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Practical Application of Geostatistical Scaling Laws for Data Integration

P. Frykman' and C.V. Deutsch’

Reconciling data from different scales is a long-
standing problem in reservoir characterization. Data from
core plugs, well logs of different types. and seismic data
must all be accounted for in the construction of a geosta-
tistical reservoir model. It is inappropriate to ignore the
scale difference when constructing a geostatistical model.

Geostatistical scaling laws were devised in the 1960s
and 1970s primarily in the mining industry where the con-
cern was mineral grades in selective mining unit blocks of
different sizes. These principles can be extended to
address problems of core, log and seismic data. The adop-
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tion of these classic volume-variance or scaling relation-
ships presents some challenges. Three specific concerns
are the ill-defined volume of measurement, uncertainty in
the small-scale variogram structure, and non-linear aver-
aging of many responses including acoustic properties
and permeability.

We demonstrate the application of volume-variance
relations for upscaling and downscaling techniques to
integrate data of different scales. Practical concerns are
addressed with data from a chalk carbonate reservoirand a
clastic reservoir in the Danish North Sea.

INTRODUCTION

The use of what is called the “shared earth model™ in res-
ervoir modeling increases the demand for quantitative
description and higher resolution in the geological model,
and thereby highlights the scaling issues, although most
papers ignore the question (Fontaine et al., 1998). The
available data almost always measure a different volume
scale than the volume of the grid cells used in the numerical
model; a strategy to reconcile these differences must be
developed. In heterogeneous sequences, knowledge of
small scale geological features and the geometry of the low-
or high-permeability layers is critical for the flow behavior
and upscaling.

Data at scales larger than the traditional core and log
scale. e.g. seismic impedances or inverted production data,
make it possible to analyze the relation between the spatial
correlation at different scales. Impedance data may be used
for downscaling to guide the modeling of fine-scale hetero-
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geneity and porosity layering. We must be able to quantita-
tively analyze the volume-variance aspect of this downscal-
ing. The fine scale structure of the permeability anisotropy
is critical in most reservoir applications.

Within the petroleum industry and many other fields
where geostatistical models are constructed. the treatment
of data at different scales has often been ignored (Almeida
and Frykman, 1994) and the problems of the “missing
scale” have been discussed or addressed only simplistically
(Massonat et al., 1999; Tran, 1995). As a simple approach,
core and log data may be averaged in the vertical direction
to the scale of the modeling cells (Cox et al.. 1995: Frykman
and Deutsch, 1996); however, this only partially addresses
the scale difference since such simple averaging depends on
having representative samples, which is rarely the case and
does not account for horizontal averaging. In other exam-
ples, a fine-scale model is constructed and then numerically
averaged to a larger scale (Damsleth and Tjelsen, 1994;
Sweet et al., 1996; Wen and Gomez-Hernandez, 1998). This

'Geological Survey of Denmark and Greenland (GEUS), Copenhagen K, Denmark.
*School of Mining and Petroleum Engineering, Department of Civil & Environmental Engineering, University of Alberta, Edmonton,

Alberta, Canada

©2002 Society of Professional Well Log Analysts. All rights reserved.

May-June 2002

PETROPHYSICS 153



Frykman and Deutsch

may be applied in a nested fashion due to computational
limitations. Attempts have been made to directly incorpo-
rate the relations between data of different scales into simu-
lation methods. As an example. the direct simulation of
gridblock values conditioned to fine-scale data carried out
by cosimulation using cross-covariance between fine- and
coarse-scale values has been described (Gomez-Hernandez
and Journel, 1994).

An illustration of the different scales shows that the
change of scale from core to log measurement volumes is
nearly as large as the jump from log volume to that of a geo-
logical modeling cell (Figure 1).

The requirement for a scale-dependent and representa-
tive variogram and histogram has, to some degree, been
overlooked in geostatistical simulation studies and many
commercial software packages. The success of existing pro-
grams in the petroleum industry is partly founded on the
fact that considering some kind of heterogeneity is better
than no consideration at all. As numerical models are used
more extensively, a more correct treatment of the scaling
problem is required.

The ultimate goal of this work is to show how data of dif-
ferent scales may be used simultaneously in the construc-
tion of high-resolution geostatistical models. When the dif-
ferent types of data are all *hard.” in the sense that they do
not contain significant errors or uncertainties relative to the
property being modeled, it is possible to use block kriging.
Certain data types such as seismic records contain uncer-
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tainties related to the great volume of measurement and
calibration of the measured acoustic properties to the petro-
physical properties of interest. In this case, it is necessary to
use block cokriging. The systematic analysis and use of the
scaling laws will ultimately lead to development of a multi-
scale co-simulation approach that is able to honor data at
different scales.

Our article begins with a review of volume-variance
scaling law theory, followed by an illustration of the
application of the scaling laws using a synthetic example.
Using core- and well-log-scale data from a Danish chalk-
carbonate reservoir the application of the scaling laws is
further illustrated using real data. The volume of
investigation of well log data is estimated using the
statistical parameters of the core and log data, together with
their analytical volume-variance relationships. Finally, we
show that in cases where the existing data are not at the
same scale as the modeling cells used in geostatistical
simulations the scaling laws can be used to estimate the
correct variogram and correct target histogram

BRIEF REVIEW OF THE VOLUME-VARIANCE
SCALING LAWS

Notwithstanding the importance of accounting for data at
different scales, the use of geostatistical scaling laws has
not seen wide application in petroleum geostatistics. This is
due mainly to unfamiliarity with the techniques and the
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FiG. 1 lllustration of the volume measures (in cubic meters) for the different types of data and model elements. Note that the scale

distance between core plug scale and wireline well-log scale is nearly as large as between well-log and reservoir modeling cell vol-

umes.
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practical application of the scaling laws. Demonstrating
such techniques will address this unfamiliarity.

Our discussion assumes a familiarity with the variogram
(Deutsch and Journel, 1998; Goovaerts, 1997; Isaaks and
Srivastava, 1989); however, the most important aspects of
variogram calculation and modeling are reviewed in the
appendix. The scaling laws indicate how statistics such as
the histogram and variogram change with the volumetric
scale (Frykman and Deutsch, 1999; Kupfersberger et al.,
1998). Denoting a smaller volume by |v| and a larger volume
by [V]. we review some important definitions:

A) The variogram range a increases as the size of the
sampling volume increases, and a comparison of different
scales therefore depends on the difference between the vol-
umes, or |F| — |v|. Note that || and |v| relate to a size of the
volume in a particular direction. For example, if “V™ was a
block scale of 50 by 50 by | min the X, Y, and Z directions;
then, | V| is the size of the block between 70.72 and 1.0 m
depending on the direction within the block. The range
obviously increases if | V| increases or if |v| decreases. Then,
if a, is the range for the small scale and ay is the range for the
larger scale, we have:

ar=a, +(V|=M). (1)

B) ['(v,v) or the gamma-bar value represents the average
variogram for vectors where each end of the vector inde-
pendently describes the volume v. In 3D the gamma-bar val-
ues may be expressed by the infamous sextuple integrals of
early geostatistics (Journel and Huijbregts 1978, p. 99). The
modern approach, however, is to calculate all gamma-bar
values numerically.

C) A nested structure is in geostatistical jargon a linear
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FiG. 2 Schematic illustration of the changes in the histogram,
and in the variogram for the variance (sill), and correlation range
for data at two different scales.
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combination of basic variogram models and is denoted by
C.,i=0....,nst; where nst is the number of individual vari-
ogram structures at the scale v

D) The variance contribution, or sill, of each structure C,
change by

=)

C[i- - C,‘ = .
1— (v, v)

(2)

The variogram used for the calculation of the average
variogram values, I, is the unit point scale variogram I' (i.e.
variogram with sill of 1.0 and point range a,), which must
be derived from the data at the scale where we have the best
knowledge of the correlation structure. The point scale is a
theoretical derivation, but can in some cases be substituted
by a “quasi point” scale if data exist at a scale much smaller
than the investigated volume.

E) The variance of the purely random component of the
data, called the nugget effect, is inversely related to volume,
ie,

Cﬁ'=£‘fﬁ 3)

where C}’ is the nugget effect at the scale V.

As scale increases, the range of correlation increases,
and the variogram sill decreases. The variance decreases as
the volume increases: high and low values are averaged out
as the volume of investigation or measurement increases.
As the variance decreases the variogram structure therefore
changes as described. The scaling relations are established
under the assumptions that: 1) the shape of the variogram
(i.e., spherical, Gaussian, etc.) does not change; 2) the
averaging is performed with non-overlapping volumes, and
3) the variable scales in a linear fashion (Journel and
Huijbregts, 1978). The last assumption has so far prevented
the use of the conventional scaling laws on parameters like
permeability, although some regularities of permeability
scaling have been documented (Tidwell and Wilson, 2000)
and permeability may scale linearly after a “power-law”
transformation.

These scaling laws have recently been implemented in
software that can be used easily for analyzing the scaling
relations between different types of data, and which can aid
in the correction of input for geostatistic simulations (Oz et
al., 2002).

SCALING RELATIONS WITH
SYNTHETIC EXAMPLE

In order to show the application of the scaling rules for
data obtained at different scales, a synthetic fine-scale 1-D

PETROPHYSICS 155



Frykman and Deutsch

model is generated that will be used as a *“true” basic model.
The program SASIM, based on simulated annealing
(Deutsch and Journel, 1998). has been used to simulate the
model using a target histogram and a spherical variogram
model. The scale of the 1-D modeling cell is 0.02 m in order
to mimic the fine-scale geological information normally
available from core plugs. The resulting model is illustrated
in Figure 3.

Block average values for each non-overlapping 0.5 m
segment are calculated from the fine scale data, and will
mimic approximately the scale of a well-log. The resulting
averaged data are also shown in Figure 3. A similar use of
simulated data has been applied to study changes in vari-
ability due to the filtering effect of well-logs (Jennings,
1999).

The histograms at the two different scales are shown in
Figure 4. The variance is reduced significantly from 3.57 to
1.99 due to the averaging. The variogram model used for
simulating the synthetic case is a spherical model with
0.54 m range and zero nugget. The sill value of 3.6 is sup-

15 20 25 30 35

Porosity % —— Simulated fine-scale
=—0== Block-average 0.5 m

Fig. 3 Profile of the simulated porosity data at 0.02 m scale
(thin line), and the block-averaged values for 0.50 m scale
(points and thick line).
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plied by the target histogram for the simulation. The simula-
tion is seen to closely reproduce the variogram model (Fig-
ure 5).

Application of Scaling Laws for Prediction of
Coarse-Scale Variogram from Fine-Scale Variogram

The theoretically derived variogram for coarse-scale
may be calculated by the scaling laws and compared to the
experimental variogram from the block-averaged coarse-
scale data. The closeness of the match is a measure of the
efficacy of the scaling relations. We use the fine-scale vari-
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FiG. 4 Histograms of: (A) The simulated fine-scale porosity;
(B) The porosity values after block averaging over 0.50 m inter-
vals.
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FIG. 5 Variograms for the fine-scale and the block-averaged
porosity values. Upper set is an input model variogram (line)
and the experimental variogram (circles) of the simulated fine-
scale showing a very good reproduction of the variogram model
by the simulation. The lower set is the theoretically predicted
variogram from applying the scaling laws (line) and the experi-
mental variogram calculated from the block-average porosity
values (dots).
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ogram model, that is, the spherical variogram structure with
0.54 m range and sill of 3.6.

As stated above in equation (1), the coarse-scale vari-
ogram range ay may be calculated based on the fine-scale
range a,. that is, ay = a, + ("] =|v|). Where v is the fine-
scale of dimension 0.02 m and V' is the coarse-scale at 0.50
m resolution. This results in a range correction for the vari-
ogram from the fine-scale to coarse-scale as follows

ay=0.54 +(0.50 - 0.02) = 1.02 m

The sill of each basic structure in the variogram model is
modified as in equation (2). The required I'(0.02,0.02)(v)
and I'(0.5.,0.5)(¥) values can be calculated numerically as

T(v,v) = 0.0192 and T(V;}) = 0.436.

The variance for the fine-scale data for the structure C, =
3.6, and therefore the log-scale sill for the structure is
derived with equation (2) as C;=3.6(1 — 0.436/1 —0.0192)

=2.07. The comparison of the theoretically predicted

coarse-scale variogram and the experimental variogram
obtained from the block-averaged data is illustrated in Fig-
ure 5, showing a very good agreement.

In order to further illustrate these scaling laws, the proce-
dure has been applied at coarse scale resolutions of 1.0, 2.0
and 4.0 m. The comparison between the theoretical predic-
tions and the experimental variograms is nearly perfect, see
Figure 6.

The decrease in sill variance is shown as a function of the

6.00__Varlograms for different scales

Distance m

FiG.6 Comparison of theoretical and experimental variograms
for different scales of averaging: 0.02 m is used for cell size for
the fine-scale simulation used as starting point for the averaging
into 0.5, 1.0, 2.0 and 4.0 m block averages. All predictions show
very good match to the experimental variograms shown in dots.
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averaging volume in Figure 7. However, this function is
only valid for this particular model, and heavily depends on
the variogram structure at the fine scale level.

Variogram shape change

The synthetic fine-scale model has also been used to
investigate how overlapping volume averaging influences
the scaling of variograms. For this purpose a moving 0.5 m
window filter has been applied with a simple square filter
function on the fine scale data. The resulting experimental
variogram shows that the variogram structure is changing
from the original fine scale spherical model into a more
Gaussian-shaped model for the moving average data as seen
in Figure 8.

Determination of the averaging volume
represented in well-log data

When comparison and scaling of different types of
porosity data is attempted, it is necessary to know the aver-
aging volume involved for each type. For porosity estimates
derived from well log data, usually from the formation bulk
density, the averaging characteristics are not well known
(Jennings. 1999). The response function represented in
these well-log derived porosity data strongly influences the
assumptions made about the averaging volume, and there-
fore the characteristics are outlined in the following for a
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FIG. 7 lllustration of the decrease in variance (sill value) for the

theoretically predicted variograms as the length scale of aver-
aging (plotted on log-scale) is varied from 0.01 m to 32.0 m.

PETROPHYSICS 157



Frykman and Deutsch

commonly supplied logging data type that is the basis for
the porosity estimation. The bulk density RHOB data are
commonly obtained with an LDT (Litho-Density™ Tool) in
North Sea settings and in other areas. The intrinsic response
function for this tool is not immediately available, but has
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FiG. 8 Model and experimental variograms of the original fine
scale simulation (upper line and open dots), and the experimen-
tal variogram (MW) for the upscaled data using a moving win-
dow average (lower filled dots) indicating a change towards a
more Gaussian type variogram model. The lower open dots
show the calculated experimental variogram for the block-
averaged data. The lower line is the predicted upscaled vari-
ogram model assuming a spherical variogram structure in the
scaling calculation.

FiG. 9
cal density detector comparable to what is used in a LDT log-
ging tool (Slightly modified from Flaum et al. (1991)).

lilustration of the 2D response function for a hypotheti-
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been illustrated for similar types of tools (Flaum et al.,
1991). The 2D representation of the response function
reflects the variable sensitivity according to position and
depth into formation of the density measured (Figure 9).
This function is then integrated in order to have the 1D
response available, given that a layered sequence is investi-
gated (Figure 10).

A standard processing carried out on the tool count rates
is the three-level depth averaging prior to presentation as
the RHOB bulk density data that is received as the logging
data (Flaum et al., 1989). For standard logging, this process-
ing compares to a square boxcar filter applied on the 6 in.
(0.15 m) spaced data. Often this filtering is not reported
explicitly, but the boxcar filtering can be recognized in the
logging data as a depression in the power-spectrum even
when the bulk density has been converted to porosity esti-
mates (Figure 11). The effective response function that cor-
responds to this 2-step process (tool + filter) of converting
fine-scale density (porosity) variations in the formation into
the 6 in. (0.15 m) spaced estimates of porosity presented as
well-log data therefore can be derived by convolving the
intrinsic tool response function with a 3-level (18 in. = 0.45
m) square boxcar filter. The resulting effective response
function is shown in Figure 12.

In order to include this information into the scaling laws,
it is necessary to derive an “equivalent™ non-overlapping
block-average block size that approximates the effect of the
logging + filtering. This is carried out by applying the effec-
tive response function on the simulated fine-scale data and
use the resulting variance reduction to estimate an “equiva-
lent” block size (Figure 13). The resulting estimate of 0.62 m
block size is therefore used for application of the scaling
laws to well-log derived data. The uncertainty in the deriva-
tion of this averaging is illustrated by calculating variance
change for 5 consecutive segments of the simulated 1D
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FIG. 10 The intrinsic tool response function for a LDT when
bulk density is logged in a layered formation.
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model. The spread of these five values shows a correspond-
ing uncertainty in the block size from 0.5 m to 0.8 m averag-
ing length.

SCALING RELATIONS WITH REAL DATA

The scaling laws have been shown to be operational for
synthetic data sets created with simple variogram models.
The scaling of real data involves several additional aspects
that increase complexity. This will be illustrated with two
examples.

Chalk reservoir data

Porosity data from an interval in the MFB-7 well from
the Dan Field in the Danish North Sea is considered. The
Dan Field is an Upper Maastrichtian to Lower Paleogene
chalk limestone reservoir, and is characterized by high
porosities (30-40%) and generally low permeabilities
around 1 mD (Kristensen et al., 1995). Well data from a sec-
tion covering approximately 18 m of vertical section has
been extracted, see Figure 14. Since the well is deviated
approximately 32 degrees, any length measures derived
from the original wellbore are adjusted by a factor 0.85 (=
cos 32°) for true vertical depth. This affects the calculation
of the scaling factors and the averaging volume of the log-
ging tool. We chose to work in TVD (True Vertical Depth)
space. Our choice is based on the good horizontal continuity
in the layered formation drilled; therefore, the variability
within the deviated well bore is essentially the same as in
the projected vertical section (see Figure 15). The layered
aspect also limits the volume scaling relations to essentially
a vertically oriented 1D upscaling issue due to the lateral
continuity.
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FiG. 11 Power spectrum of the porosity data in the section
investigated in the MFB-7 well, and of a 0.45 m square boxcar
filter. The comparison indicates that this filtering has been per-
formed on the raw density logging data prior to the derivation of
the porosity estimate.
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The well data show cyclic porosity variations probably
caused by climate variations during deposition of the
pelagic chalk material (Scholle et al., 1998 Stage, 2001).
The core plug measurements represent a volume of about
5 %X 2 X2 cm (corresponding to a vertical resolution of
0.02 m when the plugs are drilled horizontally). The log
measurements represent the averaging length of 0.62 m as
developed in the previous section. This corresponds to a
0.53 m vertical section in this particular example. As
expected, the core plug porosity values show greater vari-
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FiG. 12 The effective response function represented in the
porosity data derived from logging data. It is the combined effect
of the intrinsic log resolution and the succeeding boxcar filtering.
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FiG. 13 The curve shows the relation between the variance
and averaging length when increasingly larger block averaging
lengths are used on fine-scale synthetic data. The points signify
the variance for 5 segments of the synthetic data when the
effective response function for logging data is applied on the
fine-scale data. The average variance intersection of the
response function is seen to correspond to a 0.62 m non-
overlapping block averaging. The non-overlapping averaging is
assumed for application of the scaling laws.
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FiG. 15 Schematic illustration of an inclined well and tool vol-
ume (length) conversion from measured depth scale (A) o TVD
scale (B).
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ability than the log porosity values. The histograms shown
in Figure 16 illustrate the difference.

Figure 17 shows a cross plot of the core versus log poros-
ity values. The scatter on this plot is attributable to the dif-
ferent measurement volumes, but to a small extent also to
the different physics behind the measurements. The cross
plot of core and log porosity shows a fair correlation
between the two variables, but it is also apparent that the
well log data does not represent some of the high porosity
layers recorded by the core analysis samples. Whether this
is caused by biased sampling for plug material, or an aver-
aging effect of thin beds by the logging method is not
known.

The correlation between the core and log porosity also
depends heavily on the correct positioning of plug data and
the depth adjustment normally carried out to match log and
core data. However, when a dubious correlation is seen. an
additional evaluation can be performed with the variograms
for the two data types. If the variograms are similar and can
be connected via the scaling, it probably indicates that the
depth match has been poorly performed and should be re-
evaluated.

The core-porosity variogram shows clear cyclic varia-
tions with a period at about 1.90 m (Figure 18). The vari-
ogram model has no nugget effect and two nested struc-
tures: (1) a spherical structure with sill equal to 2.82 and
range of 0.54 m, and (2) a hole effect model with amplitude
1.2 and peak at 0.95 m. It should be noted that it is some-
what uncertain to model a nested variogram with a hole
effect included, due to the interaction between the random
function and the periodic signal.

Derivation of Point-Scale Variogram from fine-scale data

The scaling laws developed previously are applied on
each nested variogram structure. The core-scale data shows
no nugget effect, and therefore no need for scaling of this.
For the spherical structure the correction to point variogram
range a, based on the core-scale range a, is: a,=a, —
(|v]—|p1’§, see equation (1) above. Where p indicates the
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FiG. 16 Histograms of (A) core plug and (B) well log porosity
data from the selected interval in the MFB-7 well. Note that the
log data has reduced variance compared to the core data.
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point scale, which has a length scale of zero and v indicates
plug scale, which is 0.02 m. Thus, the corrected range for
the spherical nested structure is = 0.54—(0.02-0) = 0.52m.

For the hole effect structure, the wavelength for the peri-
odic structure is not affected, and the peak distance used for
the modeling is kept constant at 0.95 m for the point scale
variogram. This is in accordance with the basic principle
that filtering a periodic signal cannot affect its wavelength.

The sill of each basic structure is corrected according to
equation (2) presented above. The gamma-bar values are
calculated numerically for all needed I'(v,v) values. For all
calculations of mean variogram values we assume one-
dimensional averaging of the data. This entails that the well
data are only averaged in the vertical direction, which is a
fair assumption given that it is a layered formation with
large horizontal continuity; therefore, the investigation
depth is not to be considered in this case.

The value for I'(v,v) for the spherical structure can be cal-
culated using the point-scale variogram description. For
calculation of T'(v,v), the volume v is defined as the core-
plug volume of 5 X 2 X 2 ¢cm with a vertical length scale
measure of 2 c¢m, giving a I'(v.v),, value of 0.019, and a
resulting point-scale sill C, of 2.87 for the spherical struc-
ture. This is compared to the core-scale sill value of the
spherical structure C, of 2.82.

The same procedure is used for the hole effect variogram
for the amplitude scaling, giving T'(v.v);, = 0.0004, and
therefore a virtually unchanged variance contribution of 1.2
for the point scale variogram.

In summary, the theoretically derived point-scale vari-
ogram structure has zero nugget and two nested structures:
(1) a spherical structure with range 0.52 m and sill of 2.87.
and (2) a hole effect structure with peak at 0.95 and a vari-
ance contribution of 1.2. This point-scale variogram is the
basis for all the gamma-bar calculations performed in con-
nection with the up- and down-scaling using the scaling
laws.

Prediction of Log-Scale Variogram from
the Core-Scale Variogram

The predicted variogram for log-scale may be calculated
and compared to the experimental variogram from log-scale
data. The closeness of the match is a measure of the efficacy
of the scaling relations described above and the closeness of
the real data to the assumptions underlying the scaling rela-
tions. The calculations are carried out as described above in
the synthetic example.

The core-scale data shows no nugget effect (Figure 18).
therefore, there is no nugget effect at larger scales. The
range of the log-scale variogram range ay is calculated
based on the core-scale range a,. Given that the effective
averaging length represented in the log data is 0.53 m, this
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results in a range correction for the spherical structure from
the core-scale to log-scale

ul'.s;ah = 054 + (0.53 — 0.02] =1.05m.

For calculating the predicted variance (sill) values, the

_MFB-7 A-section

4 Number of data 56

correlation 0.728
4 rank correlation 0.673

—
24.0
Log-Porasity %

Fig. 17 Cross-plot of log and core porosity data from the
MFB-7 interval showing a fair correlation.
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FIG. 18 Experimental variogram of core porosity data from the
MFB-7 interval. The experimental variogram has been fitted with
a nested model of a spherical and hole effect variogram models.
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two structures are treated separately, and the sill of each
basic structure in the variogram model is modified as in
equation (2).

For the hole-effect structure the peak distance is not
changed from the original 0.95 m. The log-scale sill is
derived for the spherical structure and equals 1.56. Like-
wise the sill for the hole effect structure equals 0.92. The
total sill value for the log scale data is predicted as the sum
of these two contributions of 1.56 + 0.92 = 2.48, and the
theoretically derived model for the upscaled variogram can
now be compared to the data at the log scale (Figure 19).

The predicted sill value of 2.48 is close to the actual vari-
ance of 2.23 found in the log porosity data set and represents
an 11% difference from the log porosity data variance. A
variety of explanations is possible for this discrepancy
between the predicted and the measured variance. As men-
tioned, the exact resolution of the logging tool is uncertain
and this will have an effect on the variance. A lithological
effect is plausible to account for some of the difference,
since the logging instrument responds directly to bulk den-
sity of the formation and not to the porosity. This effect can
be illustrated with the relation between porosity measured
directly with He-porosimetry on plug samples and porosity
calculated from a measurement of bulk-density of the same
plug samples (Figure 20). Although the effect as seen in
Figure 20 is not dramatic, more pronounced differences in
mineralogical composition can increase the deviations.
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FiG. 19 Comparison of the core scale experimental variogram
(upper dots connected by dashed line), core scale variogram
model (upper solid line), log-scale experimental variogram
(lower dots connected by-line), and the theoretically derived
log-scale variogram (lower solid line), using an averaging vol-
ume of 0.5 m, which seems to match the actual experimental
variogram from the log scale data due to the cross-scaling effect
of variance reduction.
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The difference in variance for the two measures only
amounts to 2.5% for these chalk samples, but might reach
higher values in more heterogeneous lithologies. This
forms at least part of the explanation for the 11% deviation
previously shown to occur. It illustrates that the comparison
of different data types involves cross-scaling in addition to
up- or down-scaling (Corbett et al., 1998). The cross-
scaling is the determination of a relationship between two
different physical properties, whereas up-scaling is the
determination of an effective (or pseudo) property at a scale
larger than that of the original measurement. The definition
of these terms helps to separate the effects of the geology
(largely up-scaling) from that of the physics (largely cross-
scaling) in a more systematic manner (Corbett et al., 1998).
This is an example of a cross-scaling effect that in some
cases might account for a component of the variance differ-
ence between the theoretical prediction and the actual data.
Finally, the uncertainty in the variogram calculation and
modeling have to be considered, although it should be mini-
mized by using a consistent and systematic procedure for
variogram modeling (Gringarten and Deutsch, 2001; Fryk-
man, 2001).

* 500 Number of data 448
2> 1 X Variable: mean 27.429
i i std. dev. 4.211 ¢

40.0 v variable: mean 27.386 »"
% i std. dev. 4.268
- E correlation .999
% 300] @nkcomelation 998
E d
E i
£ 20.0]
g YN -
T : .
3 : -
8 10.0_
g I
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.0 10.0 20.0 30.0 40.0 50.0
Plug porosity measured directly, %

FIG. 20 lllustration of the cross-scaling effect in plug data from

a chalk sequence. The plug porosity is measured directly by
He-porosimetry, and in addition porosity can be calculated from
the directly measured bulk-density assuming a constant grain-
density of 2.71. The difference in variance between the two
parameters is due to the cross-scaling effect from lithology
deviations and measurement errors, effects that are observed
even for similar size volumes.
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Assessment of Tool Investigation Volume from
data at two different scales

Uncertainty is associated with the size and geometry of
the volume of averaging in a well-logging instrument; this
uncertainty could also occur for other indirect measurement
methods such as seismic records. For the current example
where the small-scale core data variogram and the experi-
mental log-scale variogram are known, the volume of meas-
urement of the well-log can be estimated. An inverse of the
procedure developed above for variance estimation is used.
The averaging volume is determined in an iterative fashion
until the theoretical gamma-bar prediction of variance
matches the actual well-log data derived variance.

Provided a reliable estimate of the point-scale variogram
is established, it is possible to calculate the theoretical
(V) for a range of different volume scales. Then. the
actual volume scale can be determined where the theoretical
P(V.V) matches the experimental 7* (V,I).

Background for average variogram value

The point () variance within an arbitrary volume v is
equal to the mean value ¥ of y(h) for all h and all directions
within that volume, where y(h) is the point-scale variogram
consisting of all nested structures, that is,

o’ (V)= (v v). 4)

Furthermore, given a larger region R, the additivity of
variance entails that,

ag’(“R)=0’(%v)+ 0’ (W.R) (5)

for any volume v. In words, the variance of points * in a
region R is equal to the variance of points » within a larger
volume v, plus the variance of that larger volume v within the
region R.

Consider two different volumes. v and V (e.g.. core and
log scale volumes). °(+,R) is the global stationary point
scale variance. Applying relation (5) to volumes v and V, the
experimental average variogram ¥(V.)) for the log-scale
volume may be expressed as

yyVy=y(v,v)+a*(v,R)—a*(V,R). (6)
In our case
FWV.V)=7(v,v)+4.02 —2.23 .

Now y(v.v) can be calculated given the real point scale
variograms as defined earlier, and as the sum of the contri-
bution from the two structures in the nested model, the
y(F.V) experimental is obtained as
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Y. V)=7(v,v) +4.02-223
=¥V, V) +7(V, V) jote +4.02 = 2,23
= 0.055 +0.0004 + 4.02 — 2.23 = 1.85

which then gives an independent assessment of the average
variogram value within log-scale volumes.

Applying this procedure with the point-scale variogram
model derived above leads to the results in Figure 21. The
cross plot shows that the experimental value for 7" (V,)) of

1.85 matches the theoretical values at a scale of 0.62 m.

This volume-measure of 0.62 m is the length of the verti-
cal averaging, and has to be calculated back to the tool
measurement geometry in the inclined wellbore. This gives
an effective tool resolution of 0.73 m, which is larger than
the 0.62 m that was predicted from the physics of the log-
ging tool. As mentioned there are some additional “uncer-
tainty” that causes the measure derived here to be a
“pseudo-source-detector spacing,” which accounts for a
variety of uncertain effects. A similar estimation of “seis-
mic detection volume™ could be derived from knowing the
variance of the impedances from well-log data and from the
seismic data.

Variogram shape change for real data

The moving average of the density-logging instrument
affects the shape of the variograms for the different data
types. The experimental variogram for moving average val-
ues tends to behave like it has an underlying Gaussian
model, even if the original fine-scale data honors a spherical
model. In practice this means that in cases where the log
data is modeled with a Gaussian variogram model. the
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FIG.21 Cross plot of the theoretical average variogram versus
the length scales close to the tool investigation length. The aver-
age variogram value of 1.85 is known experimentally permitting
an estimate of the scale of investigation, that is 0.62 m, which
corresponds to a tool averaging length of 0.72 m in the deviated
well.
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point-scale variogram most likely could have a less continu-
ous spherical model.

Scaling laws applied to a Middle Jurassic shallow marine
sandstone sequence

The Middle Jurassic sandy succession of the Upper
Bryne Formation in the Danish Central Graben consists
mainly of fluvial to tidally influenced shallow marine sedi-
ments. The specific sequence studied here is developed in
an estuarine setting in Middle to Late Callovian time
(Andsbjerg, 1997). The present data originates from a sec-
tion in the vertical well West Lulu-2 in the northwestern part
of the Danish Central Graben. A section of 17 m has been
selected from the Upper Bryne Formation, where mostly
shallow marine, tidally influenced, sandy and silty deposits
occur. The variability in the porosity reflects the bedded
nature of this part of the sequence (Figure 22).

The distribution of the two porosity measures from core
plugs and log data is shown in Figure 23. The scatter on the
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crossplot in Figure 24 is again attributed to the combination
of scale difference and the cross-scaling effects.

Downscaling from log to core scale

The exercise is to downscale the log data variogram to
the core data. As a start the calculated sill value of the log
data is adjusted for the missing variance attributable to the
cross-scaling effect. The variance of 8.3 is therefore
increased by 11%, which is the amount that was found in the
chalk example. This is probably a minimum estimate since
small-scale lithological variations are more severe in a clas-
tic sequence than in the fairly clean chalk sequence. The
new sill for modeling of the log scale variogram is therefore
adjusted to 9.2, and the range for the model variogram is
adjusted to fit through the experimental points around the
middle part (Figure 25).

After calculating the downscaled variogram we see a
good fit to the initial part of the variogram for the core
porosity data, and that match to the core data variance is
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FIG.22 The analyzed 17 m section in the well West-Lulu-2 showing the succession of facies from an estuarine environment, and

the log and core-derived data.
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nearly obtained (Figure 26). However, due to the uncertain-
ties in the variogram modeling and the cross-scaling effects,
the matching procedure is best performed as an iterative
process where the variance and range values are varied until
a reasonable compromise is reached.

Although there seems to be a weak hole effect in the
experimental variogram, it has not been included in the
variogram models. This was decided partly because of the
difficulty in obtaining a match to the wavelength of the hole
effect if we want to fit the whole variogram. The apparent
hole effect is due to a deterministic layering effect in combi-
nation with the limited extent of the sequence analyzed.
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FiG. 23 Histograms of core porosity and log porosity from the
interval in the West-Lulu-2 well, showing variance of 13.6 and
8.3 respectively.
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FiG.24 The scatter on the porosity crossplot is attributed to the

combination of scale difference, mismatch of core-log position,
and the cross-scaling effects.
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DISCUSSION

The case studies illustrate that the comparison of differ-
ent data types can be achieved via the scaling laws. A good
understanding of the averaging volume for the different
scales is necessary, and besides the up- and down-scaling,
cross-scaling effects must be considered. Cross-scaling is
the determination of a relationship between two different
physical properties, whereas up-scaling is the determina-
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FIG. 25 Experimental variogram for the log porosity (dots).
The horizontal line is the stationary variance of 8.3, while the
model variogram is fitted with an increased sill value of 9.2 to
compensate for the uncertainty and cross-scaling reduction.

LAB (LB A o an et e on s e |

——r— T
00 100 200 300 400 500 600 700 8.00
Distance m

FiG. 26 Experimental variogram for log porosity (lower dots)
and core porosity (upper dots) and the model variograms (lines)
for downscaling to core plug scale. The horizontal dashed line is
the stationary variance of 13.6 for the core plug scale data.
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tion of an effective (or pseudo-) property at a scale larger
than that of the original measurement. The definition of
these terms is a help to separate the effects of geology
(largely up-scaling) from that of the physics (largely cross-
scaling) in a more systematic manner (Corbett et al., 1998).
A better understanding of the magnitude of cross-scaling
effects requires the study of more examples of different
sedimentary sequences.

An additional effect that causes some uncertainty is the
moving average effect during the use of wire-line logging
tools and the subsequent processing with filters. This could
change the shape of the variograms for the different data
types. The experimental variogram for moving average val-
ues tends to behave like it has an underlying Gaussian
model, even if the original fine-scale data honors a spherical
model. However, this effect has not been noted as signifi-
cant in the real data examples shown here, but should be
kept in mind for other cases investigated.

A slight extension of the traditional scaling rules is pro-
posed for periodic components in the core data and well log
signals. The increasing interest in recognizing cyclicity in
sedimentary sequences underlines the importance of adding
the treatment of cyclicity in the scaling, but more work is
needed in this area.

The theoretical upscaling applied in the example
matches very well the actual data, despite some uncertain-
ties regarding the effects of the cross-scaling variance
reduction, and modeling uncertainties. The back-
calculation of the averaging volume from the spatial statis-
tics is a useful supplement to analytical calculations and
studies regarding logging instrument responses, and could
possibly also be applied to seismic data to analyze volumes
and resolution aspects in these larger-scale data.

CONCLUSIONS AND FUTURE WORK

The increasing diversity of data available for geostatisti-
cal modeling, and the requirement to incorporate them in
modeling raises the issue of scaling different data. Tradi-
tional scaling laws have been revived and made available
for numerical analysis. There remain, however, some sig-
nificant assumptions that must be addressed in future work.

A significant assumption is that the petrophysical prop-
erty must average linearly. This is appropriate for facies
indicator variables and porosity: however, acoustic proper-
ties and permeability do not average linearly. A power-law
formalism could be used whereby the original variable is
transformed to a variable that, in general, averages linearly.

Another significant assumption in the use of conven-
tional volume-variance relations is that the spatial variabil-
ity is completely characterized by a stationary random func-
tion using 2-point variogram/covariance measures of corre-
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lation. No higher order non-linear spatial connectivity is
accounted for.

This paper shows that there is a future for scaling laws as
an applied tool in the integration of data in reservoir model-
ing. By simultaneous use of data from the different scales,
we achieve more reliable reservoir characterization, and
thereby more reliable predictions of reservoir performance.

The scaling laws also have the immediate potential to be
incorporated directly into simulation routines, thereby ena-
bling simultaneous consideration of hard data at different
scales.

NOMENCLATURE

range parameter for variogram

a, =  range parameter for variogram for data at scale v
C = sill parameter for variogram

C" = nugget value for variogram

D* = variance

R =  large scale region

Vv = volume for coarse scale

v = volume for fine scale

g = variance for defined scales

. =  point scale

True vertical depth

standard variogram (unit variogram at
point-scale)

I average standard variogram value

Y = variogram value

v =  average variogram for a defined volume

¥ = experimental average variogram value

y(h) =  experimental variogram value for separation
distance h

h =  separation distance vector

z(u) = variable value at location u

N = number of pairs in variogram calculation

Subscripts

hole =  hole effect in variogram model

sph = spherical structure for variogram model
gau Gaussian structure for variogram model
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APPENDIX A
THE VARIOGRAM

The variogram is a critical input to geostatistical studies:
(1) itis a tool to investigate and quantify the spatial variabil-
ity of the phenomenon under study by calculating the
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experimental variogram from the data available, and (2) the
underlying techniques behind most geostatistical estima-
tion or simulation algorithms require an analytical vari-
ogram model, which they will honor. The variogram
reflects our understanding of the heterogeneity pattern and
the continuity of facies and petrophysical properties. Het-
erogeneity can have a very important impact on predicted
flow behavior and consequently on the decisions on reser-
voir management. The best variogram description is not
obtained just by fitting an analytical model to the experi-
mental variogram values derived from data, but must also
consider knowledge about geological setting.

The variogram is treated in most geostatistical textbooks
with varying detail and nomenclature (Isaaks and Srivas-
tava, 1989: Goovaerts. 1997: Deutsch and Journel, 1998),
and this appendix is just a brief summary of some main
points related to the description and simulation of geologi-
cal patterns.

Definition of the semivariogram

In geostatistics the statistic that quantifies the measure of
variability is the variogram. The variogram increases as the
values of properties measured on a set of samples become
more dissimilar. The formula for the “semivariogram” is
written conventionally in terms of a “lag™ h, and a set of
observations z, known as attributes, made at a number of
locations x. The difference in attributes for pairs of spatially
separated samples are compared for increasing values of the
lag using

I Vil -
h)y=—— 2{x, +h)Y—z(x;)) A.l
y(h) M(h);‘,({ )—z(x,))"  (AD)
L"‘r - ¥ o TTT Tv - = - T = - T
w‘ ’ = b = - . = - - = - = = e - - al X
Lag2 :
Lag1

Value
B N

" Distance

FiG. A.1 Calculation of the variogram values for regularly
spaced data. Data pairs are compared for each lag distance.
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where the N(h) is a count of the possible pairing at each lag
used to compute the function. The variogram is truncated at
the value of lag where the diminishing number of possible
pairings loses statistical significance. The variogram thus
defined can be applied to irregularly spaced observations
distributed in two-, or even three-, dimensional space. How-
ever, for regularly spaced, colinear observations available
from well logs (A.1) can be translated into a simple compu-
tational recipe.

For example, for A regularly spaced observations with
an interval denoted by A there will be N = N— | intervals
with lag A, N= V-2 intervals with lag 2A, ... . and N = V72
intervals with lag A/2 if NVis even, or N = (N+ 1)/2 inter-
vals with lag v— 1/ 2 if Vis odd. Denoting the jth value of
the lag as &y, with the corresponding number of samples
denoted by N,. then

e 2
y(hy=> 2(;(;, + h)=z(x,)) (A.2)

where 1 = j < N2or | < j < (N+ 1)/2 depending upon
whether Vis even or odd, respectively. Finally, y (/) is plot-
ted against /. With proper attention to the interpretation of
the lags, this same formula would apply to irregularly
spaced data such as is collected from core plugs.

The strict definition of the variogram is twice the semi-
variogram or 2y(h), but for convenience the semivariogram
is usually referred to as the “variogram™ except where
mathematical rigor requires a precise definition.

Calculating the experimental variogram from data

As mentioned above, one of the first steps in geostatisti-
cal studies is to calculate the experimental variogram from
the available data. These data are often irregularly sampled
data, or they might be found on a regular grid. Since the ori-
entation is very important for analyzing the spatial correla-
tion, the variogram calculation is usually directed in speci-
fied directions, most commonly into a vertical and a hori-
zontal variogram. For a simple illustration, data from a 1D
example is used in the following.

The principles for calculating the experimental vari-
ogram from regularly spaced data are illustrated in Figure
A.1. For lag distance = | the squared differences for all pairs
are summed and divided by 2N ; (N = number of pairs, in
this case 19 pairs exist with separation distance 1). This
gives the first point for the variogram in Figure A.2. The
point for lag = 2 is calculated by comparing points with
spacing of 2, and so forth.

This case is easy to illustrate due to the 1D geometry and
the regular lags (as it would be for logging data). For
irregularly spaced values, the lag distance has a tolerance
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interval within which the values are considered. For 3D data
a tolerance is needed for both the separation distance and
the orientation angle of the distance measurement.

Variogram terminology

The experimental variogram points are not used directly
in subsequent geostatistical steps: a parametric variogram
model is fitted to the experimental points. A requirement is
that we have a variogram measure y(h) for all distance and
direction vectors (h) that has the mathematical property of
positive definiteness, that is, we must be able to use the vari-
ogram in kriging and stochastic simulation. The positive
definite model ensures that the kriging equations can be
solved and that the kriging variance is positive. For these
reasons there are specific positive definite functions such as
the spherical, exponential, Gaussian, and hole effect vari-
ogram models that are commonly used.

Variogram modeling involves skilled decision-making,
but there is a systematic procedure for variogram modeling
(Gringarten and Deutsch 2001).

Simple parametric model types are available to model
the variogram (Figure A.3). For a given model some basic
terms are used to describe the variogram model shape (Fig-
ure A.4). The “nugget” value is the variance at a lag dis-
tance just larger than 0, and signifies noise or unresolved
fine-scale structure. The “sill” is the variance level where
the variogram stabilizes. The correlation “range” is the lag
distance where the sill is reached. As shown on Figure A.3
the spherical model has a well-defined range, but for the

two other model types, exponential and Gaussian, a “practi-
cal range” is used where 95% of the sill is reached.

Some variograms show a periodic component, called a
“hole effect” (Figure A.5) where the first trough signifies
the wavelength of the periodic signal.

The simple variogram shapes introduced here can be
combined as “nested structures” to reproduce more compli-
cated experimental variogram shapes. Moreover, the range
of continuity can be different in orthogonal directions. The
vertical range is usually 1-3 orders of magnitude smaller
than the horizontal range.

'1'20' ' '1.30.
Range=1.0

FiG. A.3 The most commonly used analytical variogram mod-

els shown with a practical range of 1 m.
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FIG. A.2 The experimental variogram calculated from the data FiG. A.4 lllustration of the terminology used for a variogram
shown in Figure A.1. model.
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FiG. A.6 Simulation in 1D using the three different variogram

FIG.A.5 Variogram model including a periodic componentthat ~ models with the same range and sill values.
is showing up as a hole effect in the variogram.

FIG. A.7 Simulation in 2D using the three common variogram models with the same range and sill values.
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Stochastic simulation using a variogram model

The variogram model is an important tool together with
the target histogram and actual data measurements. The
three different variogram models of Figure A.3 will produce
different simulated realizations even using the same other
input data. This is shown for a 1D example in Figure A.6
and for a 2D example in Figure A.7. The exponential model
gives a simulation that looks “noisy.” which is due to the
steep increase in variance for small distances in the vari-
ogram model. The Gaussian variogram model gives a much
smoother result, and the spherical model is an intermediate
form.

The very different behavior of the three commonly used
models are shown especially for 2D modeling in Figure
A.7. Therefore, variogram models should not be con-
structed or chosen by mere fitting to points from the experi-
mental calculation, but should be selected according to the
expected pattern in the specific data type that is under
evaluation. For the best selection, expert knowledge and
qualitative data from analogues form the best support.
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