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Reliable numerical geological models must honor all available information, including complex non-linear
geologic features and flow-related measurements. Simulated annealing (SA) has seen increasing application
in the integration of such complex data in geostatistical models. Nevertheless, the delicate adjustment of the
annealing schedule and excessive CPU requirements continue to limit the application of SA in geostatistics
Most difficulties with SA are linked to the specification of how to reduce the temperature control parameler
during the SA procedure. Convergence, or a reasonable numerical model, may not be obtained when the
temperature is lowered too quickly. A slow reduction of temperature leads to excessive CPU time. From
thermodynamics and observation, we know that there exists a critical temperature. Convergence is assured
when the temperature is lowered quickly until the critical temperature, held at the critical temperature for
some time, and then lowered quickly again. Knowledge of the “critical temperature™ permits robust and fast
application of annealing. We present a method for the fast determination of the critical temperature for
geostatistical applications. A fast SA run is made where the temperature is lowered very quickly, the
specific heat is calculated for all temperatures, that is, the derivative of energy with respect 1o temperaturg;

the specific heat reaches a maximum at the critical temperature. We demonstrate the vse of the eritic

temperature for faster geostatistical modeling.
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The objective function (0) measures the energy of the matrix: the mismatch between some user defined
mathematical function and the state of the matrix. For example, the objective function could measure the
mismatch between variogram of the conditioning data and the variogram of the matrix. Optimality is reached
when the objective function is minimized. There are sufficient degrees of freedom in most SA problems to
permil the objective function to reduce to zero, Moreover, in geostatistical applications of SA, the solution is

non-unique. Different solutions are considered a space of uncertainty.

SA successively perturbs the matrix nodes to achieve a matrix with optimal properties. [If a perturbation
decreases the objective function (0., < 0,) the perturbation is accepted. If a perturbation increases O (0,

> 0,) it is accepted or rejected based on the Boltzmann distribution, see Figure 1 and Equation (1).
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Figure |: The probability of accepting a perturbation is 1.0 when the perturbation decreases the global energy and <1
when the perturbation increases the globul energy. Note that the probability of acceptance for perturbations that increase
the global energy decreases with temperature.

Application of SA in combinatorial optimization was developed by Kirkpatrick et al. 1983 and independently
by Cerny, 1985. Other research followed in a variety of different disciplines but application of SA for use in
geology was pioneered by C.L. Farmer, 1992 who used SA to generate rock type models. SA has shown
significant promise but little practical application in geostatistics. The promise of SA has not been realized
because of the difficulty in setting the temperature reduction schedule and by excessive CPU requirements,
Theoretical knowledge of acceptance/rejection of molecular movement has been used in SA, but other
theoretical thermodynamic relations have not been exploited. We attempt to make better use of this
knowledge.
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ANNEALING SCHEDULE
The temperature reduction schedule, also known as the annealing schedule, consists of three stages: ha
heating stage, (2) a heat soaking stage, (3) and a cooling stage. The idea is to heat the matrix until very
“hot.” that is. virtually all perturbations are accepted, and cool in a manner that achieves a minimum (o low)
objective function with acceptable CPU time. Aggressive reduction of temperature will often lead 108

matrix frozen in a suboptimal state.

Certain annealing schedules can be shown to converge (see Geman and Geman, 1984 for proof), but they.
prohibitively slow in practice. Often. an empirical scheme is adopted, that is, the temperature starts at a
initial temperature T, and is lowered by some reduction factor » whenever enough perturbations have
accepted K, or 100 many have been tried K, for any one temperature, and stops when the convi
criteria (O,) has been met or when the algorithm has attempted too many perturbations with no chan;

the objective function ( Ky 8 ).

THE CRITICAL TEMPERATURE
The critical temperature 7% is the temperature at which a material undergoes a phase change in (e
annealing and the temperature at which the rate of convergence is fastest in simulated annealing, Basu an
Fraser. 1990, Farmer. 1992, Rothman, 1985 and others express the importance of the knowledge of ihe
critical temperature when devising an annealing schedule.  Knowledge of the critical temperature would
improve efficiency and speed of SA. The temperature may be lowered very quickly to 7%, held at 7% for
some time, and then lowered quickly again. In fact, Rothman suggests simply setting the temperature
below T for the entire time. Convergence is observed by a low final objective function. .

Determination of the critical temperature requires calculation of the thermodynamic property krown &
specific heat, defined as the derivative of energy with respect to temperature:

C(T)= g—i where E=E -E, ..

The critical temperature 7* is at a maximum in specific heat. Analytical determination of 7* would
more CPU effort than we are trying to save: however, we show that it may be determined qumkly

numerical means.

PROPOSED METHOD
The SA problem is first run using a fast annealing schedule. There are i=/.....n steps in this fast run. The

specific heat is calculated at each step i using:

aﬁ p= E{—l 5 Ell
aT- lTJ—l —T,|
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Where = E/s T is specific heat, E, , is the average energy over temperature 77, E, is the average energy over
temperature T,

The specific heat is plotted against the temperatare. The maximum specific heat is at the critical temperature
T*. The maximum could be detected automatically. We show this plot for many different cases later.

The critical temperature 7* depends on many factors including the number of nodes in the mode! and the
details of the objective function. The dependency of T* on some factors will be demonstrated later in this
paper: however, we propose that 7* be determined separately for each problem. The two-step procedure is
10(1) determine 7* by a fast run and visual inspection of a plot, and (2) fix annealing schedule to account for
T*%. This will have to be repeated for each problem.

A number of schemes could be considered to use T* in the annealing schedule. Rothman, 1985 suggests that
the temperature be held just below the 7* for the entire duration of the annealing run. We considered this
option and others including a three part annealing schedule where an initial high temperature is lowered by 4
fust rate A, until 7%, the rate is reduced near 7* until for some time, and finally the temperature is lowered
quickly again to reduce the objective function as low as possible.

In conclusion, we recommend that the initial temperature be set 1o 7* and the temperature lowered with the
same empirical scheme initially proposed by Kirkpatrick, 1983. The reduction factor should be set to about
0.5, which is higher than would normally be used; however, 7* is already significantly lower than the default
starting temperature. We investigate the robustness of this scheme to imprecise 7% values, see below.

IMPLEMENTATION
The proposed methodology for determining 7% was implemented using sasim, a simulated annealing
program available in GSLIB. The cluster.dat data set from GSLIB was used. A location map, target

histogram, and target variogram are shown in Figure 2. The modeled variogram has a 20% nugget effect and
spherical type structure with an isotropic range of 15 nodes.
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Figure 2: A location map, histogram, and variogram of the data set used in the paper.
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A fast run using sasim and the default-annealing schedule took approximately 11 seconds on a Pentium i
350. The output from sasim was post-processed and plotted in Figure 3. The initial temperature 7y is 10
and the final temperature is approximately 1x10°. The critical temperature occurs when the specific heat

peaks, that is, at a temperature of approximately 0.0007.
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Figure 3: Post-processed sasim results from one realization. The peak indicates 7. T, the initial temperature occursal
0.1, and Ty the temperature where the algorithm stopped oceurs at 1x 10",

The annealing schedule in sasim was modified to use 7% as the initial temperature (as described abovel
Figure 4 shows that there is a significant reduction in the number of perturbations before convergence whe
one exploits T*, The CPU time is reduced from about 4 minutes to about 1 %2 minutes on a PC. We seca
3:1 improvement for relatively small grid networks (1000s of nodes). This ratio improves to 5:1 as the gid

size increases to more than a million grid nodes.
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Figure 4: A chart comparing the number of perturbations required using an annealing schedule exploiting 1* ad
without exploiting T*. There is a significant reduction in the number of required perturbations for optimization whei!
T*is used in the anncaling schedule.
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Dependence on «

The eritical temperature is determined by a “fast” annealing run. We should be concerned about T* being
sensitive to the cooling rate used in the fast run. Figure 5 shows T* for reduction rates ranging from 0.1 1o
0.9 in increments of 0.1. 7* consistently appears at T=0.0007 for each reduction rate, indicating that T™*is

robust with respect to the cooling rate used (o determine it.
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Figure 5: A specific heat versus temperature plot using 9 different reduction factors. The reduction factor has no effect
on 7,

Dependence on the Random Number Seed

The order of visiting the grid nodes and the drawing from the Boltzmann distribution is random. We should
be concerned about sensitivity to the sequence of random numbers. A number of different random number
seeds were tried and there was no change in 7%,

Dependence on the Grid Size

T changes as the objective function and the SA problem formulation. For example, we see a different 7%
for different grid sizes, even if the objective function remains the same. Figure 5 shows that T* occurs at a
higher temperature for a small matrix than for a large matrix. The results are consistent, but not predictable

a-priori; hence, our proposal of calibrati ng T'* for each problem.
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Figure 5: T*is dependent on the grid size. The graph shows that for each grid size T* occursat a different temperture
Large grid sizes have low T* compared to small grids.

Dependence on the Histogram and the Variogram

Straightforward applications of simulated annealing include both the histogram and variogram
objective function, 7* will depend on the details of the histogram and the variogram. Of course, T
depend on any other components added to the objective function.

Figure 6 shows two histograms with different variance. The same conditioning data and the same | '
are considered for SA. Figure 7 shows the specific heat plots for each histogram. The dasl
corresponds to the low variance histogram to the right. Note that T* is greater for this low |

histogram.
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Figure 6: Two different histograms to show that 7* is dependent on the histogram.
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Figure 7: The specific heat plot for the two histograms in Figure 6. The dashed line is for the low variance distribution
on the right of Figure 6.

LIMITATIONS AND FUTURE WORK
This paper has considered T* as applied to simulated annealing for geostatistical applications. There are
other thermodynamic principles that could contribute to enhancing the speed of SA. The robustness of the

results (convergence and CPU speed) with respect to imprecise knowledge of T# has not been investigated.

CONCLUSIONS

The application of SA to generate numerical geological models has not gained wide popularity due to the
relative difficulty in setting the annealing schedule. The setup of other simulation algorithms such as
Gaussian or indicator methods is comparatively straightforward, We present a fast method for determining
T'*, which simplifies the annealing schedule and improves CPU speed. . We show that T* depends on the
grid size, the histogram, and the variogram. Although 7* depends on the problem formulation it is
insensitive to the details of how we obtain it, that is, it is independent of the reduction factor and the random
number seed. The proposed method reduces the complexity associated with devising an annealing schedule

and reduces the required number of perturbations for convergence.

REFERENCES

A. Basu and L. N. Frazer. Rapid determination of the critical temperature in simulated annealing inversion.
Science, 249:1409--1412, September 1990).

C.V. Deutsch, Annealing Techniques Applied to Reservoir Modeling and the Integration of Geological and
Engineering (Well Test) Data. Ph.D. Thesis, Stanford University, Stanford. CA,1992.

C. V. Deutsch and P. W, Cockerham. Practical considerations in the application of simulated annealing to
stochastic simularion. Mathematical Geology, 26(1):67-82, 1994,

C. V. Deutsch and A. G. Journel. The application of simulated annealing to stochastic reservoir modeling. In
Report 4, Stanford Center for Reservoir Forecasting, Stanford, CA, May 1991.

C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User's Guide. Oxford
University Press, New York, 2nd edition, 1998,

C. L. Farmer. Numerical rocks. In P. R. King, editor, The Mathematical Generation of Reservoir Geology,
Oxford, 1992, Clarendon Press. (Proceedings of a conference held at Robinson College, Cambridge,
1989).



262

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of in

S.

. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state calculations ,'."

. ¥ Cemy. Thermodynamical approach to the travelling salesman problem: an efficient simulas

K. NORRENAE

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI6(6) :721--741, November

Kirkpatrick, C. D. Gelau Jr, and M. P. Vecchi. Optimization by simulated annealing. Scieng
220(4598):67 1--680, May 1983,

computing machines. 1. Chem. Phys., 21(6):1087-1092, June 1953,

. H. Rothman. Nenlinear inversion, statistical mechanics, and residual statics estimation. Geophyi

50:2784--2796, 1985,

algorithm. Journal of Optimization Theory and Applications, 45:41--51, 1985.




