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GEOSTATISTICAL MODELING OF MULTIPLE VARIABLES IN PRESENCE OF
COMPLEX TRENDS AND MINERALOGICAL CONSTRAINTS
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Detailed models of mineral grades are critical to mine planning, that is, estimation of recoverable
reserves, production scheduling, and assessment of blending requirements. Geostatistical simulation
is being used increasingly to create such models. The tendency toward simulation may be attributed
to two significant advantages. Firstly, simulated realizations reproduce the correct patterns of
variability, that is, the histograms, scatterplots, and variograms of the mineral grades. Secondly.

multiple realizations may be created to provide a measure of uncertainty.

Notwithstanding recent advances in simulation methodology, there remain practical issues that must
be addressed: we discuss some in this paper. The spatial distribution of mineral grades is partly
deterministic (vertical or areal trends) and partly stochastic. Trends must be entered explicitly in
geostatistical simulation; otherwise, they will not be captured in the final models. The stochastic, or
more random, component of the grade variation is suited to simulation. There may exist. however,
local variations in the nature of the randomness. For example, the correlation between multiple
variables may change in a predictable manner. We demonstrate how such complex trends may be

used in geostatistical modeling, in particular, in Gaussian simulation.

Data from a nickel laterite deposit are used for illustration. We demonstrate the geostatistical
modeling procedure to create realizations of nickel, iron, magnesia and silica with the correct patterns
of spatial variability. The data exhibit clear vertical trends due to weathering, areal trends, vertically

varying correlation between the grades, and mineralogical constraints on the grades.

INTRODUCTION

Procedures to construct geostatistical models of mineral deposits are changing. Historically, ordinary
kriging (OK) was used extensively. Recently, conditional simulation methods are gaining popularity
since they (1) avoid the smoothing or “information effect” of kriging, (2) provide an unbiased
estimate of recoverable reserves, (3) permit an assessment of uncertainty, and (4) make it possible to
build models of multiple variables with the correct relationships between the variables. Kriging is
still used at the heart of conditional simulation methods to construct the needed distributions of
uncertainty. Nevertheless, experience gained in application of kriging methods is not directly
transferable to simulation. This is particularly true when considering trends. OK within restricted
search neighborhoods is remarkably robust at capturing trends and other local variations in the

mineral grades: however, the use of OK in simulation is not as robust because of a greater reliance on
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the kriging variance and, implicitly, on the decision of stationarity. The books by Journel und
Huijbregts, 1978, Isaaks and Srivastava, 1987, and Goovaerts, 1997 provide good background

references.

For simulation purposes, trends in average grades are commonly dealt with by deterministic modeling
of locally varying trends followed by stochastic simulation of residuals of the trend. Real simulated
values are obtained by adding trend back to the simulated residuals. On the other hand, trends in
variance or covariance relationships can be handled by allowing local adjustment of specific

parameters in the simulation algorithm.

Correlations between multiple variables are affected by physical constraints. Some variables show
negative correlation because they compete for space within the constant mass. In a similar way,
constraints are present due to mineralogical relations and geochemical transformations. Where
possible, these relationships should be imposed explicitly on geostatistical models by transforming the
original variables into multivariate re-expression variables (Aitchison 1982: Butler. 1981: Mosteller
and Tukey, 1977; Rosenblatt, 1952). Such re-expression is uncommon in current geostatistical

practice; we show an example with a Nickel laterite deposit.

Nickel laterite deposits are formed by sub-surface weathering and, as a result, show characteristic
vertical trends in grades and mineralogy. Models that honor average grades, variability, trends and
the multivariate relationships, are necessary for assessing required blending strategies for 4
pyrometallurgical process. The case study example shows how such characteristics can be reproduced

using simulation methods.

RE-EXPRESSION OF VARIABLES FOR MINERALOGICAL CONSTRAINTS

The first important step in geostatistical modeling is to establish the correct “variable” to model. In
many cases the choice of variables is evident; however, mineralogical constraints require that original
data variables be re-expressed or transformed. For example, there is often a sum constraint, that is,
the grades may not sum to more than 100%. Moreover, there may be ratio constraints, that is, the

ratio of certain minerals may not exceed a certain value for stoichiometric reasons.

The constant-sum constraint becomes important when the chemical assays constitute a “whole rock
analysis”™ or the assays sum to a substantial proportion of the total rock mass. In such a case, certain

variables compete for space within the rock mass inducing negative correlations.

Mineralogical constraints are induced when the variables are present in specific minerals. Consider
for example a rock containing two mineral species (X):Y and XY where the constituents X and Y are
assumed 1o have identical atomic masses. Assays are performed for variables X and Y. A sample
containing the mineral (X),Y will have a X to Y ratio of 2. A sample containing the mineral XY will
have a ratio of 1. It follows therefore that any rock containing a mixture of minerals XY and (X)Y

will have ratios of X to Y constrained between | and 2.
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To illustrate the modeling of such multivariate constraints we will consider an example shown in
Luster, 1985. This example shows an interesting link to real mineralogy. In practice, as in the case
study described later on, the actual mineralogical constraints may not be known, however the
relationships can be deduced from scatterplots. In Luster's example, analyses for MgCO; and CaCO;
are required for limestone quality control; the only two mineral species which contain these
compounds being dolomite (CaMg(COs),) and calcite (CaCOs). By stoichiometric calculation it can
be shown that a rock composed entirely of dolomite contains 46% MgCO, and 54% CaCO;. It
follows that for a limestone composed of dolomite plus some calcite, the %MgCO; will be less than
46%. These constraints are illustrated on Figure 1, below, and can be represented by the following
expressions.

0% < CaCO3+MgCO: < 100% and 0% < MgCO/(MgCO+CaC0;4)<0.46
The original variables are therefore re-expressed as the following two nested variables:

Uj= CaCO3+MgCO; and U; = MgCO/(MgCO;+CaCOx) = MgCO/U,
CaCO: and MgCO; contents are caleulated from U, and Us by inverting the above expressions:
MgCO'j = U}U; and CaCO3 = U| - MgCO;

From Figure 1 it can be seen that sum variable U,

is plotted on the x-axis and is constrained by the
maximum of 100%. U, is the gradient of a line
passing through the origin. Note that all data fall
below the constraint line with gradient 0.46.
Imprecision of the analyses or erroneous data
may cause some data to plot outside the constraint
boundaries.

There are a number of alternative nested re-

CaC0,+MgCO,

expressions that can be devised to deal with more
Figure 1:  The relationship between the re-
expressions, U and Us, and the original CaCO; and
MgCO; contents,

than two variables. We encounter this below.

The re-expressed variables may be simulated with
a variety of geostatistical algorithms, A straightforward alternative consists of (1) normal score
transformation, (2) sequential gaussian co-simulation, and (3) back transformation. A warning: some
of the “U" re-expression variables are non-linear transforms of the original variables: therefore, a hias
will be introduced if U-averages are directly back transformed. This is not a problem in simulation
because the full variability is preserved.
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TRENDS IN THE MEAN

Perhaps the most important step in geostatistics is ensuring that the variable being modeled is
stationary over the study area. Geologic modelers typically adopt one of two attitudes toward
stationarity: (1) any decision of stationarity is unacceptable because the variation patterns are 100
complex for statistical modeling, or (2) group the data by major rock type and let local variation
patterns be controlled by the data themselves. Both views have validity, but may be too extreme.
There are complex patterns of variation that are important and yet the data must be grouped together

somehow to proceed with any numerical modeling.

A practical approach is to group the data together by major rock types and yet explicitly model
deterministic trends within each rock type. The Z-grade variable is split into a mean or trend
component m and a stochastic residual component R, that is, at every location u: Z(u) = mfu) +
Rfu). The locally varying mean m(u) captures our geologic understanding of trends, which are no
more than departures from stationarity. We show later an example of a clear vertical trend due to
surface weathering: the grades decrease with depth. In areas of less data, simulation would not honor

this trend without our explicit modeling.

Clearly, we should not overdo trend modeling. Our understanding of the mean m(u) changes with the
amount of data we have and can be made more precise with many data. The scale of the mean
variations we consider should be significantly larger than the data spacing. Explicit accounting of
variations at smaller scale is unjustified. Practical implementation and cross validation may be of

assistance in determining the correct decomposition of the grades into mean and residual.

TRENDS IN THE VARIANCE AND COVARIANCE

In addition to trends in the mean values, the variability or covariance relationships between multiple

variables are also locally variable.

Many earth science phenomena exhibit what is commonly termed as the “proportional effect.” that is,
local variability is correlated with the local average. Although normal-score transformation often
mitigates the proportional effect, the variability remains greater in high grade areas and lesser in low
grade areas. Trends can become even more complicated when dealing with multiple variables. In
such cases, it is likely that correlation characteristics also show trends, The most common of these
trends is related to the proportional effect. Areas showing lower grades and variability also tend o

exhibit lower correlation coefficients.

In some cases, not only will the intensity of correlation show trends, but the nature (or sign) of
correlation may also change. Such cases are usually indicative of different populations and a
geological explanation should be sought. We may be able to separate the study area into different
populations; however, a gradual change in the correlation coefficient is more difficult to handle. The

nickel laterite case study described later shows such a trend.
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Local variations in correlation could be handled by separating into different units; however, there may
then be too few data for reliable statistical inference. In addition, hard boundary zoning would lead to
unrealistic artifacts, Transitional boundaries could be modeled by considering correlations between
adjacent units and simulating each unit, correlated to the adjacent unit, in a sequential fashion. The
simulation procedure becomes complex: we have to consider the multivariate correlations within each
individual unit and cross-correlations between adjacent units. A straightforward alternative is to make
parameters locally variable in simulation program.

SIMULATION WITH TRENDS

Sequential Gaussian simulation is a popular geostatistical simulation algorithm. A detailed
description and program can be found in GSLIB (Deutsch and Journel, 1997). The procedure consists
of sequentially visiting all grid nodes. A (co) kriging is performed at cach grid node to define the
normal distribution(s) of uncertainty. Simulated values are obtained by Monte Carlo simulation from
the normal distribution(s). A full “linear model of coregionization™ or a simplified Markov model of
coregionization may be used for cokriging. Increasingly, the simpler Markoy model or collocated
cokriging is being used.

Trends in the mean may be handled by working with residuals from locally variable mean values.
Trends in variance and covariance are imposed by locally varying variances and correlations in the
simulation process. Variance correction factors are applied to tighten the conditional distributions in
areas showing low variability and expand the distributions in areas of high variability. The use of
variance reduction factors is equivalent to scaling the variogram sill. In a similar way, whilst using
the collocated simulation approach, the correlation coefficient can be made locally variable, which is

equivalent to scaling the cross-variogram sill.

In carrying out cosimulation exercises one should bear in mind that normal-score transformation of
residual data variables does not guarantee that the resulting multivariate distribution will be normal,
Bivariate normality is indicated by a scatterplot with elliptical Gaussian contours, Departure from
multivariate normality leads to artifacts such as distortions of the univariate distributions. Luster
(1985) describes checks for multivariate normality.

CASE STUDY ON A NICKEL LATERITE DEPOSIT

Nickel laterite deposits form by surface weathering and leaching processes in tropical and sub-tropical
climates, These phenomena have created three main mineralized units in the case study, which can be
pictured on the cross section in Figure 2. Typical vertical trends in nickel and iron grades are also
shown. The study area, containing a fairly regular drill hole spacing of 25x50 meters is shown in
Figure 3. Drilling in this area aimed at intersecting the whole of the laterite and saprolite units, which
generally does not reach more than 30 meters below the surface,
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Typical cross section
J00m

Laterite E=——1

Saprolite

Fresh Rock

Vertical Grade profiles

Figure 2: Typical cross section and example vertical
grade profiles, The grades of iron and nickel decrease  Figure 3; Topographic map of the study area
with depth through the saprolite. with the drillhole locations
The unweathered fresh rock at the base has a dunitic to peridotitic composition, of which the principal
constituents are approximately 40% SiO,, 35% MgO and 8% Fe. Note that these constituents may be
present in more than one mineral. Nickel grades in this unit are sub-economic. The laterite unit 15
characterized by Fe enrichment (>30%) and Si0; and MgO depletion (generally both < 10%). The
highest Ni grades are encountered within the saprolite zone, which shows compositions between fresh

rock and laterite.

Nickel will be recovered from the higher grade saprolite unit by a direct smelting process, which is
sensitive to the composition of the feed material, particularly Fe content and the SiO:/MgO ratio.
These issues impose a need for blending of the ore prior to smelting. Simulating the spatial
multivariate relationships between Fe, Si0;, MgO and Ni is required as a first step in determining the
appropriate blending strategy for the plant. It is essential that the simulated realizations honor vertical

and areal trends in grades and correlation characteristics between them.

Whole rock chemical assays of drill hole cuttings include analyses for %Ni, %Fe, %MgO and %S0,
Histograms and correlation plots included in Figure 4 summarize the multivariate statistics for Ni, Fe,
Si0; and MgO within the saprolite unit. The scatterplots between Ni and the other variables suggest
the presence of two populations, This is most likely a geological distinction that can be attributed o
transitions of the saprolite unit with the overlying laterite unit. Some consideration will be given to
this in the stochastic simulation exercises. The scatterplots between Fe, Si0, and MgO show strong
correlations, and characteristics that suggest mineralogical constraints, It should also be noted that the

sum of Si0; + MgO + Fe amounts to approximately 80% of the total rock mass.
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The correlation plots shown on Figures 4 suggest mineralogical transformations that involve Fe, Si0,

and MgO. The following re-expression variables were considered:

U, = Fe + 8i0; + MgO

U; = (Si0: + MgO)/(Fe+Si0:+Mg0) = (SiO: + MgO)/U,

Us = MgO/(810:+Mg0) = %MgO/(U,.Uy)
Back transformation to the original variables can be performed stepwise:

1. MgO=U;UsUs

ol Sio: = Uj.U: = MgO

3. Fe=l,-MgO-Si0,
This simple approach is considered adequate. More appropriate re-expressions may be possible with
a better understanding of the rock mineralogy and geochemical transformations. The correlation

characteristics seen on Figure 4 are reproduced by subsequent simulation.

Correlation: U 1 .Uz.U_q

o
b
u!‘f
mU Uy
U U |»ue

UL U,

Figure 5: vertical trends in mean value and correlation.  Solid lines are mean values and dashed lines are
standard deviations. From left to right: (a) nickel, (b) Uy, (¢) Uy, (d) Uy, and the correlation between U, & Uy
U & Uy and Us & U, Note how the correlation decreases with depth below the Saprolite interface.

Surface weathering processes have resulted in strong vertical trends in all the variables under
consideration. The drill hole elevations were referenced to the top of the saprolite unit. Average
values for Ni and the re-expression variables Uy, U; and Uy, were calculated for 2 meter vertical slices
from the top of the saprolite unit and these were used to construct a model of the vertical trend. The
trend profiles are shown in Figure 5. The conditional expectations were “smooth” enough to be used
directly. The Ni grades show clear differences within two areal zones. Residual variables for Ni, Uy,
Us and U; were calculated by subtracting the trend components from the original data values. The
residuals have a stationary mean of zero. The trend component explains about 40% of the total grade

variability.
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The transformation of the grades and removal of trends does 16 Sdeion LNl
not remove local variations in the variance and correlation e
coefficients, These local variations will be accounted for in edoaond

the simulation process. The vertical trends in correlation

coefficients and residual variances were handled in a

modified sgsim program (Deutsch and Journel. 1997) by
allowing user defined variance factors and correlation
coefficients for specified depth intervals, Simulation of the
residual variables, RNi, RU;, RU, & RU; was carried out in a
stepwise fashion using only bivariate correlation models. In
other words, simulation for RNi was carried out first,

followed by a RU; simulation correlated to the RNi

realization, then RU; correlated to the RU, simulation and
finally the RU; simulation based on the RUs realization,
Some iterations were needed to fine tune the variance factors
and correlation coefficients to accurately reproduce the data
characteristics. Real data values were calculated by adding

back spatially varying trend components to the simulated

residuals.  Simulated values for Fe, MgO and SiOs were Al

obtained from the back transformation of variables U;, U, Figure 6; Scatterplots of simulated
(HMgO vs Fe (2) MgO vs 810 (3)

and U, as shown above. The simulated realization matches  Si0, vs Fe

very well all tends and multivariate

constraints.  This is shown by the Ni m

scatterplots in Figure 6, which should

be compared to the data scatterplots in Fe W
Figure 4, while a cross section of the = : .

simulation is in Figure 7. However, the sio, g ' i
histograms for simulated Fe, SiO; and

MgO suffer some distortion due to the Mgom_ -

assumption of multivariate gaussianity,

This problem could be resolved by A50pstees .

modeling, {1 ive, § - . . ' e
g, & i akekian Lraied Figure 7:  Cross section example showing simulated Ni, Fe,
bivariate gaussian re-expressions  Si0; and MgO realization

obtained from a “stepwise-conditional transform™ described by Rosenblait (1952), An additional

problem arises from the independent modeling of trend and residuals, which leads to a small

percentage of values that need 1o be corrected to the data minimum and maximum values.
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CONCLUSIONS

This paper shows some of the tradecraft necessary to obtain reliable models. Simulation relies more
on our decision of stationarity than the historic workhorse of geostatistics: ordinary kriging, Working
with residuals from a trend model and considering locally varying variance and correlation
coefficients allow creation of complex, yet realistic, orebody models. Mineralogical constraints are
handled by data variable re-expression. In essense, re-expression amounts to converting a bivariate
constraint into a univariate constraint. Honoring the histograms of the re-expressed variables ensures
that the bivariate constraint is reproduced. Normal-score transformation of the re-expressed variables
adds little complexity; the transformations must be reversed in the correct order. These two important
ideas have been demonstrated with data from a Nickel Laterite deposit. Reliable models could not
have been obtained without (1) complex trend modeling, and (2) accounting for mineralogical

constraints through data re-expression.
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