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Abstract

Natural aquifers are heterogeneous, and geostatistical methods are widely used to simulate the heterogeneity of aquifer
properties. Due to limited available data, it is essential to integrate as much information as possible to reduce the uncertainty in
aquifer models and flow predictions. Traditional geostatistical techniques efficiently consider static hard and soft information,
such as core data and seismic data. However, dynamic flow and transport data, such as flow rates, pressure, and tracer
breakthrough, are important information that are not easily considered with the traditional techniques. Integrating such dynamic
data into a model requires the solution of a difficult inverse problem, since dynamic data and aquifer properties are related to
each other through the non-linear flow and transport equations.

A recently developed geostatistically based inverse technique, the sequential self-calibration (SSC) method, is introduced to
integrate those dynamic data. The SSC method is an iterative inverse technique that is coupled with an optimization procedure.
It provides for fast generation of multiple realizations of aquifer property models that jointly match pressure and tracer
breakthrough data, yet display the same geostatistical characteristics. This method is flexible, computationally efficient, and
robust. The main features of SSC include (1) a master point concept that reduces the number of parameters, (2) a perturbation
mechanism based on kriging that accounts for the spatial correlation of the aquifer properties, (3) a fast streamline-based tracer
flow simulator for integration of tracer data, and (4) a new semi-analytical streamline-based method for computing sensitivity
coefficients of tracer breakthrough.

Applications of the SSC method are demonstrated with a synthetic data set. Results show that tracer breakthrough data carry
important information on the spatial variation of aquifer permeability in the inter-well areas. As a contrast, pressure data
provide information at near well-bore areas only. Integrating pressure and breakthrough data jointly leads to significant
improvement in the aquifer heterogeneity representation and a reduction in the uncertainty of aquifer model. The accuracy
of flow and transport predictions can be dramatically improved by integrating dynamic data. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Optimal management of an aquifer requires reliable
flow and transport simulations and forecasts with as
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inability to model the physics of fluid flow at a suita-
bly small-scale lead to unavoidable uncertainty.
Uncertainties in the detailed description of aquifer
lithofacies, porosity, and permeability are large
contributors to the uncertainty in flow and transport
forecasting. Reducing this uncertainty can only be
achieved by integrating additional data in aquifer
modeling.

Geostatistical models are widely used to describe
the spatial heterogeneity of aquifer properties. A large
variety of geostatistical techniques have been devel-
oped that can be used to construct aquifer models
conditioned to diverse types of static data including
hard well data and soft seismic data (e.g. Deutsch and
Journel, 1998). Commonly, several techniques are
applied hierarchically to model large-scale aquifer
geometry, lithofacies, and flow properties such as
porosity and permeability. Integration of soft (or
secondary) data is usually achieved through a statis-
tical correlation with the hard (or primary) data.
Conventional geostatistical techniques including
Gaussian, indicator, annealing-based, or object-
based methods are not suited to directly integrate
dynamic flow and transport data.

Dynamic flow and transport data and aquifer flow
properties are related to each other through the highly
non-linear flow and transport equations. As a conse-
quence, accounting for dynamic flow and transport
data in geostatistical modeling requires the solution
of an inverse problem (e.g. Yeh, 1986; Tarantola,
1987; Sun, 1994; Gomez-Hernandez et al., 1997).
Although difficult to consider in aquifer modeling,
flow and transport data, such as flow rate, flow pres-
sure (or piezometric head), tracer breakthrough curve,
and tracer concentration data are often the most
important information because they provide direct
measurements of the actual aquifer flow character.
These dynamic data are closely related to what we
want to predict for aquifer management decisions.
Integrating such dynamic data is an important
outstanding problem in aquifer characterization.

The tedious trial and error methods are widely used
in practice because of limitations of automatic meth-
ods. Automatic integration of dynamic data in aquifer
modeling is an active area of research and a number of
inverse techniques have been reported in the litera-
ture. Wen et al. (1997) have presented a review of
the available methods. Early approaches were based

on parameter identification or history matching. The
practical usefulness of these methods is limited due to
the significant assumptions and intensive computa-
tional requirements.

The inverse problem is often ill-posed (small
variation in dynamic data may result in unbounded
changes in the model estimates) and the solution of
the problem is non-unique (more than one solutions
can satisfy the same set of dynamic data). Traditional
inverse techniques usually seek a single ‘best” estima-
tion of aquifer property that best matches the
measured dynamic data. This best estimate is usually
over-smoothed compared to the spatial variability
observed and does not capture the uncertainty inher-
ent in the inverse problem.

In this paper, we present an extension of the
sequential self-calibration (SSC) method to generate
multiple, equally probable realizations of aquifer
permeability models, all of which display the correct
degree of spatial variation and match the measured
dynamic data. Similar published work includes
Carrera and Neuman (1986), Harvey and Gorelick
(1995), RamaRao et al. (1995), Zimmerman et al.
(1995), Kitanidis (1996), and Yeh et al. (1996).
These methods share one or more of the following
limitations: (1) results over-smoothed, (2) computa-
tionally intensive, (3) only pressure data are used, and
(4) only for Gaussian random fields.

In the following sections, we first describe briefly
the process of the SSC method. A fast streamline-
based semi-analytical method is then presented for
fast computation of sensitivity coefficients required
for the SSC inversion. A synthetic example is used
to demonstrate the efficiency and robustness of the
SSC method, followed by a summary.

2. The sequential self-calibration method

The integration of dynamic data in aquifer models
can significantly improve the accuracy of aquifer flow
and transport predictions. Dynamic data integration in
geostatistical aquifer modeling is usually performed
through an inverse technique because they are non-
linearly related to aquifer properties through the flow
and transport equations. The SSC method is an inverse
technique originally developed by Gomez-Hernandez
and coworkers at Technical University of Valencia,
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Fig. 1. Flowchart of the SSC method.

Spain (Gomez-Hernandez et al., 1997). The unique
features of the SSC algorithm are (1) the concept of
master point that reduces the parameter space to be
estimated in the optimization, (2) the propagation
procedure through kriging that accounts for spatial
correlation of perturbations, and (3) the fast computa-
tion of sensitivity coefficients within a single flow
simulation run that makes inversion feasible. In this
paper, the original SSC method is extended to integrate
transient pressure and tracer transport data. The main
steps of the SSC method can be summarized as follows.
Construct initial aquifer property realizations by
conventional geostatistical methods using a histogram
and a variogram that are consistent with the data. If
static (hard and soft) data are available, they are honored
with conditional simulation. Any geostatistical methods
appropriate to the given geology and data set can be
used in this step. Each realization is then processed
one at a time with the following steps (see Fig. 1):

1. Solve the flow and transport equations for the
current model using the specified boundary condi-
tions to obtain the simulation responses.

2. Compute an objective function that measures the
mismatch of observed flow and transport data and
simulated model responses. If the objective func-
tion is smaller than a preselected tolerance, this
realization is considered to honor the dynamic
data and we move to the next realization. Other-
wise, proceed to the next step.

3. Select a few master locations (usually 1-3 per
correlation range in each direction) and solve an
optimization problem to find the optimal perturba-
tions of aquifer property at these locations. Sensi-
tivity coefficients needed for the optimization are
computed while solving the flow and transport
equations (step 1). Details of computing sensitivity
coefficients are given later.

4. Propagate the perturbations at master locations
through the entire model by kriging the computed
perturbations at the master points to all grid cells.
The model is then globally updated by adding the
smooth kriged perturbation field to the current
model.

5. Loop back to step 1 until convergence.

Typically, less than 20 iterations are required in a
2D setting. More details on the SSC algorithm and
other implementation issues can be found in Wen
(1996), Gomez-Hernandez et al. (1997) and Wen et
al. (1998a,b, 1999). Typically, tens to hundreds of
realizations are constructed. Fewer realizations may
be considered if they lead to nearly the same predicted
responses.

Application of the SSC method requires a vario-
gram model for the construction of the initial realiza-
tions and for kriging the perturbations from the master
points to the entire model. The resulting multiple,
equally probable realizations of reservoir models
provide a means to assess uncertainty of the aquifer
model, which can be translated into uncertainty of the
flow and transport predictions for aquifer manage-
ment. Previous studies have shown that integration
of flow pressure data can identify some large-scale
trend of permeability variation in aquifer model, parti-
cularly the high-permeability channels, low-perme-
ability barriers and variations near the wellbore
areas (e.g. Wen, 1996; Capilla et al., 1997; Wen et
al., 1998a,b).

In this paper, we extend the SSC technique to inte-
grate transport data, namely, the tracer breakthrough
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curves at pumping wells. A streamline-based tracer
flow simulator (Batycky et al., 1997) is adapted for
this purpose. A 1D analytical streamline solution is
utilized for fast calculation of sensitivity coeffi-
cients of tracer breakthrough. The objective func-
tion to be minimized in the SSC method is in the
form of
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where p(w,,1,) and p(w,,t,) are the observed and
§imu1ated pressure values at well w, at time #,.
Sf(wr, tp) and f(wy, t;) are the observed and simulated
tracer breakthrough rates at well wy at time tr. W,
and W, are weights assigned to the pressure and
tracer breakthrough data at different wells and at
different times. n,,, and n,, are the number of
wells that have pressure and tracer breakthrough
rate data. n,,, and n,, are the number of time steps
for the observed pressure and tracer breakthrough
data, respectively.

A gradient method is used to minimize the above
objective function, which requires the sensitivity
coefficients (derivatives) of pressure, and break-
through rate with respect to the permeability changes
at the selected master locations. The method for
computing sensitivity coefficients of pressure has
been reported previously, i.e. they are obtained as
part of the flow simulation run (Gomez-Hernandez
etal., 1997; Wen et al., 1998a). The sensitivity coeffi-
cients of tracer breakthrough can be computed by a
fast streamline-based method, i.e. they can be
obtained by simply bookkeeping streamlines in the
model by using the 1D analytical tracer movement
solution along each streamline. The details of this
method are given in Section 3.

In the current implementation, we assume that
porosity is known and we are interested only in invert-
ing for permeability field from dynamic flow and
transport data. In addition, we assume that boundary
conditions are known. We also assume that tracer is
non-reactive and local dispersion is neglected in the
tracer transport simulation.

In the following sections, we review the method for

computing sensitivity coefficients of tracer break-
through with the streamline-based method. This
method is then implemented in the SSC inversion to
construct aquifer permeability models. A synthetic
example is used to demonstrate the efficiency of this
approach and the robustness of the inverse results. The
importance of integrating tracer data is illustrated by
comparing the inverse results using different data sets
to the true reference field. The accuracy and uncer-
tainty of aquifer flow and transport predictions are
compared.

3. Computation of sensitivity coefficients

Calculation of sensitivity coefficients takes the
most computational effort in the SSC inversion. An
efficient way of obtaining the sensitivity coefficient is
essential for fast and feasible inversion. A streamline-
based method for computing sensitivity coefficient of
breakthrough data was proposed by Wen et al.
(1998c). The sensitivity coefficients of tracer break-
through at all master points can be obtained simulta-
neously by using the 1D analytical tracer solutions
along the streamlines that define the flow field. The
1D analytical solution expresses the relationship
between the tracer concentration and travel time
along the streamline. The perturbations at all master
locations are jointly considered in the sensitivity coef-
ficient calculation. The key assumption is that stream-
line geometry is insensitive to the perturbation of the
permeability field.

The tracer breakthrough rate (relative to the total
flow rate) for a given pumping well wy at time ; can
be expressed as (see Batycky et al., 1997)
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where q?l is the flow rate associated with the stream-
line [/, and ffl(tf) is the fractional flow rate (tracer
concentration) of streamline / at time . nf&f is the
total number of streamlines arriving at the pumping

well we. The derivative of f(wy, ;) with respect to the
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Fig. 2. Schematic illustration of tracking a streamline in a discretized numerical model.

permeability perturbation at master point j is then
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For non-reactive tracer flow without local dispersion,
the tracer concentration along streamline / for a given
time ffl(tf) is the following function of travel time (7)) :
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The travel time of a streamline is defined as

-

with v; being the pore velocity along the streamline /.

The ffl(tf) in Eq. (4) is a step function. In order to
compute the derivative of ffl(tf), we can approximate
it using an Error Function, i.e.
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and hence, we have

o (ty) _ —ic(ﬂ)ﬂ 5)
ok; o\t ) ok

with G(7,/t;) being the Gaussian distribution function
with mean 1 and a small variance. The computed
sensitivity coefficients are shown to be quite stable
with a variance in the range of 0.01-0.001 (Wen et
al., 1998c). It should be noted that when considering
local tracer dispersion, we could choose this variance
to match the local longitudinal dispersion coefficient.
We would also require an appropriate representation
of local transverse dispersion within streamlines (see
Blunt et al., 1996). This is outside the scope of this
paper. Moreover, Smith and Schwartz (1980) have
shown that field scale dispersion of mass transport is
controlled essentially by the spatial variation of
permeability in heterogeneous media. For the advec-
tion dominant transport problems, local dispersion
can usually be neglected for field scale problems
provided that the heterogeneity is described at suffi-
ciently fine scale. This is consistent with the intention
of the streamline simulation, where detailed aquifer
descriptions are usually used.

The sensitivity coefficient of tracer breakthrough is
then a function of the sensitivity coefficients of tracer
travel time. In a numerical model, the travel time from
an injection well to a pumping well is the sum of all
travel times of all cells passed by this streamline:

ne

T = Z ATI,C
c=1

It can be shown that the sensitivity of travel time of
streamline [/ to the permeability perturbation at master
point j is the following (Wen et al., 1998c), see Fig. 2:

Ly < | & AT, 9T, 2 9AT,. 9
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where A7, is the travel time of streamline / crossing
cell c. ny. is the total number of cells that streamline /
intersects from its starting point to its ending point.
Tog, (g = 1,...,4), are the transmissivities for the four
interfaces of cell 0 intersected by streamline / (see Fig.
2), pm> (m=0,1,...,4), are the pressure at the cell 0
and its surrounding cells. (A7 )/(0T,,) and
(0A7,)/(dp,,) can be computed from the semi-analy-

tical expressions of travel time crossing a cell (see
Pollock, 1989). (dp,)/(9k;) is the sensitivity coeffi-
cient of pressure with respect to permeability change
at master location j.

From Eq. (6), we see that the calculation of sensi-
tivity coefficients is reduced to a simple bookkeep-
ing of streamlines in the simulation model, which is
both mathematically simple and computationally
fast. The required sensitivity coefficients are
obtained simultaneously within a single simulation
run, and the spatial correlation of permeability
perturbations at multiple master locations is
accounted for through (87,)/(9k;). This method is
faster and more accurate than the more traditional
perturbation method (Wen et al., 1998c).

This method has been implemented in the SSC
framework. A finite-difference method is used to
solve the flow equations for the pressure field and
sensitivity coefficients of pressure at all cells. Master
points are randomly selected and their locations are
changed after every 3—4 outer iterations. The flow
equations are resolved and streamline geometry
updated after every outer iteration, which ‘self-
corrects’ the assumption of unchanging streamline
geometry.

It is important to note that this method of comput-
ing sensitivity coefficients explicitly accounts for the
effects of pressure on the travel time of a streamline. It
requires the sensitivity coefficients of pressure in the
entire model. An even simpler and faster way than
Eq. (6) can be used to obtain the same sensitivity
coefficients if we assume that the pressure gradient
is insensitive to the permeability perturbations.

According to the travel time definition, the travel
time that a streamline / needs to pass a given cell c is

low 1 Lout b
A = —dr= £ d 7
Tie L Ve ] @

in lin

where ¢, is the porosity at cell c, k.. is the permeability
at cell ¢, p is the fluid viscosity, and |J| is the pressure
gradient within cell c. Assume the pressure gradient is
insensitive to the pressure changes due to the perme-
ability perturbation, i.e. |J| is constant, we have

aA’Tl’C _ AT[,C (8)

ok, k,

Thus, the sensitivity of travel time with respect to
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Fig. 3. A synthetic reference field and the tracer breakthrough curves from the four pumping wells.

the permeability at a given master location j can be
computed as

aAT]!C
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where @; . is the kriging weight of master point j to
cell ¢, which accounts for the correlation of k at the
two locations. Thus, we have the required sensitivity
coefficient of travel time as

Ngle

T

akj c=1

_ ne ATLC . )
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Based on this equation, we do not need to compute
pressure sensitivity coefficients of the entire model for
the computation of breakthrough sensitivity coeffi-
cients, which makes this method much faster. In
most cases, the later method provides good enough
results. A similar approach is used by Vasco et al.
(1998).
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4. Example

In this section, we demonstrate this streamline-
based SSC inverse method for constructing aquifer
permeability models from pressure and tracer trans-
port data using a synthetic data set. We compare
results inverted from different sets of dynamic data
(pressure data only, tracer breakthrough data only,

and both pressure and breakthrough data). In all
cases, we assume porosity is known and constant at
¢=0.2.

Fig. 3 shows a 2-D reference-data field (50 X 50
grid with cell size 80 X 80 m?). The model was gener-
ated using sequential Gaussian simulation (SGSIM)
(Deutsch and Journel, 1998). The In(k) has a Gaussian
histogram with mean and variance of 6.0 and 3.0,
respectively. The unit of permeability (k) is millidarcy
(1 darcy = 9.8697 x 10""* m?). The variogram is
spherical with range of 800 and 160 m in the direction
of 45 and 135°, respectively. Some general observa-
tions about this field are (1) a high permeability zone
and a low permeability zone in the middle of the field,
(2) high connectivity between well W5 and well W3,
and (3) low connectivity between wells W5 and W2
and between wells W5 and W4. This reference field is
considered as the true earth model, and our goal is to
reconstruct aquifer models based on some flow and
transport data that are close to this true field.

We assume that there is an injector at the center of
the model with four pumping wells at the four corners.
The injection rate at the central well (W5) is 1600 m®/
day, and the pumping rate for the four pumping wells
(W1-W4) is 400 m3/day/well. The thickness of the
aquifer is assumed to be constant at 100 m. All four
boundaries are assumed no-flow with initial pressure
being constant at 3000 psi (1 psi = 6894.757 Pa) for
the entire field. Flow is first solved using finite-differ-
ence method to obtain the transient pressure responses
until it reaches steady state. Tracer transport is then
solved using the streamline method by injecting tracer
at the injection well continuously when flow is steady
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Fig. 5. Variations of the two components of objective function during the inversion iteration process in the three realizations when different

dynamic data sets are used.

state. The tracer breakthrough curves at the four
pumping wells are given in Fig. 3. The resulting tran-
sient pressure data (from initial to steady state) at the
five wells and tracer breakthrough curves at the four
pumping wells up to 1800 days are assumed to be the
available dynamic data that will be used for inverting
permeability model. All dynamic data used in the
inversion are assumed precise without measurement
error. It is noted that the problem setting and well
configuration used in this example is to mimic the
five well pattern configuration widely seen in the
petroleum industry.

We first generate multiple initial realizations using
the same histogram and variogram as the reference
field. Neither well data nor other soft data is used to
generate the initial models. We understand that some

hard (e.g. core data) or soft (e.g. seismic data or bore-
hole descriptions) data are usually available in prac-
tice. All relevant data should be wused while
constructing the initial models and these constraints
can be preserved in the SSC inversion (see Wen et al.,
1996; Capilla et al., 1998). For this example, we
assume that these data are not available due to the
practical consideration that the available data are
usually at scales different from the cell size used in
simulations.

Fig. 4 shows three initial permeability fields (top
row) and the resulting fields updated by the SSC
method using different data sets: only pressure at the
five wells (second row), only breakthrough curves at
the four pumping wells (third row), and both pressure
and breakthrough data (fourth row). The reference
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Fig. 6. Matching of pressure (left) and breakthrough (right) in one inverted permeability realization using different dynamic data sets.

field is given at the bottom for comparison. The
changes in the two objective function components
with the iteration number for the three realizations
are given in Fig. 5. Twenty-five randomly selected
master points are used for each realization. The vario-
gram calculated from the exhaustive reference field is
used for propagating the perturbations from the
master locations to the entire field. The reference
histogram is honored in all updated realizations

through a post-process. Twenty SSC iterations are
used for obtaining the final permeability models in
all realizations. The CPU time for generating one
realization is about 10 min (SGI Indigo workstation)
for the case of matching both pressure and break-
through data (i.e. the forth row in Fig. 4). Less CPU
time is required when only matching pressure or
breakthrough data alone.

From Fig. 4, we see qualitatively that the initial
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Fig. 7. Ensemble means (left) and standard deviations (right) from 200 permeability realizations inverted by using different sets of dynamic

data. The reference field is displayed at the top.

permeability realizations (with only the correct vario-
gram and histogram) poorly reproduce the reference
field. As the initial models are updated by conditioning
to dynamic data, the model representation improves.
The closest results are those inverted by using both
pressure and breakthrough data jointly (fourth row of
Fig. 4). Fig. 5 gives a quantitative comparison of the
objective function convergence for the updated
models. The breakthrough data component of the
objective function is not constrained when only pres-

sure data are used to invert the permeability field (first
row). Similarly, when only breakthrough data are used,
the resulting permeability field may provide pressure
responses, which deviate considerably from the true
field (see the first realization in the second row of this
figure). It is only when both pressure and breakthrough
data are used that the resulting permeability models
reproduce both pressure and breakthrough data jointly
with both components of the objective function
decreasing to close to zero (third row).
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The comparisons of simulated and observed pres-
sure and breakthrough data for the first realization are
given in Fig. 6. We see that both pressure and break-
through data deviate considerably from the true
results in the initial fields (first row). Pressure data
are exactly matched when only pressure data are
used to match, but breakthrough data largely deviate

from the data (second row). When only breakthrough
data are used, the model reproduces the breakthrough
data but not for the pressure data (third row). Both
pressure and breakthrough data are accurately
matched when both data sets are used to constrain
the model (fourth row).

A better comparison of the inverse results using
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Fig. 9. The inversion results using wrong variogram models. The variations of objective function are displayed at the bottom.

the different data sets is given by the ensemble
results calculated from 200 realizations (Fig. 7).
The ensemble mean field represents the common
trend in the multiple realizations, while the standard
deviation field displays the variations (or uncer-
tainty) among the realizations. For the initial fields,
no additional spatial information is retained except
the mean (6.0) and variance (3.0) everywhere in the

ensemble fields. Some large-scale spatial patterns
can be identified from the pressure data alone
with reduced uncertainty in the areas near to the
well locations only (second row). More spatial
variation patterns are identified from the break-
through data with reduced uncertainty in the inter-
well areas (third row). The best results are those
when both pressure and breakthrough data are
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Fig. 10. Predictions of tracer breakthrough at the four pumping wells from the 30 initial realizations. Thick lines are the reference results.

used (bottom row): they accurately reproduce most
of the spatial variation features in the reference
field with much less uncertainty, as compared to
the results using only pressure or breakthrough
data alone.

To test the robustness of the inverse algorithm with
different initial models, we start from initial models
with completely wrong features relative to the refer-
ence field. These wrong models are then updated to
match the pressure and breakthrough data. We also
investigate the influence of inverse results by using
wrong variogram models since variogram model may
be uncertain in practice.

Fig. 8 shows the results updated from a uniform
permeability field and two purely random permeabil-
ity fields. The changes of the two objective function
components are also given at the bottom row of this
figure. The three final updated models (after 20 SSC
iterations) reproduce the spatial variation patterns of
the reference field (shown at the top). The model

updated from the uniform initial model displays
smoother variations than the true field, while the
models updated from the purely random initial fields
display more fuzzy small-scale feature with correct
large-scale patterns. All updated models accurately
match both the pressure and breakthrough data with
objective functions close to zero.

Fig. 9 shows the inverse results updated from a
uniform initial field by using incorrect variogram
models: one with the major correlation in Y-direction,
and the other with the major correlation in
X-direction. The final results, although different in
appearance from the reference field, still correctly
identify the relative locations of high and low perme-
ability regions, as well as the spatial connections
between well pairs. Both pressure and breakthrough
data are accurately reproduced in both models as well.
From above, we can conclude that the SSC method is
quite robust.

As mentioned before, we only use breakthrough
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lines are the reference results.

data up to 1800 days in the inversion. Now, we
investigate the importance of integrating different
flow and transport data for future predictions of
tracer transport in the aquifer. We compare the
quality of predictions of tracer breakthrough at
the four pumping wells from 1800 to 6600 days
with the same well conditions (i.e. the same injec-
tion and pumping rate as used to match the
models) using different permeability models.
Using the initial fields where neither pressure data
nor breakthrough data are matched, the break-
through curves from 30 realizations are shown in
Fig. 10: these predictions are neither accurate
(deviate from the true results) nor precise (large
uncertainty). When the pressure data at all the
five wells are matched, the predictions in the four
pumping wells from the 30 realizations are given in
Fig. 11. Clear improvement is evident compared to
the initial fields. However, these predictions are

still not accurate with large uncertainty. This indi-
cates that matching pressure data may not be suffi-
cient for reliable predictions of tracer transport:
more information is required. When the permeabil-
ity models match only the early breakthrough data
of 1800 days at the four pumping wells, the predic-
tions are shown in Fig. 12. It is clear that the
predictions of breakthrough at the four pumping
wells are dramatically improved since the same
type of early-time data at the same wells are
matched. The best predictions are obtained by
using the aquifer models in which both pressure
and (early-time) breakthrough data at the same
wells are conditioned, see Fig. 13.

5. Summary

The SSC method was used to generate multiple
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Fig. 12. Predictions of tracer breakthrough the four pumping wells from the 30 SSC inverted realizations using breakthrough data alone. Thick

lines are the reference results.

realizations of aquifer permeability with the correct
geostatistical features that match measured pressure
data and tracer transport (breakthrough) data. An effi-
cient streamline-based methodology was implemen-
ted for computing sensitivity coefficients of tracer
breakthrough. This new method adapts the concept
of decoupling multiple-dimensional  transport
problem into multiple 1D problems along streamlines.
Using the analytical 1D solution along the streamline,
the completed set of sensitivity coefficients is
obtained simultaneously by bookkeeping all stream-
lines with only one simulation run. Moreover, the
perturbations at all master locations are jointly consid-
ered through Kriging.

Application of the SSC method was demonstrated
using a synthetic example, which shows the compu-
tational efficiency and robustness of the enhanced
SSC method. Comparisons were made with different

sets of dynamic data: pressure data only, break-
through data only, and both pressure and break-
through data. Aquifer performances are predicted
using different models inverted from different
dynamic data sets.

Results show that dynamic flow and transport
data carry important information on the spatial
variation of aquifer properties. Integration of
more data ensures that spatial variation patterns
are identified with less uncertainty. Pressure data
carry information around the wells, tracer break-
through data provide additional information on
the spatial connectivity between the wells. Match-
ing pressure or breakthrough data alone may still
result in high uncertainty. Integrating pressure and
breakthrough data jointly significantly improves the
aquifer heterogeneity representation and aquifer
performance predictions.
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