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ABSTRACT

Permeability estimation in three dimensions
commonly suffers from inadequate horizontal data
sampling. Thus, modeling the variogram in the hor-
izontal plane and determining anisotropy ratios in
the vertical direction is associated with substantial
uncertainty. This uncertainty about spatial correla-
tion of permeability is transferred into uncertainty
in reservoir performance forecasting. Analog infor-
mation, such as data borrowed from more exten-
sively sampled fields or horizontal correlation mea-
sures derived from geologic process modeling, may
be used to narrow this uncertainty. We present a
compilation of published results of horizontal and
vertical variograms of petrophysical parameters. A
stepwise procedure describing a process to estab-
lish horizontal variograms for numerical geological
modeling is developed based on the distinction
between three different types of anisotropy. We
also emphasize the challenge of meaningful com-
bining data of varying volume support and the
need for modeling decisions.

INTRODUCTION

Because subsurface flow takes place in three-
dimensional (3-D) heterogeneous strata, construct-
ing realistic 3-D numerical geological models that
include petrophysical properties such as porosity
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and permeability is essential in reliably predicting
the performance of a reservoir. Typically, reservoir
dimensions are much larger horizontally than verti-
cally; however, the greatest detailed resolution is
vertical (e.g., geophysical well logs and lab analysis
of cores). These well logs and lab analysis tools
provide little information in the horizontal direc-
tion except in the rare case of horizontal wells;
hence, there is a fundamental challenge to infer hor-
izontal spatial statistics from limited site-specific
information. Where data are sparse, inference of
horizontal variograms can be complemented by
the use of analog data deemed relevant to the site
being considered. Analog data may come from
other, more extensively sampled reservoirs, geo-
logical process simulation, or outcrop measure-
ments. In all cases, expert judgment is needed to
integrate “global” information from analogs with
sparse local data.

The issue of permeability prediction becomes
further complicated because generally permeability
shows different spatial statistics in the horizontal
and vertical directions. Thus, this anisotropy is spa-
tially variable. Extensive vertical information can-
not be used to directly infer horizontal structure.
Horizontal and vertical variograms differ with
respect to the magnitude of their short-scale spatial
variability.

One important goal of numerical geological
models of petrophysical parameters is input to
fluid-flow modeling. Ignoring permeability aniso-
tropy commonly leads to a poor prediction of actu-
al flow.

In this paper, we address the problem of 3-D
variogram inference and the consequence of having
data with good vertical resolution but limited hori-
zontal extent. After a short review of fundamental
geostatistical definitions and variogram modeling
practice, we present published data on vertical and
horizontal correlation length of petrophysical
parameters. Alternative methods to aid the model-
ing of the horizontal variogram are presented along
with their limitations. Finally, to determine a 3-D
variogram model, a stepwise procedure is present-
ed. An appendix includes definitions of terms used
in this paper.
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METHODOLOGY OF VARIOGRAM MODELING:
A SHORT REVIEW

Geostatistical reservoir modeling focuses on
layer- and lithofacies-specific data. The layers
commonly are chosen to separate strata con-
trolled by different geological processes, which
result in different lithofacies, e.g., porous and
permeable channel sandstones, lesser quality
crevasse sandstones, and impermeable flood-
plain shales. Geostatistical techniques to model
the spatial distribution of lithofacies can be subdi-
vided into cell-based methods and object-based
techniques. Within the cell or indicator methods
the lithofacies are transformed to an indicator
variable that is assigned the value 1 if a lithofacies
is present at a given location and 0 otherwise.
The subsurface architecture is then built by geo-
statistical modeling of such indicator variables. A
more thorough discussion of cell-based methods
can be found in Deutsch and Journel (1997) or
Gomez-Hernandez and Srivastava (1989). The
object-based modeling approach consists of
establishing the spatial distribution of geo-objects
(such as abandoned sand-filled channels, deltaic
fans, or eolian sands) that are defined by geomet-
ric parameters, such as curvature or thickness.
The geo-objects can be conditioned to well obser-
vations and sequence-stratigraphic interpreta-
tions. Tyler et al. (1992) and Deutsch and Wang
(1996) provided a more complete discussion of
object-based modeling.

Petrophysical parameters, including porosity
and permeability, have to be assigned within each
lithofacies. These parameters are modeled as con-
tinuous variables with the variogram describing
their spatial distribution. The variogram is a geo-
statistical tool that relates geological variability to
physical distance in the reservoir. The variogram
for variable z(u), where u is the location coordi-
nate vector, is defined as

{[Z u+h)] }

for lag separation vector h. The variogram is esti-
mated by

(1)

N(h]

N(h a=1 (2)

2y(h)= z(ug+ h)]

2. [#(ua)-

where z(u,) is a measured datum at location u,,
a =1,...,n indicating the n individual measure-
ments. N(h) denotes the number of pairs of data
locations approximately a distance vector h
apart.
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EXPERIMENTAL CALCULATIONS

The calculation of the experimental variogram
involves a series of decisions with respect to direc-
tion, lag increment, and their respective tolerances.

The omnidirectional horizontal variogram pro-
vides a robust measure for initial data analysis.
Depending on the characteristics of the omnidirec-
tional variogram and the availability of data, direc-
tional variograms can be calculated. Usually, geo-
logical information will assist in determining the
direction of maximum spatial continuity. Pooling
together data with a large angular tolerance unfor-
tunately reduces the distinction between the great-
est and least continuous directions and hence
reduces the anisotropy.

An experimental variogram typically can be
described by three characteristic parameters:
nugget, sill, and range (Figure 1). The range is
defined as the distance at which the average
squared difference between pairs of data values
reaches the variance of the data. No spatial correla-
tion exists between data points farther apart than
the range. The plateau of y(h) values the variogram
reaches at the range is called the sill and corre-
sponds to the variance of the sampled data. The
term “nugget effect” is used to describe the discon-
tinuity at the origin of the variogram. The nugget
effect describes the geological variability at scales
smaller than the closest data spacing.

The lag separation vectors chosen depend on
the number and spatial distribution of the data. The
number of data pairs within a lag class (a pool of
data pairs grouped together because of their similar
separation vectors) should be of comparable mag-
nitude within different classes. A typical choice for
the lag tolerance is one-half the lag distance
between two neighboring classes. When vario-
grams do not result in interpretable shapes, alterna-
tive measures to describe spatial continuity exist:
correlogram, covariance function, and several
types of relative variograms. A detailed description
of these functions can be found in Deutsch and
Journel (1997) and Goovaerts (1997).

GEOMETRIC AND ZONAL ANISOTROPY

A variable is defined as anisotropic when its pat-
tern of spatial variability changes with direction. By
knowledge of the geological process or by experi-
mental variogram calculations, the direction of
greatest continuity (typically in the horizontal
plane) may be determined. This direction is
referred to as the major axis. The direction with the
least continuity is called the minor axis. An
anisotropy factor can be defined as the ratio of the
range in the major and minor direction.
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Two basic types of anisotropy can be distinguished. VARIOGRAM MODELING

Anisotropy is geometric when the directional vari-
ograms show the same shape and sill, but different
range values. Figure 2A shows horizontal and vertical
variograms with geometric anisotropy; the variograms
reach the same sill, but the range in the vertical direc-
tion is 1/20 of the range in the horizontal direction.

In the case of zonal anisotropy, both sill and
range values change with direction. Figure 2B and
C shows two typical cases of zonal anisotropy.

In Figure 2B, the horizontal variogram reaches a
lower sill (0.5) than the vertical variogram (sill of 1.0).
The directional variogram parameters can be interpret-
ed with various components (called nested structures)
with the same sill eters, but different correlation
lengths (see the next section). The shown horizontal
sill represents the variability within a single geologic
stratum. The second of the nested horizontal structures
cannot be seen in Figure 2B because it has a very large
range beyond the distance scale. The scale of the struc-
ture indicates the variability between different geologic
strata and may be related to laterally continuous sedi-
mentary features (Anderson and Woessner, 1992).

Figure 2C portrays the influence of areal trends
as the cause of zonal anisotropy. Here, the vertical
variogram reaches a lower sill. Typically, the two
types of zonal anisotropy can be found in any com-
bination in the field, which complicates their identi-
fication. This entails uncertainty in interpreting
those parts of the sill that can be attributed to strati-
fication (interfacies variation), which part to areal
trends, and which to the variability of the parameter
under study (intrafacies variation).

Because of the grouping of data pairs into classes
of similar distances, the experimental variogram is
specified only at these particular distances. To get a
measure of spatial continuity for any distance, a
theoretical model has to be fitted to the experimen-
tal variogram points (inference from the sample
onto the entire population). This theoretical model
can be any positive definite function. Positive defi-
niteness ensures (1) existence of the solution of the
kriging matrix, (2) uniqueness of the solution, and
(3) that the variance of any linear combination of
the data values will be positive. Various models,
each describing the variable correlation for a com-
ponent of the total variance, can be combined as
nested structures. The most commonly used theo-
retical variogram models, which are known to be
positive definite, are the nugget effect model (usu-
ally for a small fraction of the variance) and the
spherical, exponential, Gaussian, and power mod-
els (Isaaks and Srivastava, 1989; Deutsch and
Journel, 1997; Goovaerts, 1997).

ANALOG DATA FOR HORIZONTAL

VARIOGRAMS

Ranges of Anistrophy: A Literature Overview
One choice to support modeling the horizontal

variogram consists in looking at more extensively
sampled sites that may serve as analogies to the
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Figure 2—Horizontal (in longitudinal and transversal direction) and vertical variograms shown for three differ-
ent synthetic cases of anisotropy: (A) geometric anisotropy, (B) zonal anisotropy due to stratification, and (C)
zonal anisotropy due to areal trends. The y-axis shows standardized variogram value, and the x-axis shows dis-
tance in meters.
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investigated site. Tables 1 and 2 show a compila-
tion of published results of horizontal and vertical
variograms of petrophysical parameters. Where
available, the facies characterization, the observed
parameter, the method of data interpretation, basic
statistics, and the fitted variogram parameters are
given with the overall number of data and their
sampling distance.

The field sites can be subdivided into petroleum-
engineering-related sites (Table 1), featuring perme-
ability as the measured parameter, and hydrogeology-
related sites (Table 2) that focus on conductivity.
Permeability, as usually defined, is a more general
parameter because it is independent of the charac-
teristics of the subsurface fluid. Conductivity is typ-
ically associated with water and can change up to a
factor of 2 because of temperature-related viscosity
variations.

We do not claim that Tables 1 and 2 are com-
plete. Rather, we believe that many more data sets

have been generated during development of reser-

voirs, but have not been published. During aquifer
characterization, in some cases, only vertically aver-
aged transmissivities (two dimensions) have been
evaluated. Other aquifer studies were designed
with different goals, such as monitoring the spread
of an injected tracer to estimate dispersivity values,
and variogram parameters were not calculated.

Various methods may be used to collect perme-
ability data. On outcrops and on core samples
permeability can be measured by the miniperme-
ameter. This nondestructive measurement tech-
nique is easy to apply and can be used to collect a
large number of data. Gas is flowed under a con-
stant pressure drop through an injection tip that
is pressed against the outcrop or core surface.
The flow rate is measured by a series of rotame-
ters. An estimate of the permeability (commonly
in millidarcys) is obtained by calibrating the
minipermeameter flow rate for core-plug perme-
ability samples from similar lithofacies in a local
area &}oggin et al., 1988). Other methods used to
estimate permeabilities include laboratory mea-
surement techniques of core samples, e.g., Hassler
sleeve method, and establishing a statistical rela-
tionship (log-linear regression) between geophysi-
cal well logs and permeability; however, this latter
technique may lead to misinterpretations if geolog-
ical data are not properly used to develop subsets
of data.

Within the hydrogeology field sites, conductivi-
ties often are measured with borehole flow-meter
tests and falling or constant head permeameter
tests in the lab. The permeameter tests are a varia-
tion of the classical Darcy experiment with differ-
ent pressure conditions at the inflow and outflow
end (Freeze and Cherry, 1979). Flow-meter tests
measure the vertical flow in a pumping well at

specified intervals and are used to determine the
inflow to the well from each vertical interval
(Rehfeldt et al., 1992). Calibration is needed to con-
vert the rotation of the flow meter into a flow rate.
A vertical hydraulic Conductivilg value is obtained
by applying, for example, the Cooper-Jacob well
equation (Freeze and Cherry, 1979).

Reported horizontal correlation scales range
from 0.75 m defined at an outcrop to 6300 m (ratio
of about 8250) for an Arabian reservoir. Ranges in
the vertical direction start at 0.07 m (same outcrop
study) and reach up to 12 m (ratio of about 175) for
a west Texas carbonate field. For individual sites,
the number of sampled data ranges between sever-
al hundreds and almost 3000. Several of these data
sets may be regarded as comprehensive databases.
Distances between sample locations fluctuate from
0.01 (outcrop) to 0.3 m in the vertical and between
0.15 and 330 m (west Texas field) in the horizontal
direction. From these numbers it can be seen that
the published studies describe very different sub-
surface volumes.

Nugget effect values also show a large variation
from study to study. Values range from no nugget
effect to a case where the nugget effect represents
more than one-half the permeability variance (Hess
et al., 1992). The latter case emphasizes the hori-
zontal variation of permeability over short dis-
tances. For the sill, nugget effect, and the sum of
the two, no systematic pattern with respect to hor-
izontal or vertical direction can be identified. The
anisotropy ratios between ranges in horizontal and
vertical direction vary considerably over two
orders of magnitude. No clear link between the
anisotropy ratio and the type of depositional envi-
ronment can be supported by this data set; howev-
er, based on all the data sets available (Tables 1 and
2), it appears that the smaller anisotropy ratios are
related to the outcrop studies where only small
areas (order of tens of square meters) are densely
sampled so that large horizontal structures might
not be adequately represented or even not account-
ed for.

Alternative Methods to Model
the Horizontal Variogram

Outcrop Analogs

Some reservoir characterization studies (e.g.,
Kittridge et al., 1990) measured permeabilities
at outcrops with the mechanical field perme-
ameter (MFP) and compared the results with
data (core analysis) from nearby subsurface
reservoirs. The underlying idea of such analog
studies is that the lithofacies are similar to those
in the subsurface reservoirs, but the outcrops
are much easier to access. Tomutsa et al. (1986)



concluded that the variance and correlation struc-
ture may be preserved but that a considerable
decrease in the mean permeability of individual
lithofacies from outcrop to subsurface is expected
(see Table 1 for figures). In such cases, horizontal
variograms derived from outcrop measurements
may give some indication of the range, but not of
the sill of subsurface horizontal variograms.

Horizontal Correlation Measures from the
Geological Process Model SEDSIM

Geological-based process models simulate physi-
cal processes—such as sediment transport, deposi-
tion, and erosion—that induce subsurface struc-
ture over the time scale in which a reservoir
evolved. Thus, the general character of reservoir
heterogeneity can be inferred from limited well
data (Davis et al. 1992; Webb, 1992). Essential fea-
tures, such as the existence of preferential flow
paths within the subsurface, may be revealed
(Anderson, 1989). Geological process models are
constrained by the geological variables that create
the stratigraphic record, e.g., amount and type of
sediment supply. Even if the observed location and
geometry of facies units cannot be reproduced
exactly with a geological process model, the con-
tinuous estimation of materials deposited within
the flow system simplifies identifying those facies
distributions that most affect subsurface flow
(Ritzi and Dominic, 1993).

In the sedimentary simulation program SEDSIM®,
the flow of water and the transport, erosion, and
deposition of sediments is described by the Navier-
Stokes equation for flow in open channels and the
continuity equations for transported sediments and
fluid mass. This set of equations is formulated in a
Lagrangian framework and solved sequentially and
explicitly for velocity, water depth, and sediment
load. Water and sediment volumes are divided into
fluid elements of finite volume that are tracked
over a fixed grid. To fully describe sediment trans-
port, deposition and erosion threshold conditions
for sediment movement and sediment transport
based on empirical relations (Meyer-Peter and
Muller, 1948; Shields, 1936) are applied. Transfer of
sediment between the overlying water column and
the bed immediately beneath the water column is a
function of flow conditions, the amount and type
of sediment load, and composition of the bed.

The sedimentary process model SEDSIM
(Tetzlaff and Harbaugh, 1989) has been successful-
ly applied in nearshore marine environments to
describe hydraulic conductivity fields of aquifers
(Koltermann, 1993; K. Tuttle and ]. Wendebourg,
1996, personal communication). Our paper presents
SEDSIK/I results for two different geological envi-
ronments. Figure 3 shows horizontal and vertical
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variograms of conductivities and permeabilities.
These values have been statistically inferred from
simulated grain-size distributions based on correla-
tions between measured conductivities (and per-
meabilities) and grain-size distributions at common
data locations. The geologic environments com-
prise the upper Drau valley in Austria (Figure 3) as
a braided alpine river (unpublished data) and the
Pleistocene Tulare Formation at South Belridge
field (western San Joaquin basin, California) inter-
preted as a progradational fluvial-deltaic sequence
(Wendebourg, 1994).

For the braided river case (Drau valley, Figure 3)
it can be seen that in the horizontal direction a
high nugget effect exists and that the variogram
does not reach a sill, but continuously increases for
the indicated distances between data pairs. This
feature, although ambiguous, can be interpreted as
a long-range horizontal structure. The horizontal
variogram of the deltaic sequence (Belridge field,
Figure 3) shows similar characteristics.

The differences in the vertical variograms for the
two cases can be explained by the differences in
the geologic environments. The deltaic setting dis-
plays an inferred nested zigzag structure that can
be interpreted as a vertically layered structure. In
contrast, the high-energy braided river environ-
ment is inferred to result in a smoother vertical var-
iogram with a range of about 6 m and a Gaussian-
type shape.

For both case studies the general geological char-
acter of their subsurface formation can be quanti-
fied in terms of variogram parameters. Because
these parameters are based on the modeling of geo-
logic processes, they provide valuable information
to support the characterization of a reservoir given
only sparse direct permeability data.

LIMITATIONS OF USING ANALOG DATA

Given the sparsity of permeability measurements
in the horizontal direction, we must use analog
(inferred or borrowed) information to supplement
the estimation of permeability distributions; how-
ever, some limitations of using analog data have to
be recognized.

Permeabilities may have been calculated using a
number of different measurement devices and a
varying density of samples. Core analysis data rep-
resent only a small volume (on the order of cubic
centimeters) that can be regarded as a point value
with respect to the dimensions of a reservaoir,
whereas single or multiple well tests might sample
volumes on the order of 100 m3. Integration of data
of the same parameter obtained using different
measurement techniques into one variogram is not
a straightforward task. Downscaling or upscaling
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Figure 3—Experimental horizontal variograms (left column) and vertical variograms (right column) derived from
SEDSIM simulations. At the top are conductivities in the upper Drau valley, Austria. (Bottom) Permeabilities in the
Belridge ficld, California. The y-axis shows standardized variogram value, and the x-axis shows distance in meters.

techniques, depending on the particular situation,
may have to be applied, which will result in differ-
ent (with respect to the measured data) representa-
tive values due to inherent assumptions. A more
thorough discussion of this issue is beyond the
scope of this paper.

The size of the sampled area influences the corre-
lation scale in the sense that the sampled area might
actually be too small to capture a large-range struc-
ture. The issue of scale dependence of the correla-
tion length is discussed in more detail by
Schafmeister and Pekdeger (1992) and Gelhar
(1986), who showed that the correlation length
increases with increasing scale of the investigated
area. In agreement with (%elhar's (1986) discussion,
it can be inferred from Tables 1 and 2 that the corre-
lation length is not an absolute property of the
subsurface, but that it is related to the size of the
investigated area. Because the horizontal correla-
tion length is an integral part of the anisotropy
ratio we also see that larger model scales lead to
increased anisotropy. Generally, comparing modeled

correlation scales and ranges of anisotropy has to
be done with caution.

Transferring results from a more detailed sam-
pled field has to be done on a site-specific basis
because of the influence of different local geologi-
cal environments. No correlation between the geo-
logic environments and the anisotropy ratios could
be established from data presented in Tables 1 and
2. Thus, better sampled fields, which seem compa-
rable, should be used only as guidelines to limit var-
iogram parameters for the study site instead of
using the same variogram parameters from the bet-
ter sampled field. Lowry and Raheim (1991) gave
an illustrative example with data collected within a
fluvial delta setting. They provided descriptive
statistics (mean, standard deviation, minimum, and
maximum data values) that could be used to infer
ranges of corresponding variogram parameters for
distributary mouth-bar sandstone bodies.

The geological process-modeling case studies
applying SEDEIM show that the general character of
the geologic environment can be reproduced, but



that these studies lack local precision. Part of the
reason for this imprecision may lie in the fact that
the assumptions within sepsiM do not fully apply to
the individual study area.

If geophysical measurements such as seismic
impedance are used to infer permeability, a number
of additional problems arise that make their appli-
cation strongly sul?ective (e.g., nonunique relation,
low correlation). Establishing a correlation at one
site might not be applicable at a different field site.
In general, the successful integration of additional
information (i.e., geophysical measurements) into
the estimation of permeability distributions can be
documented only by comparing measured parame-
ters with values simulated by a numerical flow
model.

Increasingly, wells are being drilled horizontally
with the goal of improving well productivity. The
analysis of a pump test in a horizontal well requires
model assumptions that entail substantial uncer-
tainty (e.g., Horne, 1995) mainly due to the defini-
tion of the influenced area. Cores with horizontal
spacing are normally not taken and only limited
geophysical logs are available; furthermore, hori-
zontal wells are rarely truly horizontal, that is, they
do not follow the stratigraphic horizons. Thus,
despite their information potential, their benefit for
horizontal variogram modeling has yet to be
demonstrated.

STEPWISE 3-D VARIOGRAM DETERMINATION

Figure 4 summarizes the process of determining
a 3-D variogram model. At the beginning of the pro-
cess of determining a 3-D variogram model, sum-
mary statistics, such as the mean and variance, are
used to characterize the data set. A more compre-
hensive picture of the data set is obtained by the
histogram (Figure 4A) or the cumulative frequency
distribution. These two measures may reveal out-
liers or the dominance of a particular range of val-
ues that can determine the proceeding data analy-
sis. For example, outliers may lead to noisy
variograms that are hard to interpret. Those values
need to be treated consistently throughout the data
analysis.

Depending on this prior data analysis, geologic
knowledge, and the goal of the reservoir characteri-
zation, one has to choose a modeling approach,
that is, continuous or categorical variable and
object-based or cell-based approach. Basic consid-
erations are whether the variable of interest can be
treated as a continuous parameter or whether geo-
logic evidence suggests that there are several litho-
facies types with distinct petrophysical properties
whose shapes and distributions should be modeled
first. Is the existence of flow barriers or flow paths
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of primary concern? The following discussion
assumes that the variable of interest can be mod-
eled as a continuous parameter, that is, the lithofa-
cies are of minor importance or have already been
determined.

Because of data availability, it is a convenient and
common practice to first calculate the vertical vari-
ogram (Figure 4B). Transforming the data to a stan-
dardized normal distribution (i.e., zero mean and
unit variance) simplifies data handling and eases
comparison to different data sets. A conceptual
geologic model of the study area is necessary to
meaningfully interpret the vertical variogram. For
example, the vertical variogram may not reach the
unit sill, which can be related to areal trends of the
investigated variable, or the vertical variogram may
depict nested structures indicating geologic pro-
cesses at different scales.

Given that horizontal variogram parameters
most often have to be inferred from variogram val-
ues at only a few distance classes, geological princi-
ples may provide valuable guidance to model the
horizontal variogram. At times, geologic field-work
interpretations may suggest that stratification
(interfacies variation) constitutes a major feature of
the reservoir and an appropriate anisotropy model
should be adopted. Figure 4 provides an overview
of the principal shape of the horizontal and vertical
variogram ’]presumed for different cases of
anisotropy. Three different types of anisotropy are
illustrated: (1) zonal anisotropy due to areal trends
(Figure 4C), (2) zonal anisotropy due to stratifica-
tion (Figure 4D) and (3) geometric anisotropy
(Figure 4E). Each case corresponds to a different
geological interpretation. One must decide on the
anisotropy model that best fits all the available
information.

The lack of data in the horizontal direction com-
monly requires a large search angle to calculate the
horizontal variogram. This causes the directional
ranges to be blurred and leads to computed
anisotropy ratios that are not representative of the
anisotropy of the underlying phenomenon; conse-
quently, relevant additional information has to be
looked for to complement the available horizontal
data. For instance, analog information, such as out-
crop data or results from geologic process simula-
tion of the investigated region, can be used as qual-
itative data to aid computation of the variogram.

Thus, the horizontal variogram is subject not
only to observed data but also to decisions by the
modeler about the integration of the additional
data. Those decisions need to be clearly document-
ed and checked to ensure that the original data are
still honored; furthermore, the decisions must be
consistent throughout the modeling process.

This effort of searching for additional relevant
information is justified, compared to the alternative



1274 Analog Data in Variogram Modeling
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of accepting even larger uncertainty in the horizon-
tal distribution of reservoir parameters. A sensitivity
study of the obtained variogram parameters can be
performed to illustrate the impact of the choices on
flow modeling results. Quantifying this impact pro-
vides a sense for the importance of the variogram.
As an example consider Figure 5, which shows
eight vertical variograms of measured porosities
in different stratigraphic intervals of the same

fluvio-deltaic reservoir. These variograms are of
the standardized (normal score transform) data;
the histogram of porosity is different in each
stratigraphic layer. The variograms show differ-
ent features: (1) layers 1 and 8 show evidence of
cyclicity; (2) layers 2 and 7 show evidence of a
vertical trend; (3) layers 3, 5, and 6 show evi-
dence of areal variations in average porosity; and
(4) layer 4 shows nothing remarkable.
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Figure 5—Eight vertical variograms in eight different stratigraphic intervals of the same fluvio-deltaic reservoir. See
text for discussion.
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A full 3-D variogram model is required for geosta-
tistical modeling. As illustrated on Figure 4, we
must determine the fraction of variability attri-
butable to zonal anisotropy, that is, areal trends and
vertical stratification. Layers 3, 5, and 6 in Figure 5
show evidence of areal trends. There is no evi-
dence of stratification from the well logs. We
should note that the information from the eight
wells did not permit a horizontal variogram to be
calculated. The remaining parameter to determine
is the %eomelric anisotropy, that is, the horizontal
range for each layer. Although the analog informa-
tion presented on Table 1 is limited, using these
data we can estimate the horizontal ranges to be
150 times greater than the vertical range by inter-
polating between the minimum anisotropy ratio for
fluvial deposits of 3.75:1 (Stalkup, 1986) and the
maximum anisotropy ratio of 318:1 (Hufschmied,
1986). Thus, for example, the horizontal range in
layer four would be 1050 ft (150 x 7).

This example highlights the significant uncer-
tainty associated with variogram inference and,
therefore, 3-D modeling in presence of limited well
data. In time, the available data will increase and
this uncertainty will decrease.

CONCLUSIONS

Substantial uncertainty is introduced in reservoir
modeling due to horizontal data sparsity. A variety
of analog information exists to supplement the esti-
mation of 3-D variograms. We have looked at pub-
lished data and forward sediment modeling as
sources of analog data. Analog information may
range from minipermeameter measurements in a
related outcrop (centimeter spacing) to geological
process modeling addressing general geological
characteristics. Horizontal wells, unavailable for
this study, promise to provide valuable additional
information in the future. Analog information can
be used to infer bounds for variogram parameters
or as supplementary data when too few measure-
ments are available. The major challenges exist in
meaningful combining data of varying volume sup-
port representing different subsurface features.

To account for anisotropy between the horizon-
tal and vertical correlation structure of a reservoir
three different types of anisotropy can be consid-
ered, each referring to a different conceptual geo-
logic model: (1) zonal anisotropy due to stratiﬁca-
tion, (2) zonal anisotropy due to areal trends, and
(3) geometric anisotropy. For each type of
anisotropy, the relation between sills and correla-
tion lengths differ with changing direction. Thus,
modeling the horizontal variogram relies not only
on data but also on a series of decisions that have
to be consistently followed. A sensitivity analysis of

the variogram parameters is very useful to assess
the importance of the variogram assumptions.
Although the use of analog information is always
questionable, it is better to use the most relevant
analog data than no data whatsoever.

APPENDIX

Anisotropy Ratio: The ratio of the range in the direction of
maximum continuity and in the direction of minimum
continuity.

Correlogram: A chart of correlation coefficients vs. lag separation
distance (see “lag” below). In general, the correlation between
petrophysical properties separated by some distance decreases
as the separation distance increases. Given some assumptions,
the correlogram is 1.0 minus the standardized or relative
variogram (see below).

Correlation Scale: The distance scale at which the correlogram/
correlation is zero. From a geostatistical modeling perspective,
well data have no influence on modeling beyond the
correlation scale. The correlation scale is commonly called the
range of correlation.

Covariance Function: The covariance is a measure of correlation.
Recall that the correlation coefficient is the standardized
coviariance, that is, the covariance divided by the square root
of the product of the variance of each variable. So the
covariance function is like the correlogram (see “correlogram”),
except that it has not been standardized or normalized to a
correlation coefficient between -1 and 1.

Distance Classes: The variogram is calculated as the average
squared difference in the petrophysical property for a given
distance. In practice, well data are not on a regular grid and
the calculation of an experimental variogram must consider
some tolerance (say, 100 m +20 m). Such a range of distance is
called a distance class,

Experimental Variogram: The ultimate goal of a variogram study is
to arrive at a licit three-dimensional (3-D) variogram model
that must obey specific mathematical properties to be useful
in further studies. Experimental variogram points for specific
distance classes (see “distance classes”) are calculated from
the available well data before fitting such 3-D variogram
models. They are called experimental in the sense that they
precede the determination of an ultimate variogram model.

Facies: In this paper, facies simply may be considered as different
rock types or groupings of data that share certain properties.
For example, limestone and dolomite would be considered
two different facies. A variogram study would have to be
conducted within each significant facies.

y(h) or gamma(h): See the text for a formal definition of the
variogram. We should note that y(h) is technically the
semivariogram, whereas 2y(h) is the variogram.

Gaussian Variogram: Depending on the context there can be two
meanings: (1) a continuous petrophysical property such as
porosity or permeability commonly is transformed to a
Gaussian or normal distribution prior to variogram
calculation; the experimental variogram in this case is
sometimes referred to as a Gaussian variogram or (2) more
commonly, there is an analytical function that is used to fit
experimental variograms known as a Gaussian variogram
model. This analytical function is called Gaussian because it
has an “exponential-squared” term, which is the same as the
Gaussian probability distribution.

Lag Increments: When the experimental variogram is calculated,
the data pairs are grouped into classes of similar distances. Any
of these classes is also called a lag, and the difference between
the average distance of the data pairs in one class and the
average distance of the data pairs in the subsequent class is
referred to as the lag increment.



Lag Separation Vector: The vector that describes the change of
direction and average distance between one lag and the
subsequent lag is called a lag separation vector.

Lag Tolerance: To rigorously define a distance class, the two
parameters lag increment and lag tolerance are used. If the
distance of a data pair falls into the distance range described
by the lag increment plus or minus the lag tolerance, the data
pair is sorted into this distance class. The most common
choice for the lag tolerance is one-half the lag increment.

Nested Structure: The experimental variogram that is defined only
at discrete distances is modeled by an analytical function
called the theoretical variogram. The theoretical variogram can
be composed of a sequence of individual analytical functions
each of which describes only the dissimilarity between data
pairs within a particular distance interval. In this case, the
theoretical variogram is said to have a nested structure. The
term “structure” refers to each analytical subcomponent.

Normal Score Transform: The transformation of the given data so
that their cumulative distribution function corresponds to a
standard Gaussian cumulative distribution function with zero
mean and unit variance.

Positive Definiteness: Each analytical function that can be used to
model the experimental variogram has to be positive definite.
Positive definiteness is a mathematical condition that ensures
(1) existence of the solution of the kriging matrix, (2)
uniqueness of the solution, and (3) that the variance of any
linear combination of the data values will be positive.

Relative Variogram: The relative variogram measure is computed
as one-half of the squared difference between two data
standardized by the squared mean of the data used for the lag.
This standardization distinguishes the relative from the
traditional variogram (see equation 1 in the text).

Sensitivity Study: If a model consists of several parameters that
need to be determined, it is useful to figure out those
parameters that influence the model result the most. Typically,

& the parameter values are varied, and the model response is
monitored. The model is most sensitive to parameters where a
little change causes a significant different model result. This
procedure is called a sensitivity study.

Stratification: In this paper, stratification refers to the sequence of
different facies in the vertical direction. Interfacies variation,
in this context, is considered as the variation of facies
properties from one facies to the next facies.

Vertical Trend: A variable is said to have a vertical trend if the
variation of data within a neighborhood (vertical direction)
can be described as a smoothly varying function of the
coordinates.
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