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Abstract

An important problem in mine operations is the classifica-
tion of material as waste, low-grade stockpile and ore. This
classification must often be made with blasthole data thar are
widely spaced and that have sampling errors. Geostatistical-
simulation techniques combined with basic economic prin-
ciples allow a procedure for classification that maximizes the
expected profit. Geostatistical-simulation methods (Gaussian,
indicator or annealing-based) allow the integration of hard
and soft data in the creation of alternative, equally probable
realizations of the mineral grades, At each location, for each
realization one calculares the “profit” if the block were to be
classified as ore or waste. The optimal classification is the
one that maximizes expected profit (a maximum profit selec-
tion or MPS procedure). In this paper, the authors discuss the
theoretical justification of the method and implementation
details. The use of blasthole data from different types of
mineral deposits, that is, different levels of continuiry, are
considered. The authors also show the efficacy of the proce-
dure with different levels of sampling error. The increased
revenue due to the MPS procedure and improved sampling is
shown. The paper shows the geostatistical-simulation proce-
dure and the uncertainty in block grades that result from
incomplete and imperfect sampling. The optimal classifica-
tion is presented. Optimal block classifications are trans-
ferred 1o realizable dig limits by hand-drawing polygonal
boundaries. The results of the proposed method are com-
pared to classification based on kriging. Limitations and
areas of future work are identified.

Introduction

Some orebodies are mined by visible differences to delin-
eate between ore and waste. Other orebodies are very continu-
ous and grade control amounts to delineating the ore/waste
contact and providing a reasonable estimate of the ore grade
for accounting purposes. Such cases are not considered in this
paper. This paper is concerned with erratic orebodies that
must be mined to a grade cutoff. There are concerns with
blasthole sampling, reliable prediction of block grades, prac-
tical dig limits and internal dilution.

An important decision at the time of mining is to determine
what materials to take to the mill, waste dump and low-grade
stockpiles. This decision must be made with no access to the

true grades; widely spaced and notoriously imprecise blasthole
samples must be used. Moreover, the ultimate classification
must be made for reasonably sized mining blocks that must
ultimately fall within contiguous dig limits.

The classical approach to grade control is to hand contour
the blasthole grades and smooth the limits, accounting for
practical constraints imposed by the mining equipment. Al-
though very attractive due to simplicity, there are often a
number of problems with this classical approach, such as:

= errors in individual blasthole samples are not accounted
for, that is, the limits “too closely” follow high-grade
samples;

¢ it is difficult to account for exploration drilling and
blastholes from the bench above; and

+ there is neither an objective measure of optimality nor
a repeatable procedure.

As alluded to above, geological rock types and visible ore/
waste contacts must be taken into account. This should not be
forgotten in the following *“geostatistical™ discussion. Most
orebodies permit some grade control from geological inter-
pretation. In practice, the geostatistical grade prediction should
consider the geological rock types and all available informa-
tion derived from actual grade assays of different types and
interpretive geological information.

The first, most obvious extension to the classical hand-
contouring approach to grade control is to consider some form
of smooth interpolation, such as a moving window average,
inverse distance or kriging. The estimates are then mapped
and practical dig limits are established, usually by hand. These
estimation methods have the advantage of providing a single
“optimal™ prediction that is easy to use with a predefined
cutoff grade for ore/waste classification. There are limitations
with such estimation methods:

+ the “smoothing™ effect of kriging and linear interpola-
tors in general lead to conditional bias, that is, overes-
timation of low grades and underestimation of high
grades; and

* there is no ability to account for uncertainty in the block
estimates, in particular, the risk of discarding ore or
processing waste.
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Notwithstanding these limitations, kriging followed by hand
contouring for the dig limits is common practice in grade
control.

The classic references by David (1977) and Journel and
Huijbregts (1978) discuss the application of kriging in mining
engineering. There are many other case studies that use
kriging for grade control and ore reserves, e.g., the papers by
Raymond (1979), Westley (1986) and Davis et al. (1989). As
described in Snowden et al. (1994), indicator kriging can be
used to better quantify the continuity of extreme values.

The major concern with hand contouring and smooth
mapping, however, is that such maps do not account for
uncertainty in the grade estimates and the economic conse-
quences of wasting ore or processing waste. A smooth map is
optimal only when these consequences are the same (and
increase with the magnitude of the error squared), which is
never the case. The idea of using economic loss functions from
decision analysis in the context of mineral-resources estima-
tion overcomes this major concern (see Srivastava, 1987, and
Glacken, 1996, for more details). This paper advocates a
similar procedure with, perhaps, a more straightforward imple-
mentation,

The essential idea of decision analysis is to make deci-
sions based on minimum loss or maximum profit. These
decisions must account for the uncertainty of all variables
and the consequences of making the wrong decision. For
grade control:

« geostatistical simulation is used to quantify uncertainty
in block grades;

* the consequences, or reduced profit, of wasting ore is
the lost opportunity cost offset by less milling cost: and

* the consequences of processing waste are the increased
milling cost offset, perhaps, by some recovered metal.

The optimal ore/waste classification is made by calculating
the profit P, , of each block if it were treated as ore and the
profit P, ... of each block if it were treated as waste. The
optimal classification is the one that maximizes profit. This
procedure can be automated so that the mining engineer/
geologist gets a plot of the blasthole grades with the optimal
ore/waste classification. Of course, the detailed calculations
could be examined to ensure data integrity and the correctness
of the results.

There are numerous advantages to basing the ore/waste
classification on maximum profitability rather than on an
estimated grade map. An evident advantage is improved
profitability by explicitly accounting for uncertainty in the
grades and the consequences of misclassification. It is also
remarkably easy to consider spatial/temporal variations in
milling costs, mining costs, recovery and metal price. Mul-
tiple metals may be simply added to the profit calculation. One
can also increase ore treatment costs due to spatially variable
hardness, sulfur or other contaminants, and so on. The in-
creased CPU cost of this method is not an issue because it
takes only minutes on a modest Pentium PC to process many
days of production.

The methodology will be presented with all necessary
details. A number of examples will be presented to illustrate
the procedure and quantify the economic benefit. These ex-
amples will consider different levels of spatial continuity and
different levels of sampling error. A small 30- by 30-m
example will also be considered to gain a deeper understand-
ing of why the proposed methodology works. Outstanding
issues, future work and limitations will also be documented.
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Methodology

Definitions/cutoff grade. There are six essential geologi-
cal and economic parameters needed to calculate a break-even
cutoff grade for grade control:

* ¢, = unit treatment (milling) cost ($/t). This cost includes
all operating costs related to processing a ton of rock sent
to the mill. This often depends on the rock hardness
(increased energy and materials consumption for hard
ore), the ore grade and certain gangue minerals that are
considered contaminants and may increase treatment cost.

* ¢, = unit ore mining cost ($/t). The total mining cost
(minus stripping) for excavating a ton of rock and
transporting to the mill. Again, this cost is variable
depending on the location in the pit and differences in
loading/hauling equipment.

* ¢, =unit waste mining cost ($/t). Mining cost to take a
ton of rock and transport it to the waste dump. This cost
may also vary depending on location and equipment.

* r = metal recovery factor (fraction). The fraction of
metal in the ore feed retained in the final product in pure
metal or concentrate form. The recovery could depend
on the grade (perhaps higher recovery with higher
grades) and on other metallurgical considerations.

* z=metal grade (fraction or other units). The metal grade
is usually unknown and will be predicted with
geostatistical estimation/simulation methods.

* p = unit metal price ($/t or units consistent with units
used for metal grade z).

There may be multiple metals/minerals of interest, in
which case there will be multiple recovery (r), grade (z) and
price (p) values. One should point out that the proposed
methodology could straightforwardly handle multiple metals
and variations in all six parameters noted above. Although an
“equivalent grade” can be determined for multiple metals, it
is difficult to handle cost/recovery variations in conventional
grade-control practices.

Common practice consists of calculating a cutoff grade
from the six parameters defined above. The simplest defini-
tion of cutoff grade is the grade at which the profit generated
by processing as ore is equal to that of treating it as waste, i.e.

pr-z.—c,—c¢,=-c,

(1)
= Cy +(Co "Ch')
pr

Any material at or above the cutoff grade will be cheaper
to put in the mill than to place on the waste dump. Such a
simple definition does not consider the time value of money,
the capacity of the plant, fluctuations in strip ratio and other
mining considerations. There are good reasons to consider an
elevated cutoff grade in early years and to stockpile low-grade
ore for supplementing mill feed in later years when the strip
ratio increases. These issues must be handled on a case-by-
case basis by the mining engineers. All grade-control meth-
ods, including our proposed simulation approach, allow flex-
ibility to handle these issues.

Proposed approach. A block of material will be called
“ore” if the expected profit (-cost) of processing the block as
ore exceeds the expected profit (-cost) of considering the
block to be waste. Maximizing profit is a well-established
principle in mining and economics. Low-grade material is
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identified by establishing a threshold on the expected profit.
The profit if a block is called ore P, is calculated as:

ore
P .=E{p.riz—c,—¢l (2)

where
p is the metal price,
r is recovery,
z is the grade,
¢, is ore mining cost and
¢, is treatment cost.

P, will be less than -¢, (the waste mining cost) when the
grade is below cutoff.
The profit if a block is called waste (P

P = E{'Cl\' A C:'ﬁ}

wasrte

) is calculated as
(3)

Wrste:

where
-¢,, is the waste mining cost; and
¢;, is the lost opportunity cost, which only applies if the
grade is greater than cutoff grade.

Cp=Elizz) - (-p-r-z+c,+¢,—¢c)} @
where
the indicator i(z:z ) is defined as
) l, i z>z,
aze)= {0, otherwise ®)

The mine will only see p - r - z - ¢, - ¢, if the material is
called ore and -c, if the material is called waste. Some
consider the inclusion of lost opportunity in Eq. (3) to be
redundant: the argument is that this concept is included in the
expected profit if ore. Nevertheless, the notion of lost oppor-
tunity is very real; it does cost money to mistakenly put high-
grade ore on the waste dump. A practitioner would be advised
to carefully construct their own profit functions; then, maxi-
mize the expected value of the profit over uncertainty in the
grades.
In summary, the grade-control decision is written

if E{P } > E{Poscr}
waste otherwise

decision = {orc (6)
A “maximum profit selection” criterion is advocated.

This numerical approach is very flexible. It is straightfor-
ward to consider complicating factors in the calculation of
Pvrf.' EI.I'Id Pwa.l'rc'

Numerical laboratory. The concept of calculating P,
and P, .. and then choosing the maximum profit selection
(MPS) is simple and consistent with engineering and eco-
nomic principles; however, one has to check that the results
are significantly better than conventional practice (kriging).
Checking with real data is notoriously difficult because the
underlying true grades are never known and the grade of the
material placed on the waste dump is poorly known. Here,
Monte Carlo simulation will be used as a numerical labora-
tory for testing different methods.

The experimental steps in our numerical laboratory con-
sist of:

» build afine-scale true-grade model (together will all co-
regionalized variables);

* sample blasthole grades from the truth model at some
realistic spacing:
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* add sampling (and perhaps location) error to the “true”
blasthole grades:

* apply methods M|, M,, ..., M, to establish different ore/
waste classification;

* calculate the revenue R, R,, ...,
method; and then

« repeat for different truth realizations, models of spatial
correlation and sampling practices to establish the do-
main of applicability of each method. that is, where

R, 2R, Vi#j.

R, generated by each

A two-dimentional truth model representing a single bench
has been considered. There is no limitation to consider asingle
bench. In fact, all methods should perform somewhat better
having data from the bench above and exploration drill-hole
data.

Although well established in engineering studies, there are
a number of concerns with such a Monte Carlo procedure:

» the truth models are often too simplistic,

« any method M, that makes use of the underlying random
function model used to generate the truth model could
appear unrealistically good (Rj too high) and

» there may be practical considerations that make it im-
possible to achieve any modeled revenue gains.

Awareness of these concerns help design the experimental
procedure used in the numerical laboratory. A range of truth
models have been considered with spatial heterogeneity that
mimics real deposits. Kriging and simulation methods are
given the same information to make fair comparisons. Finally,
the authors attempted to enumerate all of the practical consid-
erations (such as free selection, practical dig limits and blast
movement) that would make theoretical revenue gains im-
practicable.

An example

For illustration, a two-dimentional example from a gold
mine will be used. Although the grades and all economic
parameters are fictitious, they have been chosen to mimic the
features of a real mining operation. It would have been easy to
show an example with real data; however, there would have
been no underlying true distribution of grades to compare the
results. There is nothing special about using gold in this
example. In fact, more practical applications of this method-
ology have (to date) been made to base metal mines.

With the economic parameters: milling cost, ¢, = $12.00/t;
ore mining cost, ¢, = $1.00/t; waste mining cost, c,, = $1.00/
t: recovery, r=0.80; price, p = $12.00/g, the breakeven cutoff
grade may be calculated as 1.25 g/t. The distribution of gold
grades is illustrated in Fig. 1.

An important advantage of a synthetic example is the
ability to look at different types of deposits with different
levels of sampling error. The first spatial distribution of
grades we will consider is shown in Fig. 2. Note the N-S
anisotropy and continuous regions of high and low grade. This
two-dimentional example is 200 m E-W by 300 m N-S.

Blastholes were taken on a 10-m grid. Figure 3 shows a
location map of the blastholes and Fig. 4 shows a histogram.
In practice, each individual blast will be much smaller, and all
of the blasthole grades will not be available at the same time.
Also, in practice, there will be blasthole grades available from
the bench above the current working bench. These issues have
no affect on the “fairness” of our comparison or the illustrative
nature of the example.
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Figure 3 — Map of blasthole locations — gray scale level

at each blasthole location indicates the grade.
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the blasthole samples. This error level is realistic but could be
considered too small in certain situations; a sensitivity will be
performed later.

Kriging and simulation require a variogram model. The
omnidirectional semivariogram of the normal score transform
of the grades is shown on Fig. 6. The experimental points are
the black dots and the solid line is the fitted model. The relative
abundance of blasthole data makes it easy to infer a reliable
semivariogram. The model consists of a nugget effect and a
single structure spherical variogram with a range of 50 m.
Additional blasthole error would increase the nugget effect
and could appear to decrease the range of correlation.

Ordinary kriging was performed with the kb2d program
from GSLIB, and the result is shown in Fig. 7. Note the
smoothness relative to the true grades (Fig. 2). The same gray
scale (Fig. 2) will be used for all gray scale images. In this base
case, the kriging provides reliable estimates of the block
grades because of the dense data spacing relative to the
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Figure 6 — Directional variograms (experimental points
and modeled fit) normalized and calculated from
blasthole data.
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Figure 8 — Cross plot of true block grades with ordinary
kriged block grades. Note the excellent correlation.
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Figure 7 — Map of ordinary kriged grades using the
blasthole data and variogram shown in Figs. 3 and 6.
The gray scale is the same as Fig. 2

variogram range and the reliable histogram and variogram.
Figure 8 shows a cross plot of the true block grades with
ordinary kriged block grades; note the excellent correlation.

Figures 9 and 10 show the ore/waste classification based on
the true grades and kriged estimates, respectively. The kriged
limits appear somewhat smoother, which is consistent with
the tendency of kriging to generate a smooth estimate. Ac-
cording to the kriged estimates there are 1,412 and 988 blocks
of ore and waste, respectively. In truth, there are 1,358 and
1.042 blocks of ore and waste. respectively. However, the
kriged model has 225 blocks misclassified as ore and 171
misclassified as waste. The maximum attainable revenue,
from the true model with perfect selection, is $1,011k. The
revenue from the kriged model is $864k, which must be
considered quite good.

The maximum profit selection (MPS) method calls for
stochastic simulation at a fine scale, block averaging to the
mining scale, and then application of the “maximum profit
selection™ criteria. Figure 11 shows an example map of the
first Gaussian realization at the fine scale. Fifty realizations
were generated, block averaged, and then used for profit
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Figure 9 — Map of true ore/waste classification using true
block grades and grade cutoff of 1.25.
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Figure 10 — Map of ore/waste classification based on
kriging.
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w.g:’mu!afed Realization of Grades Table 1 — Tabulated revenue achieved by grade control
; e for different underlying random function models. The
maximum revenue achievable with perfect selection is
$1,000,000 in each case.
Kriging Relative Ranges
MPS based nugget (X/Y)
$924,000 $855,000 0.0 50.0/50.0
€0 $879,000 $810,000 0.1 50.0/50.0
=l $822,000 $754,000 0.2 50.0/50.0
$711,000 $621,000 0.3 50.0/50.0
$672,000 $604,000 0.4 50.0/50.0
$565,000 $477,000 0.5 50.0/50.0
$374,000 $256,000 0.6 50.0/50.0
$519,000 $498,000 0.0 10.0/10.0
$789,000 $756,000 0.0 15.0/15.0
~ $835,000 $808,000 0.0 20.0/20.0
East . $946,000 $872,000 0.0 100.0/100.0
Figure 11 — Gray scale map of first Gaussian simulation ozl Fr oo i
of grades using blasthole data and variogram. #260,000 $684,000 0.0 200.r200.0
1000.

Ore / Waste Indicator Based on MPS
300
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Figure 12 — Map of ore/waste classification based on
maximum profit selection.
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Figure 13 — Chart of revenue (1,000s $) vs. relative
nugget effect with the simulation-based approach to
grade control and kriging-based approach to grade
control.

calculation, The resulting ore/waste classification is shown in
Fig. 12. It should be noted that it is not necessary to construct
fine-scale realizations over the entire domain. As proposed by
Glacken (1996), one could perform fast simulation, say with
an LU matrix method, over each block independently. The
sgsim program from GSLIB was used unchanged because the
CPU time was not considered excessive.

The ore/waste classification shown in Fig. 12 yields 1,450
and 950 blocks of ore and waste, respectively, with 157 blocks
misclassified as ore and 65 misclassified as waste. It seems
that the combination of the uncertainty and economics leads
to a conservative classification, that is, more rock is sent to the
mill. The revenue associated to this model is greater than the
kriged model: $933k compared to $864k.

Twelve different truth models are considered to establish
the generality of these results (Table 1). Each truth model
leads to slightly different maximum revenue (recall that the
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maximum was $1,011k in the base case). To make the results
comparable, the revenues from MPS and kriging have been
normalized by the maximum truth revenue divided by $1,000k;
thus, the maximum revenue is $1,000k in all cases. The same
blasthole spacing and sampling error has been considered in
all cases; only the nugget effect and range of correlation have
been changed. MPS systematically leads to greater revenue
than kriging, which is not surprising because the objective of
MPS is to maximize profit, whereas the goal of kriging is to
create an estimate with minimum squared error (see Srivastava,
1987).

Figure 13 shows a plot of the revenue of MPS and kriging
vs. the relative nugget effect of the underlying grade models.
The revenue attained by both methods decreases as the nugget
effect increases. Beyond a nugget effect of 0.7, the predict-
ability of the grades is so poor that the revenue is negative
(mining the entire bench as either ore or waste would lead to
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Figure 14 — Chart of revenue (1,000s $) vs.variogram
range with simulation-based approach to grade control
and the kriging-based approach to grade control.

a loss). The MPS procedure leads to significantly greater
revenue when the nugget effect is less than 0.7.

Figure 14 shows a plot of the revenue of MPS and kriging
vs. the range of correlation of the underlying grade models.
The revenue attained by both methods increases as the range
increases. A very low range appears like a high nugget effect,
that is, negative revenue. The MPS procedure leads to signifi-
cantly greater revenue when the range of correlation is greater
than the twice the blasthole spacing.

The previous numerical experiments considered a small,
yet realistic, sampling error. Pitard (1993) describes many
sources of errors in sampling. These errors can be significant,
particularly for gold deposits. Different levels of sampling
error will be considered to evaluate the degradation in results
with increasing error and to judge the relative performance of
MPS and kriging in presence of sampling error. The sampling
error will be modeled as a normally distributed residual

Z,.=z+error— N, re:2) (7
where
2, 18 the blasthole grade with error,

z is the true blasthole grade and

error is a normally distributed error with a zero mean and
variance equal to a relative error (re) multiplied by the
grade.

The relative error will be varied from 0.0 to 0.5. Figure 15
shows a cross plot of true grades vs. blasthole grades with
relative errors of 0.1 and 0.3. Note that the correlation de-
creases rapidly for errors in excess of (0.3.

Repeating the variogram analysis, kriging and simulation
leads to the results in Table 2 and Fig. 16. The revenue
decreases as the sampling error increases. It is interesting to
note that the rate of decrease is less for errors less than 10% to
15% and then increases to a nearly constant rate of decrease.
This coincides with conventional wisdom, which tells one that
the sampling error should be less than 15% (Pitard, 1993) for
industrial control. Further, it is noted that the MPS procedure
systematically generates more revenue than the kriging-based
procedure.
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Figure 15 — Cross plot of true grades vs. blasthole grades
with relative errors of 0.1 to 0.3.

Table 2 — Tabulated revenue achieved by grade control
for levels of sampling error.

Sampling error Kriging MPS
0.0 $853,000 $945,000
0.1 $798,000 $889,000
0.2 $571,000 $713,000
0.3 $325,000 $426,000
0.4 $120,000 $188,000
0.5 $-113,000 $-19,000

Another small example

It has been shown that MPS outperforms kriging in terms
of the revenue generated; however, the only explanation put
forward is that MPS is directly based on profit criteria,
whereas kriging is based on minimum variance. A small
example will now be considered to help one see how the MPS
criterion arrives at different, more optimal ore/waste classifi-
cations. A small 30- by 30-m area will be considered, see Fig.
17, with 16 blastholes on a 10- by 10-m pattern. These data
follow the base-case histogram and variogram used in the
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Figure 16 — Chart of revenue (1,000s $) vs. relative error
of sampling. Note the steep decline in the revenue with
increased sampling error. Although the revenue is
negative at 0.5 relative error, it is better than no
information (mine entire bench as ore and lose $170 k
or mine entire bench as waste and lose %1,590 k).
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Figure 17 — Blasthole layout for small-scale example.

preceding example. Here. the interest is in classifying the 5-
by 5-m block highlighted in the center of the pattern. Note that
different blasthole grades will be considered, although the
configuration of the blastholes and the block will remain
unchanged.

One hundred different realizations of the 16 blasthole
grades were constructed. The grade of the 5- by 5-m block was
estimated by kriging in all cases. The uncertainty in the block
grade was also assessed by performing 200 simulations of the
grades (25 grades on a 1- by 1-m spacing inside the block).
Thus, the central block has 100 different ore/waste classifica-
tions. There are four situations:

» kriging and MPS both classify the block as ore (40 times),
* kriging and MPS both classify the block as waste (54 times),
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Figure 18 — Uncertainty in block grades at two locations

where the kriged value would indicate waste (black
dot) and simulation (MPS) would indicate ore.

« kriging classifies the block as ore but MPS classifies it
as waste (four times) and

» kriging classifies the block as waste and MPS classifies
it as ore (two times).

Although most classifications are the same, the six differences
are interesting.

Figure 18 shows the uncertainty in block grades at the two
locations where the kriged value would indicate waste (black
dot) and simulation (MPS) would indicate ore. The dark black
line at 1.25 indicates the ore/waste cutoff. MPS indicates ore
because there is sufficient variability/probability that the
block is ore, that is, the lost opportunity cost that would be
incurred for all situations falling to the right of the cutoff cause
the block to be classified as ore.

Figure 19 shows more startling results; the uncertainty in
block grades at two locations where the kriged value (black
dot) would indicate ore and the simulated grades would
indicate waste. It was initially surprising to note that the
simulated grades systematically are less than the kriged grades.
Figure 20 shows the 16 blasthole grades used in both cases.
The characteristic feature of both cases is the presence of
nearby isolated high-grade samples surrounded by nearby low
values. The kriged estimate is sensitive to these nearby high
values whereas the simulated block grade is not.

Note that the uncertainty in a “blasthole” grade at the center
of the small grid would be significantly higher than the
uncertainty in a “block™ grade. In fact, these two different
levels of uncertainty for realization 29 are shown on Fig. 21.
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Figure 19 — Uncertainty in block grades at two locations
where the kriged value would indicate ore (black dot)
and simulation (MPS) would indicate waste.

The block grades have less variability, in particular, less
probability of being above the cutoff grade of 1.25.

From this small example. one can draw two tentative
conclusions:

* when the block is borderline ore/waste with large uncer-
tainty, the MPS procedure would tend to classify it as
ore; and

* when the block is borderline but based on an isolated
high-grade sample, the MPS procedure is less sensitive
to lone high-grade values and would tend to classify the
block as waste.

As seen in the preceding example, these effects lead to greater
revenue/profit.

Outstanding issues

Real data could have been used for the example, but it is
very difficult to check the efficacy of the algorithm, because
the truth is inaccessible. In other words, application of the
proposed methodology to real data is straightforward, but its
performance would be difficult to quantify. An important
extension of this work is to present documented examples at
operating mines,

A significant concern with synthetic examples is that one
assumes “free selection,” that is, the 5- by 5-m blocks can be
selected independently and without error. The relative ben-
efits of MPS may be less once the revenue is established based
on practical dig limits. The Monte Carlo exercise could be
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Figure 20 — Blasthole data used for small examples 18
and 29 (see distributions of uncertainty in Fig. 19).

extended to include a “hand smoothing” of the ore limits.

Hand contouring of the blasthole grades can simulta-
neously account for the mining equipment (practical dig
limits), erratic high grades and geological information. Here,
kriging and simulation (MPS) were compared, but results that
would have been obtained by hand calculation/contouring of
the ore/waste boundary were not shown. Although such a
comparison would be difficult and nonrepeatable. due to the
interpretive nature of the contouring, it would be worthwhile
future work. The Monte Carlo exercise could also be extended
to include a “hand contouring” of the ore limits directly from
the blasthole grades.

The effects of blasthole sampling errors were found to be
significant; however, the sensitivity to blasthole sampling
errors were only evaluated for the base case variogram (zero
nugget effect and range 10 times the block size). The impor-
tance of sampling errors will likely depend on the underlying
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Figure 21 — Example showing “blasthole” and “block”
grades for central 5- by 5-m block. The data from
realization 29 were used. Note that the mean is
unchanged and the classical reduction in variance
from blasthole grades to block grades.
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level of spatial continuity. This is an area for further research/
application.

Blast movement studies are necessary to quantify and
understand how the dig limits should be established after
blasting. Improvements in grade-control methodology could
be reduced if there is significant throw (1 to 3 m of throw could
be expected). This may be acceptable provided the throw is in
asingle known direction; however, a general mixing would be
difficult to overcome. This complicating factor would have to
be handled on a case-by-case basis.

In general, there is more information for grade control than
the blasthole grades on the current bench. There are geological
rock types, exploration holes and blastholes from the benches
above. The additional value of this information could be
assessed by calculating the additional revenue using this data.
Of course, it would depend on the closeness of the data.

Computer software implementing the numerical algo-
rithms presented in this paper is not difficult. In fact, the
authors will send FORTRAN code on request. There is a
need, however, for the entire procedure to be automated in
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easy-to-use software. A familiar Windows-type interface
would be logical.

Conclusions

Classifying material as ore and waste based on maximum-
profit criteria generates more revenue than conventional
kriging. The concepts used in this paper are well established,
that is, geostatistical simulation and basic economics. Imple-
mentation is straightforward and the selection program may
be run on low-level Pentium PCs available at virtually every
mine site. The method is flexible in its ability to handle
variability of costs, variability of metal recovery, and revenue
from multiple ore minerals.

The method increases revenue by rigorous accounting of
uncertainty in block grades. The effect of isolated high-grade
values is minimized, the lost opportunity cost of wasted ore is
taken into consideration, and the irreducible uncertainty is
handled by considering the expected value of the profit if
called ore (P,,,) and waste (P, ..).

Additional effort is required to apply at operating mines
with easy-to-use software and that can be straightforwardly
applied by the engineer/geologist/technician at the mine site.
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