polynomial with an exponent

greater than 2. In general, for an arbitrary threshold
y0, in the neighborhood of rY(h) = 1, the variogram

gJ(h) of the indicator RF behaves like the square root
of the variogram 1ÿ rY(h) of the Gaussian RF
(Matheron, 1989) and this poses problems when deal-

ing with Gaussian indicator covariance models.
However, Gaussian covariance models characterize
phenomena with very high spatial continuity and

should not be used for modeling a (by de®nition) dis-
continuous indicator RF. Hence, for realistic positive
de®nite indicator covariance models CJ(h) the normal

scores correlogram values derived by bigaus2 constitute
a licit covariance table, since they are obtained by
direct evaluation (integration and inversion) of Eq. (6).
Alternatively, one could ensure positive de®niteness

of the numerically derived normal scores correlogram
rY(h) by ®tting a permissible parametric correlogram
model rY(h; yy) to rY(h). Here, yy denotes the vector of

parameters (sills, ranges) of each basic structure com-
prising the parametric correlogram model rY(h; yy)
adopted.

4. Program description

The GSLIB program bigaus (Deutsch and Journel,
1998) has been modi®ed to include the reverse pro-
cedure, i.e. calculation of gY(h) from gJ(h). The new

program bigaus2 can handle the following cases:

(1) Input: normal scores variogram model gY(h).
Output: values of the indicator variogram gJ(h)
de®ned at a speci®c threshold y0.
(2) Input: indicator variogram model gJ(h) for a

speci®ed threshold y0. Output: values of the normal

scores variogram gY(h) required for generating the
Gaussian RF {Y(u), u $ A}.
(3) Input: experimental normal scores variogram

values gY
* (h). Output: `experimental' values of the

indicator variogram gJ
*(h) de®ned at a speci®c

threshold y0.
(4) Input: experimental indicator variogram

values gJ
*(h) for a speci®ed threshold y0. Output: `ex-

perimental' values of the normal scores variogram
gY

* (h) required for generating the Gaussian RF

{Y(u), u $ A}.

Note that in case (4), a further modeling step is
required in order to ®t a licit normal scores variogram

model to the values output from bigaus2. Test runs of
bigaus2 indicate that in case (2), the resulting normal
scores variogram values could be used directly for gen-

erating the Gaussian RF {Y(u), u $ A}, provided that
the threshold value y0 is not too high, and that nu-
merical integration errors are small.
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The bigaus2 program follows GSLIB conventions.

The parameters required for the program, shown also

in Fig. 4, are listed as follows:

. imd: if imd is set to 1, then an input variogram

model is required. If imd is set to 2, then an input

®le in¯ containing experimental semivariogram

values is required.

. in¯: if imd is set to 2, the input ®le containing the

experimental semivariogram values should be pro-

vided.

. pcut: if imd is set to 2, a single threshold is required.

This threshold is expressed in units of cumulative

probability, e.g. the median is 0.50.

. icl: the type of calculation is speci®ed. If icl is set to

1, then the input consists of a standardized indicator

semivariogram (either model or experimental). If icl

is set to 2, the input consists of a normal scores

semivariogram (either model or experimental).

. out¯: the output ®le for the normal scores or indi-

cator semivariograms depending on icl. The format

is the same as that created by GSLIB; therefore,

GSLIB program vargplt could be used to plot these

indicator variograms.

. ncut: the number of thresholds.

. zc(ncut): ncut threshold values are required. These

thresholds are expressed in units of cumulative prob-

ability, for example, the lower quartile is 0.25, the

median is 0.50. Note that the results are symmetric:

the variogram for the 5th percentile (0.05) is the

same as the variogram for the 95th percentile (0.95).

. ndir and nlag: the number of directions and the

number of lags to be considered.

. azm, dip and lag: for each of the ndir directions, an

azimuth and a dip must be speci®ed (by azm and

dip, respectively) along with a unit lag o�set (lag).

. nst and c0: the number of nested structures and the

nugget e�ect.

. For each of the nst nested structures, one must de-

®ne it: the type of the structure; cc the c parameter;
ang1, ang2, ang3, the angles de®ning the geometric
anisotropy; aahmax, the maximum horizontal range;

aahmin, the minimum horizontal range and aavert, the
vertical range. A detailed description of these par-
ameters is given in section II.3 of the GSLIB man-

ual.

The FORTRAN source code in ®le bigaus2.f, along
with the corresponding parameter ®le bigaus2.par, can

be downloaded from a searchable database www.iam-
g.org/CGEditor/index.htm.

5. An illustrative example

The following example illustrates the discrepancy
incurred by generating the Gaussian RF {Y(u), u $ A}
using the standardized indicator variogram gJ(h)
instead of the correct normal scores variogram gY(h).
First, the di�erence between the standardized indicator
variogram and the correct normal scores variogram

model is shown for a hypothetical system with various
proportions of two lithofacies.
The standardized indicator variogram modeling the

spatial distribution of the two lithofacies is a spherical
model with a 5% nugget and a range of 10 units; the
®eld dimensions being 100 � 100 units. Four possible
facies proportions are examined, p = 0.5, p= 0.8,

p = 0.9 and p = 0.97. The corresponding normal
scores variograms (case (2) in bigaus2) are shown in
Fig. 5.

Fig. 5 illustrates the smaller nugget variance of the
correct normal scores variogram (dashed line) and its
parabolic behavior at the origin, as opposed to the lin-

ear behavior of the input standardized indicator vario-
gram model (solid line). The mismatch is more
pronounced as the proportion p deviates more from

Fig. 4. Parameter ®le for bigaus2.
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0.5, i.e. as one of the two lithofacies becomes more

abundant. Everything else being equal, utilization of
the correct normal scores variogram leads to a more
continuous realization at short scales than had the

standardized indicator variogram been used.
Utilization of the correct normal scores variogram

model becomes more critical when the data control
does not su�ce to impose the pattern of spatial vari-
ation. For this reason, the following example using

unconditional simulation shows the discrepancies at
their worst.

Consider the problem of generating a realization of
the spatial distribution of the two lithofacies (Fig. 6).
Let the desired proportion of facies A be 1ÿ p = 0.25

and that of facies B be p = 0.75. Let the target indi-
cator variogram be an isotropic spherical one with

relative nugget of 5% and range of 10 units.
Two realizations of a Gaussian RF are generated

using program sgsim (Deutsch and Journel, 1998) (see

top of Fig. 6). The ®rst (Fig. 6, top left) was generated
using an isotropic spherical variogram model with 5%

nugget variance contribution and a range of 10 units.

The second (Fig. 6, top right) was calculated using the

correct normal scores variogram as generated from

program bigaus2 for 1ÿ p = 0.25. These two Gaussian

realizations were truncated via program gtsim

(Deutsch and Journel, 1998) at the 1ÿ p= 0.25 quan-

tile. The two resulting indicator realizations (binary

images) are shown in the middle of Fig. 6. Both indi-

cator realizations have the correct proportion of litho-

facies, yet the omnidirectional variograms of the

simulated indicator values (Fig. 6, bottom) are quite

di�erent. Utilization of the standardized indicator var-

iogram model results in a binary image exhibiting a

higher nugget variance (more noise) than the target in-

dicator variogram model. On the contrary, using the

correct normal scores variogram model yields, after

truncation at the 1ÿ p = 0.25 quantile, a binary image

whose indicator variogram is very close to the target

indicator variogram model.

Fig. 5. Discrepancy between input standardized indicator variogram models (solid line) and correct normal scores variograms

(dashed line) for various facies proportions p. Note that normal scores variograms do not have zero nugget e�ect; this can be

detected if graphs were to be plotted on larger scale. Nugget e�ect values are 0.0031, 0.0026, 0.0021 and 0.0014, respectively, for

p= 0.5, 0.8, 0.9 and 0.97.
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6. Discussion

The theoretical basis for determining the correct nor-

mal scores variogram for truncated Gaussian simu-

lation of categorical variables is brie¯y recalled. The

one-to-one relationship between the normal scores cor-

relogram rY(h) and the indicator correlogram rJ(h)
after truncation at the 1ÿ p standard normal quantile,

is approximated using a series expansion.

Program bigaus2 allows conversion between rY(h)
and rJ(h) and vice versa. Two subroutines are used for

the above conversion:

Subroutine rhoyÿ j calculates the indicator corre-

logram rJ(h), which results after truncating a bivari-

ate Gaussian RF (with correlogram rY(h)) at the

1ÿ p quantile. This procedure is currently coded in

program bigaus of GSLIB (Deutsch and Journel,

1998) using a formal numerical integration via

Simpson's rule. The conversion from rY(h) to rJ(h)
is used to check bivariate normality, i.e. theoretical

rJ(h) values are compared to experimentally avail-

able ones, and the hypothesis of bivariate normality

regarding the RF {Y(u), u $ A} may be refuted or

not.

Subroutine rhojÿ y calculates the correliogram

rY(h) between two Gaussian RVs constituting the

bivariate Gaussian RF {Y(u), u $ A}, so that the

resulting binary realization, after truncation of

{Y(u), u $ A} at the 1ÿ p quantile, reproduces the

inferred/target indicator correlogram rJ(h). For this

latter conversion, the better reproduction of the

input variogram model has been illustrated via a

simple example using unconditional stochastic simu-

lation.

Fig. 6. Indicator variogram reproduction for two gtsim realizations using: (a) standardized indicator variogram model (left graphs)

and (b) correct normal scores variogram model (right graphs). Model indicator variogram is shown in solid line.
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