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Abstract

Incomplete sampling leads to uncertainty in the detailed 3-D distribution of conductivity in every subsurface formation.
Stochastic/geostatistical techniques are being increasingly used to generate alternative fine scale 3-D realizations of subsurface
parameters that are consistent with the available data. Ideally, an assessment of aquifer response uncertainty is provided by
processing a large number of fine scale realizations through a groundwater modeling program. To avoid excessive CPU times
the fine scale realizations are often averaged to a coarse resolution for fast flow and transport simulation. The problem with this
approach is that the aquifer response is often sensitive to fine scale heterogeneities and such coarse flow models may lead to
erroneous results. An alternative approach is proposed in this paper. The coarse scale responses are used to rank the realizations,
i.e. identify low and high response realizations. A limited number of fine scale realizations are then processed through the flow
and transport simulator. Thus, aquifer response uncertainty can be analyzed at the fine scale with less computational effort. The
proposed method is applied to a hypothetical aquifer, which is characterized by variogram statistics derived for the Columbus
aquifer, Mississippi. The value of ranking is shown by comparing the approximate uncertainty with the reference fine scale
aquifer response.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Natural aquifers show heterogeneous characteris-
tics since a variety of geological processes were
involved in their genesis. The geological processes
may be understood in general; however, the initial
and boundary conditions can never be known in suffi-
cient detail to provide a unique deterministic image of
the aquifer.

A number of researchers have pointed out the
importance of considering spatial varying parameters
in solving groundwater problems. Peck et al. (1988)
compiled a broad review about the consequences of
spatial variability on groundwater modeling. Tyler et
al. (1995) discuss how fluvial heterogeneities influ-
ence production profiles. Silliman and Wright
(1988) have shown that the knowledge of pathways
and their distribution in the subsurface is important to
predict the spread of pollutants.

Typically, only a few spatial distributed measure-
ments are available (e.g. flowmeter measurements, lab
analysis of cores) to describe the distribution of
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aquifer parameters (e.g. conductivity). Hence, apart
from the problem of integrating measurements from
different measurement devices, uncertainty due to
incomplete sampling exists in describing the distribu-
tion of conductivity.

A deterministic distribution of conductivity could
only be obtained by having a measurement of conduc-
tivity at every location of the aquifer. Since this is not
possible, conductivity has been treated within a
stochastic framework where it is modeled using
space random functions (Delhomme, 1979; Gomez-
Hernandez and Wen, 1994; Poeter and McKenna,
1994). Probabilistic distribution models characterize
the uncertainty in the spatial distribution of conduc-
tivity. If the stochastic representation of conductivity
is used, the governing equations describing ground-
water flow and transport turn into stochastic partial
differential equations. Resulting aquifer response
distributions, e.g. hydraulic head or flow velocity,
become random functions.

In this paper we want to quantify by a numerical
simulation approach, how the uncertainty due to
incomplete sampling of conductivity affects the aqui-
fer response. Our approach starts by generating a
number of equiprobable distributions of conductivity,
all of which honor the available data and their spatial
structure, by using geostatistical methods (Isaaks and
Srivastava, 1989; Journel, 1989; Deutsch and Journel,
1997). All conductivity realizations are processed
through a groundwater flow and transport simulator.
Analyzing the distribution of simulation results will
give a measure of the uncertainty due to incomplete
sampling of conductivities. This procedure is known
as the “Monte Carlo approach”. Most often, incom-
plete sampling of conductivity is considered to be the
only source of uncertainty. In practical cases, addi-
tional sources of uncertainty might exist, e.g.
unknown boundary conditions or distribution of
recharge. For any decision making in the context of
aquifer management it is of utmost importance to
quantify all sources of uncertainty (Ballin et al.,
1992).

Analytical approaches are very valuable to predict
aquifer responses in cases where underlying assump-
tions are met by the actual aquifer. Recent develop-
ments in analytical approaches to describe
concentration uncertainty e.g. Kabala and Sposito
(1994) and Dagan et al. (1996) show that their

applicability has been extended to conditions includ-
ing transient boundary conditions or rate limited sorp-
tion. Analytical approaches generally gain their
computational efficiency at the cost of various simpli-
fying assumptions, in particular with respect to the
variability of input variables. The significance of
their results may also be limited by the use of a
multi-Gaussian random function model for condi-
tional probabilities. In this paper the numerical
approach is selected because of its larger flexibility.

Setting up a numerical groundwater model requires
a spatial discretization of the model domain. Because
it is infeasible to process multimillion node grids
through a groundwater flow and transport simulator,
fine scale conductivity values have to be scaled up to a
coarser grid of blocks. Before scale-up the scale of the
measurement support and the scale that captures the
behavior of interest must be identified. Consideration
of the dimensions of the model domain and CPU
resources leads to the selection of the modeling
scale. We implicitly assume that relevant variations
of conductivity can be captured with a fine scale reso-
lution grid and that the flow and transport processes of
interest may be modeled with this detailed grid.

Wen and Gomez-Hernandez (1996) provide an
extensive overview and discussion of various scale-
up techniques. They distinguish among the local tech-
niques (e.g. geometric mean), the nonlocal techniques
that solve the groundwater flow equation at the
measurement scale, the block geometry methods,
where the grid for flow simulation is deformed to
account for subsurface structure and the direct block
conductivity generation. Recent applications of scale-
up in the context of groundwater modeling include the
work of Rautman and Robey (1992) at the Yucca
Mountain site, Nevada and of Follin and Thunvik
(1994) on the crystalline rock in Sweden. In general,
aquifer responses obtained from a scaled-up conduc-
tivity distribution are approximative since, with the
exception of elastic grid-based algorithms, high and
low conductivities are averaged out, which leads to a
poor representation of formerly connected extreme
values.

In this paper, we claim that uncertainty in aquifer
response cannot be directly determined from the
results of coarse scale flow modeling. Nevertheless,
the coarse scale response may rank the results at the
fine scale. For example, a realization that leads to a
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fast coarse scale response may also lead to a fast fine
scale response. A limited number of fine scale conduc-
tivity fields can then be selected according to their
coarse scale aquifer response. An alternative to this
procedure is to process a small number,n, of fine scale
realizations. The proposal amounts to using the avail-
able coarse scale information to select a better set ofn
realizations. Of course, there will be no benefit if the
coarse scale realizations do not “rank” the detailed
realizations.

Deutsch and Srinivasan (1996) investigate different
ranking techniques to choose low-side, expected and
high-side realizations for oil recovery and reservoir
management. They quantify the value of ranking
realizations in terms of expected loss. Gomez-
Hernandez and Carrera (1994) show the application
of the ranking principle with respect to uncertainty
analysis of the groundwater- modeling response.
They use the first-order approximation of piezometric
heads as a function of element-averaged log transmis-
sivities to derive the probability of extreme (large)
response values. Due to the first-order approximation,
this method is restricted to only moderately varying
transmissivity fields. In contrast, the method
presented in this paper is applied to a highly varying
conductivity distribution that is typical of many aqui-
fers.

2. Methodology

Given uncertainty in the spatial distribution of
subsurface hydraulic properties, we characterize the
aquifer response variabler as a random variable (RV)
R, the probability distribution of which characterizes
the uncertainty aboutr true, the unknown true value.
The conditional cumulative distribution function
(ccdf) is denoted:

F�r� � Prob{R # r u�all data�} �1�
Consider a domain of interest A. The distribution of
hydraulic propertiesz(u), u [ A; where z(u) is the
hydraulic property at locationu, can be modeled
with stochastic simulation. We construct alternative,
equally probable, realizations denoted by the super-
script l: { z�l��u�;u [ A} ; l � 1;…; L. Some large
number of realizations�L � 100� could then be
processed through a flow simulator to yield possibly

different flow responses,r �l�; l � 1;…;L: These
responses can be used to model the distributionF�r�:

An approximation to the distribution of the fine
scale aquifer response can be constructed with the
much faster coarse scale flow simulation:

Fcs�r� � Prob{Rcs # r u�all data�} �2�
The random variableRCS is not the same as the fine
scale flow responseR. In general, the coarse scale
distribution FCS�r� will not be the same asF(r)
obtained from the fine scale flow simulation. The
difference will be pronounced when the flow response
r depends on the fine scale details of the heteroge-
neous hydraulic property distribution.

We propose a measure of mismatch between the
reference distributionF(r) and our estimateFp�r�
(obtained from running a limited number of fine
scale realizations) so that the benefit of either running
more simulations or ranking the realizations can be
quantified:

D �
Zrmax

rmin

1 2
Fp�r�
F�r�

1 2 F�r�

���������
��������� dr �3�

rmax andrmin refer to the maximum and minimum flow
response, respectively, of each of the distributions
(i.e. reference or approximate) considered. By weight-
ing the discrepancy between the approximate and the
“true” cdf by 1=�F�r��1 2 F�r���, more emphasis is put
on the mismatch at the tails of the distribution to
better account for the relative importance of extreme
results. Eq. (3) will be used to assess the value of
ranking.

In detail, the procedure consists of the following
steps:

1. Generate a large number (L) of fine scale conduc-
tivity distributions.

2. Upscale all fine scale realizations to a coarse reso-
lution using an appropriate averaging method.
While the geometric mean modified by a term
accounting for the variance of conductivity is
used here (following Gelhar, 1993), the choice
of the appropriate averaging method may impact
the success of using coarse scale realizations to
mimic fine scale behavior.

3. Process all coarse conductivity distributions
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through a flow and transport simulator; for illus-
tration purposes, we also process the fine scale
realizations.

4. Rank the coarse scale aquifer responses (and their
associated realizations).

5. Divide the range of coarse scale results into a
number of classes.

6. Randomly sample within each class to obtain a
realization number.

7. Calculate the fine scale aquifer responses of the
selected realizations.

8. Construct an approximate cdf based on the fine
scale flow results and on the mean probabilities of
the respective classes.

9. Compute the mismatch between the approximate
and the true fine scale cdf.

To test the method, we additionally perform the
following:
10. Steps 6–9 are repeated 100 times to ensure repre-

sentative sampling within every stratum; the
mean of the mismatches is kept.

11. Repeat steps 5–9 for varying number of strata
(between 3 and 100).

3. Example

The hypothetical aquifer extends 192 m× 192 m in
the horizontal domain and 8 m in the vertical. It is
discretized by cubic elements with side lengths of 1 m
yielding a total of 294,912 elements and 335,241 nodes.
The statistics to characterize the conductivity field are
adopted to a large extent from the results of the aquifer
field study conducted at the Columbus Air Force Base,
Mississippi (Gelhar et al., 1992; Rehfeldt et al., 1992). In
this way, we ensure working with a heterogeneous
conductivity distribution. A mean hydraulic conductiv-
ity of k � 250 m d21 and a coefficient of variation of
three are used. A horizontal correlation lengthlh of 1=3
of the model domain and a ratio between horizontal and
vertical correlation length of 16:1 (Gelhar, 1993) are
chosen.
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Fig. 1. Normal scores semivariogram used to generate the 100 conductivity realizations.



The normal scores semivariogram modelg (h)
adopted to generate the conductivity fields is shown
in Fig. 1. The semivariogram has two nested spherical
variogram structures:

g�h� � 0:5Sph

������������������
h2

v

0:82 1
h2

h

12:82

s

1 0:5Sph

������������������
h2

v

4:02 1
h2

h

64:02

s
�4�

hv is the lag separation distance in the vertical direc-
tion andhh is the lag separation distance in the hori-
zontal direction. Sph(d) is the unit range spherical
variogram model (e.g. Deutsch and Journel, 1992).

A total of 100 conductivity fields are generated with
the sequential Gaussian simulation technique
(Deutsch and Journel, 1992). The conductivity distri-
butions of a layer and a vertical cross-section of one of
the realizations are shown in Fig. 2. For every fine
scale conductivity field, a medium case with 96×

H. Kupfersberger, C.V. Deutsch / Journal of Hydrology 223 (1999) 54–6558

0.10

1.2

2.3

3.4

4.5

5.5

6.6

7.7

8.8

9.9

11.0

0.10
   2.3
   4.5
   6.6
   8.8
   11.0
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displayed using a five-fold vertical exaggeration.



96× 4 elements and a coarse case with 48× 48× 2
elements is computed using the modified geometric
mean to up-scale the conductivities.

Groundwater flow and transport modeling is
performed using thefrac3d code (Therrien and

Sudicky, 1996) for every realization and each
level of discretization. Infrac3d the 3-D equa-
tions for variably saturated groundwater flow and
advective–dispersive solute transport in porous or
discretely fractured media can be optionally
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Fig. 3. Histograms of the time of exceeding the threshold of 10210 kg m23 for the first time (left side) and the time at which 50% of the input
mass has passed the outflow plane (right side) for fine (top), medium (middle) and coarse resolution (bottom).



solved with the finite element or the finite differ-
ence method.

Boundary conditions for the flow field consist of
prescribed heads at the inflow and outflow plane
with a piezometric head difference of 0.3 m. All
other boundaries of the hypothetical aquifer are set
to no-flow boundaries. With reference to the

Columbus aquifer (Gelhar et al., 1992), a spatially
uniform porosity of 0.35 is used. Transport of a
mass conservative pollutant is simulated assuming
an instantaneous release of 625,000 kg of mass at
locationx� 10 m; y� 96 m andz� 6 m:

The transport problem is dominated by advection,
which in turn is mainly determined by the distribution
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Fig. 5. Mismatch between the reference cdf obtained from all fine scale flow simulation results and their approximation using only a limited
number of detailed flow simulations selected according to coarse scale modeling results: (a) mismatch for the time at which any of the nodes in
the outflow plane exceeds the threshold of 10210 kg m23 for the first time; (b) mismatch for the time at which 50% of the input mass has passed
the outflow plane (dashed line represents the approximate cdf using a limited number of “true” fine scale simulation results).
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and possible connectivity of extreme conductivity
values. Two different responses are statistically
analyzed at the outflow plane of the hypothetical aqui-
fer:

• the first time any of the nodes exceeds a small
threshold concentration of 10210 kg m23;

• the time at which 50% of the input mass has passed
the outflow plane.

It is anticipated that the time of first exceedance gives
insight to the connectivity of high conductivities
(single best flowpath leading to early mass arrival)
whereas the measure of 50% of initial mass going
through gives a more “average” description of the
plume movement.

4. Results

Fig. 3 shows histograms of the time at which the
concentration at the outflow plane exceeds the thresh-
old value of 10210 kg m23 for the first time and of the
time at which 50% of the initial input mass has passed
the outflow plane for the three different resolutions of
the conductivity distribution. The fine scale case
�192× 192× 8� represents the reference against
which the results of the coarser resolutions are
compared.

The mean time for both measures slightly decreases
at the medium scale�96× 96× 4� but then signifi-
cantly increases at the coarse scale�48× 48× 2�. In
general, the results at the coarse scale seem to be
notably skewed to longer response times whereas
the results at the medium scale reproduce the distribu-
tion characteristics of the fine scale quite well. For the
50% cumulative mass measure the maximum value
consistently decreases with coarsening of the resolu-
tion (from 355.96 to 271.67 days). The variability of
both measures also decreases (coefficient of variabil-
ity decreases from 0.4 to 0.3 and from 0.42 to 0.32)
with coarsening of the discretization. This is due to
averaging out high conductivity values in the scale-up
leading to longer response times with less spread. Low
conductivities, of course, also become averaged out,
but do not significantly affect the distribution of the
results in this case.

In terms of scatter-plots, Fig. 4 shows the correla-
tion between the fine scale and the coarse scale results.

The larger mean response times of the coarse resolu-
tion are expressed by the majority of data points fall-
ing above the 458 line. For the medium resolution, a
strong correlation between the actual results (0.90 and
0.96) and the rank-order (both 0.94) can be seen for
both mass arrival measures; there is a high probability
that a realization which leads to a fast response at the
medium scale will also show a fast response at the fine
scale.

The rank correlations for the coarse resolution are
considerably smaller (0.75 and 0.82), mainly due to
some data points showing significantly different
values. For example, the same realization yields a
first exceedance time of about 16 days at the fine reso-
lution whereas the coarse resolution gives 38 days.
Although the overall trend is overestimation (longer
times) the reverse can also be found. For example, a
fine scale response of 45 days corresponds to only
24 days for the coarse resolution. In general, the
50% cumulative mass measure shows less deviation
from the reference results at coarser scales compared
to the time of first exceedance. For each combination
of scale and arrival time measure it can be seen that
the spread between fine and coarse scale results
increases with increasing response times. This beha-
vior is less pronounced at the 96× 96× 4 grid where
little variation is encountered, even for the tails of the
cdfs. Yet, the examples of the coarse resolution illus-
trate the need to run simulations at the fine scale to
verify consistency with coarse scale results and,
perhaps, obtain more reliable time estimates.

Fig. 5 shows the mismatch between the approxi-
mate cdf constructed from a limited number of fine
scale realizations and the reference cdf using all 100
fine scale results. Fig. 5a displays the mismatch for the
time at which the threshold concentration of
10210 kg m23 is exceeded for the first time at the
outflow plane and Fig. 5b displays the mismatch for
the time at which 50% of the input mass has passed
the outflow plane. In each figure, three curves are
given: the top curve represents the coarse case and
the center curve represents the medium case. For
reasons of comparisons, limited numbers of fine
scale realizations were also sampled from the “true”
cdf (dashed lines) and the mismatch between the
approximate and the complete reference scale was
computed. These results are shown in the bottom
curve.
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To explain how the mismatch values are obtained,
let us consider the case, where the approximate cdf is
constructed from five realizations selected from all the
first exceedance results at medium resolution. The
times are sorted from the fastest response at
8.71 days to the slowest response at 58.63 days and
divided into five classes each containing 20 values.
Within every class a realization which has been sorted
into this class is selected at random (the respective
realization numbers are 41, 73, 45, 15, 100). Now,
the approximate cdf is constructed from the fine
scale results of these realizations (11.96, 18.42,
21.61, 31.26, 37.52). The fine scale results are consid-
ered to represent the mean cdf-value of the corre-
sponding classes (0.1, 0.3, 0.5, 0.7, 0.9). Finally the
mismatch between the approximate and the reference
cdf is computed using Eq. (3). The described proce-
dure is repeated 100 times for each number of strata
and the arithmetic mean is retained. The number of
strata is varied between 3 and 100.

Fig. 5 shows that the mismatch decreases on
increasing the number of realizations. The mismatch
for both aquifer responses is similar. Obviously, the
mismatch becomes zero if all detailed flow simula-
tions are used. If the approximate cdf is constructed
from the “true” cdf (dashed lines) there is only little
improvement when more than 35 fine scale flow simu-
lations are used. For the medium and the coarse reso-
lution, the approximate and the reference cdf still
become closer as more realizations are used. The
steep decrease in mismatch within 10–15 detailed
realizations is slightly more pronounced for the 50%
mass measure (Fig. 5b) than for the first exceedance
measure, which corresponds to the higher correlation
values given in Fig. 4. These numbers indicate that the
approximate cdf of the first arrival measure is more
affected by the scale-up of the detailed conductivities
than the 50% mass measure.

5. Discussion

The coarse scale groundwater models yield inter-
pretable estimates with good rank-order correlation to
the fine scale model results. Yet, occasionally, differ-
ent response times for the same realization compared
to the reference values can be seen. The correlation
between fine and coarse scale modeling results

appears to depend on both, the degree of averaging
and the type of aquifer response analyzed. Typically,
we cannot expect coarse models, regardless of the
scale-up technique, to reproduce the results of fine
scale simulation. Groundwater modeling with coarse
grids may be biased, and in general, show too small
variability.

Processing fine scale realizations, selected accord-
ing to their coarse scale aquifer response, results in
reduced CPU time. The CPU requirements for the
three levels of discretization are about 10 min, 1 h
and 8 h (workstation with a RISC R5000 processor)
for the coarse, medium and fine cases, respectively.
Ranked coarse scale aquifer responses indicate which
fine scale realizations should be processed in order to
describe the uncertainty due to incomplete sampling.
In practice, we can process a large number of coarse
scale results and then process a limited number
through the detailed flow simulation; however, the
correlation between the coarse scale and the detailed
response will remain unknown. One simple approach
to tell if the ranking has been successful is to see
whether the results appear rank preserving. For exam-
ple, if the detailed response for the 20% coarse scale
quantile is greater than the detailed response for the
80% quantile, then the ranking has not been success-
ful. Ranking will help if the detailed response values
are rank preserving.

Even future increases in computing resources will
not make it feasible to process all fine scale realiza-
tions. Rather, it will lead to more fine scale represen-
tations of even larger model domains; the merit of
ranking techniques will remain valid.

In our case study, a particular technique of scale-up
in combination with two different types of aquifer
response was used to determine the merit of ranking
coarse scale realizations. One might argue that there is
a best scale-up technique for the conductivity distri-
bution of a given aquifer and the simulated aquifer
response. The scale-up of fine scale conductivities to
block values presumably has only little impact on
groundwater heads whereas the influence is likely
larger in dispersion dominated aquifers or in the
case where a cleanup time has to be predicted.
Sanchez-Villa et al. (1995) compare the three differ-
ent “practical” scale-up methods: a Darcian type
approach, power averaging and defining block
conductivities as the ratio of average flux to average
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gradient. They conclude that all the methods yield
similar results. Gomez-Hernandez and Wen (1994)
suggest that the simple geometric average performs
as good as the more sophisticated scale-up techniques,
if the conductivity distribution is not dominated by
streaks of high or low values. Warren and Price
(1961) and Bouwer (1969) conclude that the
geometric average yields a reasonable estimate of
block conductivities for 3-D flow.

6. Summary and conclusions

There is a unique heterogeneous distribution of
rock properties in each aquifer; however, there is
unavoidable uncertainty due to data paucity. Geosta-
tistical techniques are being increasingly used to
create fine scale stochastic numerical models that
mimic the heterogeneous features of real aquifers.
The uncertainty in aquifer response due to incomplete
sampling is quantified by processing a large number
of realizations through flow and transport simulators.

Computer resources restrict the number of fine
scale realizations that can be processed. Thus, we
propose coarse scale groundwater flow and transport
simulation with all realizations followed by a fine
scale simulation on a number of realizations selected
according to their ranks. The value of ranking is
assessed by computing the mismatch between the
“true” cdf and the cdf approximated by the fine
scale aquifer responses of the selected realizations.
Constructing a high resolution hypothetical aquifer
based on variogram statistics that were derived for
the Columbus aquifer, Mississippi, two aquifer
responses are analyzed at the outflow plane: the first
time at which a small threshold concentration is
exceeded and the time at which 50% of the initial
mass has passed. For scale-up ratios of 8 and 64,
rank correlation coefficients between the coarse and
the fine resolution results, range from 0.75 to 0.94 for
the two different aquifer responses. In general, the
50% mass measure leads to a better representation
of the “true” cdf than the first arrival measure.
Because the results of coarse scale simulations are
only approximate, it will, however, still be necessary
to run a number of fine scale simulations to confirm
consistency with coarse scale results.
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