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GLOSSARY

Declustering Technique to assign relative weights to dif-
ferent data values based on their redundancy with
nearby data. Closely spaced data get less weight.

Kriging After the name of D. G. Krige, this term refers to
the procedure of constructing the best linear unbiased
estimate of a value at a point or of an average over a
volume.

Realization Nonunique grid of simulated values. A set of
realizations 1s used as a measure of uncertainty in the
variable being studied.

Simulation Procedure of adding correlated error by
Monte Carlo to create a value that reflects the full vari-
ability.

Variogram Basic tool of the theory used to characterize
the spatial continuity of the variable.

GEOSTATICS commonly refers to the theory of region-
alized variables and the related techniques that are used
to predict variables such as rock properties at unsampled
locations. Matheron formalized this theory in the early
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1960s (Matheron, 1971). Geostatistics was not developed
as a theory in search of practical problems. On the con-
trary, development was driven by engineers and geologists
faced with real problems. They were searching for a con-
sistent set of numerical tools that would help them address
real problems such as ore reserve estimation, reservoir
performance forecasting, and environmental site charac-
terization. Reasons for seeking such comprehensive tech-
nology included (1) an increasing number of data to deal
with, (2) a greater diversity of available data at differ-
ent scales and levels of precision, (3) a need to address
problems with consistent and reproducible methods, (4)
a belief that improved numerical models should be pos-
sible by exploiting computational and mathematical de-
velopments 1n related scientific disciplines, and (5) a be-
lief that more responsible decisions would be made with
improved numerical models. These reasons explain the
continued expansion of the theory and practice of geo-
statistics. Problems in mining, such as unbiased estimation
of recoverable reserves, initially drove the development
of geostatistics. Problems in petroleum, such as realis-
tic heterogeneity models for unbiased flow predictions,
were dominant from the mid-1980s through the late 1990s.
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Geostatistics is applied extensively in these two areas and
1s increasingly applied to problems of spatial modeling
and uncertainty in environmental studies, hydrogeology,
and agriculture.

|. ESSENTIAL CONCEPTS

Geostatistics 1s concerned with constructing high-
resolution three-dimensional models of categorical vari-
ables such as rock type or facies and continuous variables
such as mineral grade, porosity, or contaminant concen-
tration. It 1s necessary to have hard truth measurements
at some volumetric scale. All other data types, including
remotely sensed data, are called soft data and must be cali-
brated to the hard data. It is neither possible nor optimal to
construct models at the resolution of the hard data. Mod-
els are generated at some intermediate geologic modeling
scale, and then scaled to an even coarser resolution for pro-
cess performance. A common goal of geostatistics is the
creation of detailed numerical three-dimensional geologic
models that simultaneously account for a wide range of
relevant data of varying degrees of resolution, quality, and
certainty. Much of geostatistics relates to data calibration
and reconciling data types at different scales.

At any instance in geologic time, there is a single true
distribution of variables over each study area. This true
distribution 1s the result of a complex succession of phys-
ical, chemical, and biological processes. Although some
of these processes may be understood quite well, we do
not completely understand all of the processes and their
interactions, and could never have access to the boundary
conditions in sufficient detail to provide the unique true
distribution of properties. We can only hope to create nu-
merical models that mimic the physically significant fea-
tures. Uncertainty exists because of our lack of knowledge.
Geostatistical techniques allow alternative realizations to
be generated. These realizations are often combined in a
histogram as a model of uncertainty.

Conventional mapping algorithms were devised to cre-
ate smooth maps to reveal large-scale geologic trends; they
are low-pass filters that remove high-frequency property
variations. The goal of such conventional mapping algo-
rithms, including splines and inverse distance estimation,
is not to show the full variability of the variable being
mapped. For many practical problems, however, this vari-
ability has a large affect on the predicted response. Geosta-
tistical simulation techniques, conversely, are devised with
the goal of introducing the full variability, that is, creating
maps or realizations that are neither unique nor smooth.
Although the small-scale variability of these realizations
may mask large-scale trends, geostatistical simulation is
more appropriate for most engineering applications.

Genstatistics

There are often insufficient data to provide reliable
statistics, For this reason, data from analogous, more
densely sampled study areas are used to help infer spatial
statistics that are impossible to calculate from the available
data. There are general features of certain geologic settings
that can be transported to other study areas of similar geo-
logic setting. Although the use of analogous data is often
essential in geostatistics, it should be critically evaluated
and adapted to fit any hard data from the study area.

A sequential approach is often followed for geostatis-
tical modeling. The overall geometry and major layering
or zones are defined first, perhaps deterministically. The
rock types are modeled within each major layer or zone.
Continuous variables are modeled within homogeneous
rock types. Repeating the entire process creates multiple
equally probable realizations.

A. Random Variables

The uncertainty about an unsampled value z is modeled
through the probability distribution of a random variable
(RV) Z. The probability distribution of Z after data condi-
tioning is usually location-dependent; hence the notation
Z(u), with u being the coordinate location vector. A ran-
dom function (RF) is a set of RVs defined over some field
of interest, e.g., Z(u), u € study area A. Geostatistics is
concerned with inference of statistics related to a random
function (RF).

Inference of any statistic requires some repetitive sam-
pling. For example, repetitive sampling of the variable z(u)
1s needed to evaluate the cumulative distribution function:
F(u; z) =Prob{Z(u) < z} from experimental proportions.
However, at most, one sample is available at any single lo-
cation u; therefore, the paradigm underlying statistical in-
ference processes is to trade the unavailable replication at
location u for replication over the sampling distribution of
z samples collected at other locations within the same field.

This trade of replication corresponds to the decision
of stationarity. Stationarity is a property of the RF model,
not of the underlying physical spatial distribution. Thus, it
cannot be checked from data. The decision to pool data into
statistics across rock types is not refutable a priori from
data; however, it can be shown inappropriate a posteriori
if differentiation per rock type is critical to the undergoing
study.

II. QUANTIFICATION OF SPATIAL
VARIABILITY

A. Declustering

Data are rarely collected with the goal of statistical rep-
resentivity. Wells are often drilled in areas with a greater
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probability of good reservoir quality. Core measurements
are taken preferentially from good-quality reservoir rock.
These data-collection practices should not be changed;
they lead to the best economics and the greatest number
of data in portions of the reservoir that contribute the great-
est flow. There is a need, however, to adjust the histograms
and summary statistics to be representative of the entire
volume of interest.

Most contouring or mapping algorithms automatically
correct this preferential clustering. Closely spaced data in-
form fewer grid nodes and, hence, receive lesser weight.
Widely spaced data inform more grid nodes and, hence,
recelve greater weight. Geostatistical mapping algorithms
depend on a global distribution that must be equally rep-
resentative of the entire area being studied.

Declustering techniques assign each datum a weight,
w;, i=1,...,n, based on its closeness to surrounding
data. Then the histogram and summary statistics are calcu-
lated with the declustering weights. The weights w;, i = 1,
..., n, are between 0 and 1 and add up to 1.0. The height
of each histogram bar is proportional to the cumulative
weight in the interval, and summary statistics such as
the mean and variance are calculated as weighted aver-
ages. The simplest approach to declustering is to base the
weights on the volume of influence of each sample. Deter-
mining a global representative histogram is the first step
of a geostatistical study. The next step is to quantify the
spatial correlation structure.

B. Measures of Spatial Dependence

The covariance, correlation, and variogram are related
measures of spatial correlation. The decision of station-
arity allows inference of the stationary covariance (also
called auto covariance):

C(h) = E[Zu+h) - Z(w)] — m?,

where m is the stationary mean. This is estimated from all
pairs of z-data values approximately separated by vector h.
At h =0 the stationary covariance C(0) equals the station-
ary variance o . The standardized stationary correlogram
(also called auto correlation) is defined as

p(h) = C(h)/o?.

Geostatisticians have preferred another two-point measure
of spatial correlation called the variogram:

2y(h) = E{[Z(u +h) — ZW)]*}

The variogram does not call for the mean m or the variance
o?; however, under the decision of stationarity the covari-
ance, correlogram, and variogram are equivalent tools for
characterizing two-pomt correlation:
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Cth)=0"- p(h) =0’ — y(h)

This relation depends on the model decision that the mean
and variance are constant and independent of location.
These relations are the foundation of variogram interpreta-
tion. That s, (1) the “sill” of the variogram is the variance,
which is the variogram value that corresponds to zero cor-
relation; (2) the correlation between Z(u) and Z(u + h) is
positive when the variogram value is less than the still; and
(3) the correlation between Z(u) and Z(u + h) is negative
when the variogram exceeds the sill.

C. Anisotropy

Spatial continuity depends on direction. Anisotropy in
geostatistical calculations is geomerric, that is, defined by
a triaxial Cartesian system of coordinates. Three angles
define orthogonal x, y, and z coordinates and then the
components of the distance vectors are scaled by three
range parameters to determine the scalar distance, that is,

[

a, ay d.
where hy, hy, and h, are the components of a vector h
in three-dimensional coordinate space and a., a,, and a;
are scaling parameters in the principal directions. Contour
lines of equal “distance” follow ellipsoids. The use of z for
the random variable and a coordinate axis is made clear by
context. The three x, y, and z coordinates must be aligned
with the principal directions of continuity. A coordinate
rotation may be required.

The directions of continuity are often known through
geologic understanding. In case of ambiguity, the vari-
ogram may be calculated in a number of directions. A
variogram map could be created by calculating the vari-
ogram for a large number of directions and distances; then,
the variogram values are posted on a map where the center
of the map is the lag distance of zero.

D. Variogram Modeling

The variogram is calculated and displayed in the princi-
pal directions. These experimental directional variogram
points are not used directly in subsequent geostatistical
steps such as kriging and simulation; a parametric vari-
ogram model is fitted to the experimental points. There are
two reasons why experimental variograms must be mod-
eled: (1) there is a need to interpolate the variogram func-
tion for h values where too few or no experimental data
pairs are available, and (2) the variogram measure y(h)
must have the mathematical property of “positive defi-
niteness” for the corresponding covariance model—that
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FIGURE 1 Typical variogram structures that are combined together in nested structures to fit experimental vari-
ograms. Anisotropy, that is, different directional variograms, are brought to the same distance units by geometric

scaling.

is, we must be able to use the variogram and its covariance
counterpart in kriging and stochastic simulation. For these
reasons, geostatisticians have fitted sample variograms
with specific known positive definite functions such as
the spherical, exponential, Gaussian, and hole-effect var-
iogram models (see Fig. 1).

A variogram model can be constructed as a sum of
known positive-definite licit variogram functions called
nested structures. Each nested structure explains a fraction
of the variability. All nested structures together describe
the total variability, o*. Interactive software is typically
used to fit a variogram model to experimental points in
different directions.

lll. SPATIAL REGRESSION OR KRIGING

A. Point Estimation

An 1mportant application of geostatistics is to calculate
estimates at unsampled locations. The basic idea is to pro-
pose a liner estimate of the residual from the mean:

() — m(u) = ) A - [2(ug) — m(uy)],

=1

where z"(u) is an estimate made with n data, m(u) is the
mean value known at all locations, and A,, =1, ..., n,
are weights that account for how close the n data are to the
location being estimated and how redundant the data are
with each other. The weights could be assigned inversely

proportional to the distance between the data u, and
location being estimated, u; however, a better procedure
18 to use the variogram and minimize the error variance.

B. Simple Kriging

Least-squares optimization has been used for many years.
The 1dea, proposed by early workers in geostatistics, was
to calculate the weights to be optimum in a minimum
squared error sense, that is, minimize the squared differ-
ence between the true value z(u) and the estimator z*(u).
Of course, the true values are known only at the data loca-
tions, not at the locations being estimated. Therefore, as
1s classical in statistics, the squared error is minimized in
the expected value.

The geostatistical technique known as simple kriging
is a least-squares regression procedure to calculate the
weights that minimize the squared error. A set of n equa-
tions must be solved to calculate the n weights:

Ziﬁciuﬁ—uw)=ﬂ'(u—uﬁ, a=1,...,n.
g=1

Recall that C(h) = o — y(h); therefore, knowledge of the
variogram model permits calculation of all needed covari-
ance terms. The left-hand side contains all of the informa-
tion related to redundancy in the data, and the right-hand
side contains all of the information related to closeness
of the data to the location being estimated. Kriging is
the best estimator in terms of minimum error variance,
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Kriging is an exact estimator; that is, the kriging estima-
tor at a data location will be the data value. The minimized
eITor variance or kriging variance can be calculated for all
estimated locations:

Jﬁ(u} =g*— le SC( =g ),

=1

where the kriging variance is the global variance, o2, in

the presence of no local data and O at a data location. The
kriging estimates and kriging variance can be calculated
at each location and posted on maps.

C. Constrained Kriging

The basic estimator written in Section III.A requires the
mean m(u) at all locations. A number of techniques have
been developed in geostatistics to relax this requirement.
Ordinary kriging, for example, assumes that the mean m
1s constant and unknown. A constraint is added to the
kriging equations to enforce the sum of the weights to
equal 1, which amounts to estimating the mean at each
location. Universal kriging assumes the mean follows a
particular parametric shape; the parameters are estimated
at each location. These constrained versions of kriging
make a different decision regarding stationarity.

D. Multiple Variables

The term kriging is traditionally reserved for linear re-
gression using data with the same variable as that being
estimated. The term cokriging isreserved for linear regres-
sion that also uses data defined on different attributes. For
example, the porosity value z(u) may be estimated from
a combination of porosity samples and related acoustic
impedance values, y(u). Kriging requires a model for the
Z variogram. Cokriging requires a joint model for the
matrix of variogram functions including the Z variogram,
yz(h), the Y variogram, yy(h), and the cross Z-Y vari-
ogram yz_y(h). When K different variables are consid-
ered, the covariance matrix requires K* covariance func-
tions. The inference becomes demanding in terms of data
and the subsequent joint variogram modeling; however,
cokriging provides the minimum error-variance estimator
of the variable at an unsampled location using multiple
data variables.

E. Smoothing

Kriging estimates are smooth. The kriging variance is a
quantitative measure of the smoothness of the kriging esti-
mates. There is no smoothing when kriging at a data loca-
tion, oz = 0. There is complete smoothness when kriging
with data far from the location being estimated; the es-
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timate 1s equal to the mean and the kriging variance is
the full variance, o7 =o?. This nonuniform smoothing
of kriging is the largest shortcoming of kriging for map
making. A map of kriging estimates gives an incorrect
picture of variability, and calculated results such as recov-
erable reserves and flow properties are wrong. Simulation

corrects for the smoothing of kriging.

IV. SIMULATION

A. Sequential Gaussian Simulation

The 1dea of simulation is to draw multiple, equally prob-
able realizations from the random function model. These
realizatios provide a joint measure of uncertainty. Each
realization should reproduce (1) the local data at the cor-
rect scale and measured precision, (2) the global station-
ary histogram within statistical fluctuation, and (3) the
global stationary variogram or covariance within statisti-
cal fluctuation. There is much discussion in the geosta-
tistical literature about different random function models.
The most commonly used, however, is the multivariate
Gaussian model. The data are first transformed so that
the global stationary histogram is Gaussian or normal.
Then, all multivariate distributions of n points taken at
a time are assumed to follow the mathematically conge-
nial Gaussian distribution. There are many techniques to
draw simulations from a multivariate Gaussian random
function. The sequential approach gained wide popular-
ity in the 1990s because of its simplicity and flexibility.
The sequential Gaussian simulation (SGS) algorithm is as
follows.

1. Transform the original Z data to a standard normal
distribution (all work will be done in “normal” space).
There are different techniques for this transformation.
The normal score transformation whereby the normal
transform y is calculated from the original variable z as
y =G~ [F(z)], where G(-) is the standard normal cumu-
lative distribution function (cdf) and F(+) is the cdf of the
original data.

2. Go to a location u (chosen randomly from the set of
locations that have not been simulated yet) and perform
kriging to obtain a kriged estimate and the corresponding
kriging variance.

3. Draw a random residual R(u) that follows a normal
distribution with mean of (.0 and a variance of ::r% (u). Add
the kriging estimate and residual to get a simulated value.
The independent residual R(u) is drawn with classical
Monte Carlo simulation.

4. The simulated value is added to the data set and
used in future kriging and simulation to ensure that the
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variogram between all of the simulated values is correct.
A key idea of sequential simulation is to add previously
simulated values to the data set.

5. Visitall locations in arandom order (return to step 2).
There is no theoretical requirement for a random order or
path; however, practice has shown that a regular path can
induce artifacts. When every grid node has been assigned,
the data values and simulated values are back-transformed
to real units.

Repeating the entire procedure with a different random
number seeds creates multiple realizations. The proce-
dure is straightforward; however, there are a number of
implementation issues, including (1) a reasonable three-
dimensional model for the mean m(u) must be established.,
(2) the input statistics must be reliable, and (3) reproduc-
tion of all input statistics must be validated.

B. Alternatives to Sequential Approach

Many algorithms can be devised using the properties
of the multi-Gaussian distribution to create stochastic
simulations: (1) matrix approaches (LU decomposition),
which are not used extensively because of size restric-
tions (an N x N matrix must be solved, where N could
be in the millions for reservoir applications); (2) turn-
ing bands methods, where the variable is simulated on
one-dimensional lines and then combined into a three-
dimensional model, which is not commonly used because
of artifacts; (3) spectral methods using fast Fourier trans-
forms can be CPU-fast, but the grid size N must be a power
of 2 and honoring conditioning data requires an expensive
kriging step; (4) fractals, which are not used extensively
because of the restrictive assumption of self-similarity, and
(5) moving-average methods, which are used infrequently
due to CPU requirements.

C. Indicator Simulation

The aim of the indicator formalism for categorical vari-
ables is to simulate the distribution of a categorical vari-
able such as rock type, soil type, or facies. A sequential
simulation procedure is followed, but the distribution at
each step consists of estimated probabilities for each cat-
egory: p*(k). k=1, ..., K. where K is the number of
categories. The probability values are estimated by first
coding the data as indicator or probability values—that is,
an indicator is 1 if the category is present, and 0 otherwise.
The Monte Carlo simulation at each step is a discrete cat-
egory. Requirements for indicator simulation include K
variograms of the indicator transforms and K global pro-
portions.

(eostatisics

V. SPECIAL TOPICS

A. Object-Based Modeling

Object-based models are becoming popular for creating
facies models in petroleum reservoirs. The three key is-
sues to be addressed 1n setting up an object-based model
are (1) the geologic shapes, (2) an algorithm for object
placement, and (3) relevant data to constrain the result-
ing realizations. There is no inherent limitation to the
shapes that can be modeled with object-based techniques.
Equations, a raster template, or a combination of the two
can specify the shapes. The geologic shapes can be mod-
eled hierarchically—that is, one object shape can be used
at large scale and then different shapes can be used for
internal small-scale geologic shapes. It should be noted
that object-based modeling has nothing to do with object-
oriented programming in a computer sense.

The typical application of object-based modeling is
the placement of abandoned sand-filled fluvial channels
within a matrix of floodplain shales and fine-grained sedi-
ments. The sinuous channel shapes are modeled by a one-
dimensional centerline and a variable cross section along
the centerline. Levee and crevasse objects can be attached
to the channels. Shale plugs, cemented concretions, shale
clasts, and other non-net facies can be positioned within
the channels. Clustering of the channels into channel com-
plexes or belts can be handled by large-scale objects or as
part of the object-placement algorithm.

Object-based facies modeling is applicable to many dif-
ferent depositional settings. The main limitation 1S com-
ing up with a suitable parameterization for the geologic
objects. Deltaic or deep-water lobes are one object that
could be defined. Eolean sand dunes, remnant shales, and
different carbonate facies could also be used.

B. Indicator Methods

The indicator approach to categorical variable simulation
was mentioned earlier. The idea of indicators has also been
applied to continuous variables. The key idea behind the
indicator formalism 1s to code all of the data in a com-
mon format, that is, as prebability values. The two main
advantages of this approach are (1) simplified data inte-
gration because of the common probability coding, and
(2) greater flexibility to account for different continuity
of extreme values. The indicator approach for continuous
data variables requires significant additional effort versus
Gaussian techniques.

The aim of the indicator formalism for continuous vari-
ables 1s to estimate directly the distribution of uncertainty
F*(z) at unsampled location u. The cumulative distribu-
tion function is estimated at a series of threshold values:
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zt, k=1, ..., K. The indicator coding at location u, for
a particular threshold zj 1s

i(0y:z:) = Prob[Z(u,) < z;]

1, if z(u,) < zi,

0, otherwise.

All hard data z(u,) are coded as discrete zeros and ones.
Soft data can take values between zero and one. The in-
dicator transform for a threshold less than the data value
is zero, since there is no probability that the data value 1s
less than the threshold; the indicator transform for a very
high threshold is one, since the data value 1s certainly less
than the threshold.

The cumulative distribution function at an unsam-
pled location at threshold z; can be estimated by krig-
ing. This “indicator kriging” or IK requires a variogram
measure of correlation corresponding to each threshold
zt, k=1,..., K. The IK process is repeated for all K
threshold values that discretize the interval of variabil-
ity of the continuous attribute Z. The distribution of un-
certainty, built from assembling the K indicator krig-
ing estimates, can be used for uncertainty assessment or
simulation.

C. Simulated Annealing

The method of simulated annealing is an optimization
technique that has attracted significant attention. The task
of creating a three-dimensional numerical model that re-
produces some data is posed as an optimization problem.
An objective function measures the mismatch between the
data and the numerical model. An initial random model
is successively perturbed until the objective function is
lowered to zero. The essential contribution of simulated
annealing is a prescription for when to accept or reject a
given perturbation. This acceptance probability distribu-
tion is taken from an analogy with the physical process
of annealing, where a material is heated and then slowly
cooled to obtain low energy.

Simulated annealing is a powerful optimization algo-
rithm that can be used for numerical modeling; however,
it is more difficult to apply than kriging-based methods
because of difficulties in setting up the objective func-
tion and choosing many interrelated parameters such as
the annealing schedule. Therefore, the place of simulated
annealing is not for conventional problems where kriging-
based simulation is adequate. Simulated annealing is ap-
plicable to difficult problems that involve (1) dynamic
data, (2) large-scale soft data, (3) multiple-point statis-
tics, (4) object placement, or (5) special continuity of
extremes.
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D. Change of Support

Reconciling data from different scales is a long-standing
problem in geostatistics. Data from different sources, in-
cluding remotely sensed data, must all be accounted for in
the construction of a geostatistical reservoir model. These
data are at vastly different scales, and it is wrong to ig-
nore the scale difference when constructing a geostatisti-
cal model. Geostatistical scaling laws were devised in the
1960s and 1970s primarily in the mining industry, where
the concern was mineral grades of selective mining unit
(SMU) blocks of different sizes. These techniques can be
extended to address problems in other areas, subject to
implicit assumptions of stationarity and linear averaging.

The first important notion in volume-variance relations
is the spatial or dispersion variance. The dispersion vari-
ance D?(a, b) is the variance of values of volume a in a
larger volume b. In a geostatistical context, all variances
are dispersion variances. A critical relationships in geo-
statistics is the link between the dispersion variance and
the average variogram value:

D*(a, b) = y(b, b) — y(a, a).

This tells us how the variability of a variable changes with
the volume scale and variogram. The variability of a vari-
able with high short-scale variability decreases quickly,
since high and low values average out.

VI. APPLICATIONS AND EXAMPLES

A. Environmental

Figure 2 illustrates some of the geostatistical operations
applied to characterize the spatial distribution of lead con-
tamination over a 12,500-ft> area. There are five parts to
Fig. 2: (1) the upper left shows the location map of the
180 samples—there is no evident clustering that would
require declustering; (2) the equal-weighted histogram, at
the upper right, shows the basic statistics related to the
measurements—note the logarithmic scale; (3) the vari-
ogram, shown below the histogram, 1s of the normal scores
transform of the lead data—about 40% of the variability
is at very short distances and the remaining 60% of the
variability is explained over 4500 ft—the black dots are
the experimentally calculated points and the solid line is
the fitted model; (4) a map of kriging estimates on a 100-
ft* grid is shown at the lower left—note the smoothness of
the kriging estimates; and (5) a sequential Gaussian simu-
lation (SGS) realization is shown at the lower right—this
realization reproduces the 180 sample data, the input his-
togram, and the variogram model. A set of realizations
could be used to assess the probability that each location
exceeds some critical threshold of lead concentration.
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FIGURE 2 Location map (distance units in feet) of 180 samples, histogram of lead concentration, variogram of the
normal scores transform (hence the sill value of 1.0), a map of kriging estimates on a 100-f* grid and an SGS

realization over the same domain.

B. Mining

Figure 3 illustrates an example application to a vein-type
mineral deposit. The cross-sectional view at the upper left
1$ a vertical cross section facing west; the vertical coor-
dinate 1s meters below the surface. The drillhole intersec-
tions are clustered in the thickest part of the vein. The
polygonal areas of influence plotted on the location map
are used for declustering weights. The histogram at the up-
per right of the figure considers the declustering weights,
The variogram is shown below the histogram. Two nested
structures were used to fit this variogram. One sequential

Gaussian realization is shown at the lower left; 150 re-
alizations were generated. The probability of exceeding
I-m thickness is plotted at the lower right. The black lo-
cations are where the vein is measured to be greater than
I m 1n thickness (probability of 1), and the white loca-
tions are where the vein is measured to be less than 1 m
(probability of 0).

C. Petroleum

The profile of porosity and permeability from two wells
from an offshore petroleum reservoir are shown at the



(enstatistics

4]
x\ T IR
_\\.x .%\‘R :.x}l—"_{-‘ 2 I"'.I - _. .
. “\ e\ /e |\ _{; . ff"
A e '-.']___ -II /-
_1[][}_ 'lll _:"F-'"‘I“x o I L ;--"_;:l =
i L N / * | -~ fHER
& Ty h\,--- i L T
1 #,,f{x' — | oy
e ._'I| i""l..-"'"-.__- | * .|
] 1___{ . :}_ e I'I."'
200 e A -:,,{\_
i e f — et i
* R i 1 =3
-4 fﬁ/’l\:/; |I - !2.__--'; = II - ;}
"R — | f '.I
e 4 J\x;-ihr ¢ "u:/ .
Fy T 7o,
300\ _\l,f’. =
41 N * / \.‘ [ @
3 T gy T |I
3@ \\; ] ° .\"x il T
< P i Wt \ ;:"{'---___ A
Aniti * }/ .
\ _ & |
3 N T T
=& hep o
1 '\ L] \r |
= .\I""\..\I T —‘:\
-500 $:
T | Y
|
i \I,__ L l‘h""-__‘-
- = I.-'I — = 5
1 /e
_Eﬂﬂ_q’ﬂ'l[rrlll'lllllll -||HLL|||||
20100 20200 20300 20400

Fraguency

705

0.4 I Humber of Data &7
£ mean .81
shd, dew, 177
coel of wat 1.29
05 :.: mairm 4,45
i upper quartile 1,51
median 0.37
lenweer quartita 0640
mbnlmum Q.00
Ui welghts usad
9.1
=
I. .:-:._.I [. ”. ------ .
00 | [
0 1 2 3 4 5
Thickness, m
L]
& [ ]
'
1.0
0.8
0.6
04
0.2
L
£] 50 100 150 260 250 300

Distance, m

FIGURE 3 Location map (distance units in meters) of 67 drillholes with polygonal areas of influence for declustering
weights, histogram of vein thickness, variogram of the normal scores transform, an SGS realization over the same
domain, and the probability to exceed 1.0-m thickness calculated from 100 realizations.

bottom of Fig. 4. A porosity and permeability realization
are shown at the top. Simulation of porosity and perme-
ability were done simultaneously to reproduce the correla-
tion between these two variables. The vertical variograms

were calculated and modeled easily; however, the horizon-
tal variograms are impossible to discern from two wells.
A 50:1 horizontal-to-vertical anisotropy was considered

from analog data.
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FIGURE 4 Permeability realization (top) and porosity realization (middle) constrained to two wells 600 m apart
(shown at the bottom).
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MINING ENGINEERING e ORE PETROLOGY e PETROLEUM
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