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Reservoir models have large uncertainty because of spatial variability and limited sample
data. The ultimate aim is to use simultaneously all available data sources to reduce uncertainty
and provide reliable reservoir models for resource assessment and flow simulation. Seismic
impedance or some other attribute provides a key source of data for reservoir modeling. These
seismic data are at a coarser scale than the hard well data and it not an exact measurement
of facies proportions or porosity. A requirement for data integration is the cross-covariance
between the well and seismic data.

The size-scaling behavior of the cross correlation for different measurement scales was
investigated. The size-scaling relationship is derived theoretically and validated by numerical
studies (including an example with real data). The limit properties of the cross-correlation
coefficient when the averaging volume becomes large is shown. After some averaging volume,
the volume-dependent cross-correlation coefficient reaches a limit value. This plateau value
is controlled mainly by the large-scale behavior of the cross and direct variograms.

The cross correlation can increase or decrease with volume support depending on the
relative importance of long- and short-scale covariance structures. If the direct and cross
variograms are proportional, there is no change in the cross correlation as the averaging
volume changes. Our study shows that the volume-dependent cross-correlation coefficient is
sensitive to the shape of the cross variogram and differences between the direct variograms
of the well data and seismic data.

KEY WORDS: Data-integration; correlation coefficient; volume scaling; dispersion variance; dispersion
covariance.

INTRODUCTION

Reconciling different data types for spatial mod-
eling of reservoir properties is important because
these different data provide complementary informa-
tion about the reservoir architecture and heterogene-
ity. There are a variety of methods to integrate differ-
ent data types; these include External Drift, Locally
Varying Mean, Block Kriging (Behrens and others,
1996; Behrens and Tran, 1998; Deutsch and Journel,
1997; Journel and Huijbregts, 1978), Block Cokriging
(Doyen, 1988), Markov-Bayes (or Bayesian Updating
Rule) (Behrens and Tran, 1998; Doyen, den Boer, and
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Pillet, 1996; Doyen, Psaila, den Boer, and Jans, 1997;
Doyen, Psaila, and Strandenes, 1994; Journel and Zhu,
1990; Tran, Wen, and Behrens, 1999) and Collocated
Cokriging (Almeida, 1993; Xu, Tran, Srivastava, and
Journel, 1992). Details and application examples of
these methods are given in literature (Deutsch and
Journel, 1997; Deutsch, Srinivasan, and Mo, 1996;
Journel and Huijbregts, 1978). The main aim of this
paper is to address a common requirement: the cross
covariance between multiple data types.

The determination of the cross covariance be-
tween multiple variables with different measurement
scales is an important step for all data integration
techniques. Some approaches assume that the soft or
secondary data provides information on large-scale
trends of the primary variable; the external drift and
locally differing mean algorithms assume that the
spatial variability of the secondary variable gives
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information on trends in the primary variable. This
approach does not capture fully the spatial cross
correlation.

A better approach to data integration is cokriging
which calls for a cross covariance that explicitly mea-
sures the information content of the secondary data
with regard to the primary variable (Journel, 1999a).
A major problem is that conventional implementa-
tions of cokriging assume the secondary data are de-
fined at the same volume support as the hard well
data. It is possible theoretically to use data at differ-
ent support; however, the computation and inference
burden prevents application in practice.

A Markov-type assumption termed MM1
(Almeida, 1993; Journel, 1999b; Shmaryan and
Journel, 1999) simplifies inference of the cross vari-
ogram, but is not valid when the secondary variable
is defined on a support larger than that of the pri-
mary variable. For such situations, a second Markov
hypothesis termed MM2 is proposed (Journel, 1999b;
Shmaryan and Journel, 1999) leading to a different
cross-covariance model. The MM2 cross covariance
then is a function of the secondary variable covari-
ance and the colocated or small-scale correlation co-
efficient. Under both approximations, the cross co-
variance is rescaled from either primary or secondary
variable covariance by the small-scale correlation
coefficient independently.

Kupfersberger, Deutsch, and Journel (1998) pro-
pose analytical equations to infer small-scale vari-
ograms from a combination of small-scale and large-
scale data. The key idea is to downscale the large-scale
variograms to small-scale, then complete the small-
scale horizontal variogram with the more extensive
secondary data.

Data sources have a wide range of measure-
ment volumes and cross-correlation characteristics;
a volume or size dependent cross-correlation struc-
ture is required. Vargas-Guzman, Warrick, and Myers
(1999a, 1999b) have tackled a related question. They
extend the concept of dispersion variance to the mul-
tivariate situation where the volume size or support
affects dispersion covariances and the matrix of corre-
lation between attributes. This leads to a correlation
between attributes as a function of sample support
and the size of the physical domain. They show that
the correlation matrix asymptotically approaches a
constant at two or three times the largest variogram
range. They also analyzed the behavior of the cross
covariance by keeping the data support at a point sup-
port and changing the field size.

In terms of data integration, changing the data
support size for a fixed field size is more critical; this
has not been tackled by previous workers. Therefore,
our focus in this paper is on the effect of the data
support on cross correlation. We organize the paper
according to the following sections:

• Theoretical Development: The cross-cor-
relation coefficient is defined from the
dispersion variance and covariance. A gen-
eral equation for the volume-dependent
cross-correlation coefficient is presented and
the critical terms forming this equation are
interpreted.
• Numerical Validation of Theory: A numerical

solution technique for the volume-dependent
cross-correlation coefficient equation is
described. We show how to calculate the
required volume-average covariance values.
An example illustrates the volume-dependent
cross-correlation coefficient and its numerical
calculation.
• Sensitivity Cases: Different positive definite

cross-variogram direct variogram models and
nugget effects are used to better understand
the characteristics of the cross correlation with
respect to “upscaling.” In our study upscaling
is a linear block averaging of the small-scale
features (e.g. grid blocks etc . . .). Note that the
functional relationship of the cross-correlation
coefficient to scales is complex and depends
on many factors.
• Application: Theory and practice are com-

pared with real satellite data. Direct vari-
ograms and cross variograms are calculated
and upscaled to estimate the cross correlation
at different scales. The experimentally ob-
tained results are close to the theoretical and
numerical results for the large block volumes;
however, some discrepancies are observed
for the small-block averaging volumes. Both
curves clearly approach to the same limit
(plateau) value of cross-correlation coefficient
as scaling volume increases.
• Analytical Analysis: The complexity and

nonlinearity of the terms forming the volume-
dependent cross-correlation coefficient equa-
tion are investigated. Closed-form equations
for the estimation of volume-dependent cross-
correlation coefficient are shown for some
limited examples. The asymptotic values of the
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cross correlation as the volume scale increases
are considered; a good match is observed
between the numerical and analytical results.

There are many benefits to better understanding
the size-scaling relationship of the cross correlation:
(1) the input parameters for conventional collocated
cokriging applications (small-scale correlation co-
efficient) can be selected more correctly on the basis
of the calculated large-scale correlation coefficient,
(2) the value of seismic data can be more realistically
appraised, and (3) correct variograms can be used for
development of rigorous block cokriging.

THEORETICAL DEVELOPMENT

There exist two types of spatial variability in al-
most all natural phenomena; local random aspects and
general structured aspects (Journel and Huijbregts,
1978). The concept of a “random function” provides
a representation of both aspects of variability. A ran-
dom variable (RV) Z is a variable that can take a
series of outcome values z, according to some proba-
bility distribution. A random function (RF) is defined
as a set of dependent variables Z(u), one for each
location u in the study area A, (Z(u), ∀u ∈ A).

Classically, the first-order moment of the func-
tion Z(u) is its expected value, which is the pro-
bability-weighted sum of all possible occurences of
the RV. “Stationarity,” that is spatial homogene-
ity, removes the location-dependent nature of the
expected value,

E{Z(u)} = mZ, ∀u ∈ A (1)

where mZ is the stationarity mean. The assumption
of stationarity is critical. The stationary variance is
defined as:

VarZ{Z(u)} = σ 2 = E{[Z(u)−mZ]2}, ∀u ∈ A
(2)

Moving on from classical one-point statistics, we con-
sider pairs of data a vector h apart, [Z(u), Z(u+ h)].
Second-order stationarity amounts to assume that
pairs of data do not depend on the location u within
A, but rather only on the distance, h separating them.
The stationary covaraince is defined as:

CZ (h) = E{Z(u) · Z(u+ h)} −m2
Z ∀u ∈ A (3)

The variogram is defined as:

2γZ (h) = E{[Z(u)− Z(u+ h)]2}, ∀u ∈ A (4)

The relation between the stationary semivariogram
and the stationary covariance is straight-forwardly
derived:

γZ(h) = σ 2 − C(h) (5)

One important remark on Equations from (1) to (5) is
that they are equally valid at the scale of the support
of Z(u). A challenge is to be able to calculate them at
different scales; this is addressed in the next section.
Another implementation detail is the estimation of
the expected values in practical settings with limited
data; however, this will not be addressed in this paper.

The elementary statistics described here could be
calculated with a primary data variable, denoted Z, or
a different secondary data variable, denoted Y. A fa-
miliar statistic relating two variables is the correlation
coefficient, ρ, defined as:

ρ = E{Z(u) · Y(u)} −mZmY

σZσY

= CZY√
CZZCYY

(6)

where two different notations are used; both nota-
tions are consistent with common practice and the
introductions.

VOLUME-DEPENDENT
CORRELATION COEFFICIENT

The equation for the data-scale (the scale of
the support of Z(u)) correlation coefficient was pre-
sented in Equation (6). The correlation coefficient at a
scale V different than the scale of the support of Z(u)
is defined as:

ρ(V, V) = (C̄ZY (V, V)) ·
(

1√
C̄ZZ (V, V)

)

×
(

1√
C̄YY (V, V)

)
(7)

where, C̄ZY (V, V) is the volume-averaged cross-
variogram, C̄ZZ(V, V) and C̄YY(V, V) are the volume-
averaged direct variograms. These volume averaged
covariances are defined classically as 1

V 2

∫
V

∫
V C(u−

u′) du du′, which is approximated closely by numerical
integration.

As a side note, the sill value of a direct semi-
variogram is the variance given it is calculated for a
large volume. The variance at an arbitrary scale V also
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is termed “dispersion variance” and is equal to the
C̄(V, V) when the area is large enough. The sill value
of a cross semivariogram is similarly defined.

The dependence of correlation coefficient on vol-
ume is linked through Equation (7). A numerical ap-
proach to calculate this from the point-scale (point-
scale is assumed for the scale of the support of data)
variance and covariance is presented next.

NUMERICAL VALIDATION OF THEORY

Consider a semivariogram model at arbitrary
scale V made up of a nugget effect and nst nested
variogram structures:

γV(h) = C0
V +

nst∑
i=1

Ci
V0

i
V(h)

h¿0(8) where γV(h) is the variogram model at the V
scale, C0

V is the nugget effect, nst is the number of
nested variogram structures, Ci

V is the variance con-
tribution of each nested structure, i = 1, . . . , nst, and
0i

V(h) are nested structures consisting of analytical
functions. The “sill” of each analytical function 0i

V(h)
is unity. The sum of the variance contribution is the
variance at the V-scale and also is termed the disper-
sion variance:

D2(V, A) = C 0
V +

nst∑
i=1

Ci
V only if AÀ V (9)

where D2(V, A) is the variance (dispersion) of vol-
umes of size V in the entire area of interest A. The
variance decreases as the volume increases since high
and low values are averaged out as the volume of in-
vestigation increases.

The variance contribution of each nested struc-
ture changes with volume in a well understood man-
ner (Journel and Huijbregts, 1978):

C i
V = C i

v
1− 0̄(V, V)
1− 0̄(v, v)

(10)

where Ci
V is the variance contribution of nested struc-

ture i at the large scale and the C i
v is the variance

contribution of nested structure i at the data scale,
and 0̄(V, V) and 0̄(v, v) are the average variogram
or “gamma-bar” values. Note that the change in the
variance contribution is calculated separately for each
nested structure. The “gamma-bar” value represents
the mean value of0(h) when one extremity of the vec-
tor h describes the domain V(u) and the other extrem-
ity independently describes the same domain V(u).

In mathematical notation the “gamma-bar” value is
expressed as:

0̄(V, V) = γ̄ (V(u), V(u))

= 1
V · V

∫
V(u)

∫
V(u)

γ (y− y ′) dy dy ′ (11)

Although there exist certain analytical solutions
(David, 1977; Journel and Huijbregts, 1978) to
γ̄ (V(u), V(u)), the value of “gamma-bar” usually
is estimated numerically by discretizing the volume
V(u) and V(u) into a number of points and simply
averaging the variogram values:

0̄(V, V) = γ̄ (V(u), V(u)) ≈ 1
n · n′

n∑
i=1

n∑
j=1

γ (ui − u′j)

(12)

where n is the number of regular spaced points dis-
cretizing the volume V(u) with the same fractional
volume of V(u).

The same approach can be used to calculate the
dispersion covariance using Equations (8) to (12); but
instead of using auto or direct variograms, a cross-
variogram should be used.

The values of dispersion variances and covari-
ances allow calculation of the volume-dependent cor-
relation coefficient. The volume dependent correla-
tion coefficient is between Zv(u) and Yv(u) within the
finite domain A:

ρ(V, A) = (D2
ZY (V, A)

) ·
 1√

D2
ZZ(V, A)



×
 1√

D2
YY(V, A)

 (13)

where, D2
ZY(V, A) is the dispersion covariance and

D2
ZZ(V, A) and D2

YY (V, A) are the dispersion vari-
ances at V-scale.

The VarScale program (Oz, Deutsch, and
Frykman, 2000) can be used to calculate these disper-
sion variances and dispersion covariances. Consider
an example to illustrate the numerical calculation
of volume-dependent cross-correlation coefficient via
Equation (13).

NUMERICAL VERIFICATION

A full cosimulation technique was used to simu-
late a prior-defined linear model of coregionalization
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Figure 1. Illustration of cross-correlation coefficient from results obtained by numerical
calculation and upscaling images generated by Sgsimfc.

(LMC) (Goovaerts, 1997; Journel and Huijbregts,
1978). The linear model of coregionalization provides
a method for modeling the auto and cross-variograms
of two or more variables. Each variable is character-
ized by its own variogram and each pair of variables
with a cross-variogram.

An unconditional realization of 500 by 500 im-
age was generated using the Sgsim program from
GSLIB (Deutsch and Journel, 1997) and an isotropic
variogram model given by Equation (14). Using
this generated image as secondary data in Sgsimfc
(Sequential Gaussian Full CoSimulation) (Deutsch
and Journel, 1997) program, another image was cre-
ated using the isotropic LMC model given by Equa-
tion (15). Two images were generated having cor-
relation structure and direct variograms defined by
Equation (15).

γZ (h) = 0.5Sph15 + 0.5Sph75 (14)

γZ (h) = 0.5Sph15 + 0.5Sph75

γY (h) = 0.5Sph15 + 0.5Sph75 (15)

γZY (h) = 0.2Sph15 + 0.5Sph75

Linear nonoverlapping block averaging (upscal-
ing) have been applied for the two images and the
corresponding volume-dependent cross-correlation
coefficients were calculated. Next, using the LMC
model in Equation (15) and the definition of
volume-dependent cross-correlation coefficient in
Equation (13), the values of correlation coefficient
for different scaling ratios are calculated numerically

by VarScale program (Oz, Deutsch, and Frykman,
2000). The numerically calculated volume-dependent
cross-correlation coefficients and the ones obtained
by upscaling the two images are illustrated on
Figure 1.

The characteristics of the cross-correlation coef-
ficient for different averaging volumes is now consid-
ered in more detail.

NUMERICAL EXPERIMENTATION

The main purpose of this study is to under-
stand the general behavior of the cross correlation for
different measurement scales. Some sensitivity runs
are performed to understand the characteristics of
the volume-dependent cross-correlation coefficient.
These runs include sensitivity on the shape of the
cross-variogram, nugget effect of cross-variogram and
asymmetry of direct variograms.

Contribution of Nested Structures
in Cross Variogram

Direct variograms, γZZ (h) and γYY(h), for vari-
ables Z and Y were fixed and different situations of
cross-variograms were considered. The direct vari-
ograms and all the considered cross-variograms are
presented in Figure 2. The direct variograms are fixed
at γZZ (h) = γYY (h) = 0.5Sph(|h|/1) + 0.5Sph(|h|/5).
Two small-scale cross-correlation coefficients of 0.7
and 0.3 were considered. There are three scenarios
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Figure 2. Fixed direct variogram and different cross-variograms for cases of cross variogram sensitivity.
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for the cross variogram:

Equal contribution cases 1 and 2:

γZY (h) = 0.35Sph(|h|/1)+ 0.35Sph(|h|/5)

γZY (h) = 0.15Sph(|h|/1)+ 0.15Sph(|h|/5)

Focus on short-scale cases 3 and 4:

γZY (h) = 0.5Sph(|h|/1)+ 0.2Sph(|h|/5)

γZY (h) = 0.3Sph(|h|/1)

Focus on long-scale cases 5 and 6:

γZY (h) = 0.2Sph(|h|/1)+ 0.5Sph(|h|/5)

γZY (h) = 0.3Sph(|h|/5)

Cases 1 and 2 correspond to an “intrinsic” case where
the shape of the cross-variogram is identical to the di-
rect variograms. Because the ratio of short-scale con-
tribution to the long-scale contribution is “1” in the
direct variogram (i.e. γZZ(h), “Equal contribution”
stated in Cases 1 and 2 also represents the ratio of 1.
The short-scale contribution is increased to its maxi-
mum allowable under the linear model of coregion-
alization in Cases 3 and 4. The long-scale structure
is maximum in Cases 5 and 6. The upscaled values
of the correlation coefficient are given in Figure 3
for each case. The value of the correlation coefficient
does not depend on volume scale for the equal contri-
bution cases; however, increasing the contribution of
short-scale decreases the correlation coefficient and
increasing the contribution of long-scale increases the
correlation coefficient. For large averaging volumes,
the volume-dependent correlation coefficient stabi-
lizes to a plateau-value.

Sensitivity on the Nugget Effect of Cross-Variogram

For this case, direct variograms again were
fixed and different cases of nugget effects of the
cross-variograms were considered. Cross-correlation
coefficient of 0.7 is used. The direct variograms and
all the cross-variograms are presented in Figure 4. The
direct variograms:

γZZ (h) = γYY (h) = 0.3+ 0.7Sph(|h|/2.5)

Equal contribution case 7:

γZY (h) = 0.21+ 0.49Sph(|h|/2.5)

Largest nugget cases 8 and 9:

γZY (h) = 0.3+ 0.4Sph(|h|/2.5)

γZY(h) = 0.3

No nugget cases 10 and 11:

γZY (h) = 0.7Sph(|h|/2.5)

γZY (h) = 0.3Sph(|h|/2.5)

The same ratio of 0.3/0.7, used in the direct variogram
(i.e. γZZ(h), is preserved in the “Equal contribution”
cases. The upscaled values of the correlation coeffi-
cient are given in Figure 5. It is seen that, again, equal
contribution does not effect the value of the corre-
lation coefficient for successive volume scaling; how-
ever, increasing the contribution of the nugget effect
decreases the correlation coefficient. Again, for large
averaging volumes the volume-dependent correlation
coefficient reaches a plateau-value.

Sensitivity on the Asymmetry of Direct
Variogram Structures

In this sensitivity analysis the cross-variogram is
fixed and different direct variograms are considered.
Both the direct variograms and the cross variograms
are presented in Figure 6. The cross variogram is fixed
at γZY(h) = 0.35Sph(|h|/1) + 0.35Gauss(|h|/5)

No asymmetry case 12:

γZZ (h) = γYY (h) = 0.5Sph(|h|/1)+ 0.5Gauss(|h|/5)

High asymmetry case 13:

γZZ (h) = 0.15Sph(|h|/1)+ 0.85Gauss(|h|/5)

γYY (h) = 0.85Sph(|h|/1)+ 0.15Gauss(|h|/5)

Partial asymmetry cases 14:

γZZ (h) = 0.3Sph(|h|/1)+ 0.7Gauss(|h|/5)

γYY (h) = 0.7Sph(|h|/1)+ 0.3Gauss(|h|/5)

The term “asymmetry” represents the ratio of
contribution of each nested structures. As this ra-
tio decreases, asymmetry increases. Therefore, “no
asymmetry” case corresponds to “equal contribution”
which also corresponds to contribution ratio of 1.
The upscaled values of the correlation coefficient
are given in Figure 7. As we have seen before, the
equal contribution (no asymmetry) does not effect
the value of the correlation coefficient; however,
increasing the asymmetry of direct variograms in-
creases the correlation coefficient and this increase
is proportional directly to the magnitude of the con-
sidered asymmetry ratio. Once more, the volume-
dependent correlation coefficient reaches a stabilized
value.
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Figure 3. Sensitivity runs for cross variogram to illustrate effects of equal contribution, fo-
cusing on short-scale and long-scale. A, Sensitivity on cross-variogram to illustrate effect of
equal contribution of each structure in cross-variogram. Correlation coefficient fixed to 0.7
for cross-variogram; B, Sensitivity on cross variogram to illustrate effect of focusing on long
scale and short scale. Correlation coefficient fixed to 0.7 for cross-variogram; C, Sensitivity
on cross-variogram to illustrate effect of focusing on long scale and short scale. Correlation
coefficient fixed to 0.3 for cross-variogram.
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Figure 4. Fixed direct variograms and different cross variograms for cases of cross variogram nuggeteffect sensitivity.
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Figure 5. Sensitivity runs for cross-variogram nugget effect to illusrate effects of equal
contribution, largest, and no nugget. A, Sensitivity on cross-variogram nugget effect to
illustrate effect of largest and no nugget effect; B, Correlation coefficient fixed to 0.7 for
cross-variogram.

AN APPLICATION TO REAL DATA

A real field example is investigated to see if
the results from real data are consistent with the-
oretical results. This is an important step because
this validation will identify shortcomings in cur-
rent theory and prompt research into analytical
relations.

A 500 by 500 pixel satellite image of Wadi Kufra,
Libya was used. The “RGB” values of each pixel were
extracted, but only, “red” and “blue” color values of
were used. These two values are colocated and corre-
lated. The histogram plots of both red and blue data

are given by Figure 8. Note that the frequency dis-
tribution of red values is close to normal and the fre-
quency distribution for blue values has a long tail more
like a lognormal distribution. After the scatter plot of
red data versus blue data, we determined the correla-
tion coefficient as 0.708.

Direct and cross variograms were calculated and
a linear model of coregionalization (LMC) was fit-
ted. Recall that for a valid LMC, the auto and cross-
variogram models must be constructed using the same
basic variogram models. The experimental directional
(points) and the modelled direct and cross vari-
ograms (solid lines) are given in Figure 9. Two nested
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Figure 6. Fixed direct variogram and different cross-variograms for cases of cross-variogram asymmetry sensitivity.
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Figure 7. Sensitivity runs for cross-variogram asymmetry to illustrate effects of equal
contribution, partial, and large asymmetry. A, Sensitivity on asymmetry of cross vari-
ogram to illustrate effect of partial asymmetry. Correlation coefficient fixed to 0.7 for
cross variogram; B, Sensitivity on asymmetry of cross variogram to illustrate effect of
largest asymmetry. Correlation coefficient fixed to 0.7 for cross variogram.

Figure 8. Histogram of two images: Right, histogram for red data; Left, histogram for blue data.
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Figure 9. Experimental directional direct and cross variograms for “red” and “blue” data along with fitted LMC model.
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spherical models without nugget effect were used:

γred(h) = 770Sph(8,10) + 800Sph(380,105)

γblue(h) = 2300Sph(8,10) + 1027Sph(380,105) (16)

γredblue(h) = 695Sph(8,10) + 900Sph(380,105)

Because the sill (contribution of each nested
structure) values of the direct variograms (red and
blue) are greater than zero and 770 · 2300> 6952 and
800 · 1027 > 9002, the LMC given in Equation (16) is
positive definite.

A 2D linear averaging was applied using 2 by 2,
5 by 5, 10 by 10, 20 by 20, 25 by 25, 50 by 50, 100 by
100, and 250 by 250 block dimensions. A new cross-
correlation coefficient was calculated for each up-
scaled set of images. Using the LMC model in Equa-
tion (16), and the definition of volume-dependent
cross-correlation coefficient given by Equation (13),
cross correlations were calculated numerically from
theory by using the VarScale program (Oz, Deutsch,
and Frykman, 2000). The comparison of the ex-
perimental and theoretical volume-dependent cross-
correlation coefficients is presented in Figure 10.
The correlation coefficient increases and approachs
a steady-state value gradually after the averaging vol-
ume of 50. This increase is the result of the sill contri-

Figure 10. Comparison of cross correlation coefficient.

bution of the large-scale nested structure component
of the cross-variogram model (see earlier discussion).
For the small blocks, the experimental and theoreti-
cal results are not in a good agreement. The difference
for the small blocks might be explained by the exis-
tence of spatial correlation at small scales that the
variogram cannot fully capture. Also, there is a clear
lack of stationarity which is identified from the vari-
ograms given by Figure 9. Notwithstanding this small
mismatch for the small blocks, the general conformity
in the trends of two curves (see Fig. 10) encourages us
to seek for analytical relations between the averaging
volume and the volume-dependent cross-correlation
coefficient.

ANALYTICAL ANALYSIS

The characteristics of the volume-dependent
cross-correlation coefficient would be understood
better by analytical relations. The theoretical equa-
tion and numerical solution are brute force with lit-
tle recourse for understanding except through re-
peated numerical experiments. The terms controlling
the volume-dependent cross-correlation coefficient
will be investigated more completely here. We start
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with differentiating Equation (7):

∂ρ(V)
∂V

=
(
∂C̄ZY (V)

∂V

) (
C̄−1/2

ZZ (V)
)(

C̄−1/2
YY (V)

)
−1

2

(
∂C̄ZZ (V)

∂V

) (
C̄−3/2

ZZ (V)
)
(C̄ZY (V))

×(C̄−1/2
YY (V )

)− 1
2

(
∂C̄YY (V)
∂V

)
×(C̄−3/2

YY (V)
)
(C̄ZY (V))

(
C̄−1/2

ZZ (V)
)

(17)

The correlation coefficient at large scale can be
written as:

ρ(V) = ρ(v0 +1V) = ρ(v0)+ ∂ρ(V)
∂V

1V (18)

The right-hand side of the Equation (18) is the
volume-dependent cross-correlation coefficient
where, V = v0 +1V represents the volume at larger
scales. Moreover, v0 is the point-scale, ρ(v0) is
the point-scale cross-correlation coefficient and
1V = V − v0 is the volume difference.

Equation (18) is the general equation that can be
used to calculate volume-dependent cross-correlation
coefficient. The ∂ρ(V)

∂V term, given in Equation (17),
is important to determine in terms of the charac-
teristic path of volume-dependent cross-correlation
coefficient. Depending on its rate of change, the
cross-correlation coefficient at larger scale also may
increase or decrease. Calculation of ∂ρ(V)

∂V term is
mainly controlled by:(

∂C̄(V)
∂V

)
= ∂

∂V

∫ V

0

∫ V

0
C(x − x′) dx dx′ (19)

The differentation of dispersion variances is
the inverse of computing auxiliary fuctions (Journel
and Huijbregts, 1978; Vargas-Guzman, Myers, and
Warrick, 2000) for the average variograms or cross
variograms. We can readily calculate Equation (19)
numerically or simplify it by applying Leibniz’s The-
orem twice. The terms in Equation (19) control
the ∂ρ(V)

∂V term [Equation (17)] and ρ(v0 +1V) term
[Equation (18)]. They are highly nonlinear functions
and their further simplifications depend on the LMC
model.

Although it will not be a general solution, we
want to go one more step and present a simple approx-
imate solution to the Equation (18). Let us assume

that we have same direct variograms (i.e. γZZ(h) =
γYY (h)). Then Equation (17) reduces to:

∂ρ(V)
∂V

=
(
∂C̄ZY (V)

∂V

)
C̄ZZ (V)

−
(
∂C̄ZZ (V)

∂V

)
C̄2

ZZ (V)
C̄ZY (V) (20)

If we assume one-dimensional upscaling with length
l is not greater than the variogram range, a then, we
can approximate the average variogram as (Journel
and Huijbregts, 1978):

γ̄ (l) = C
[

l
2a
− l3

20a3

]
, ∀a ≥ l (21)

where C is the sill contribution or variance. Equation
(21) can be written in terms of average covariance as:

C̄(l) = C
[

1− l
2a
− l3

20a3

]
, ∀a ≥ l (22)

By taking the derivative of Equation (22), we can es-
timate the value of ∂C̄(l)

∂l as:

∂C̄(l)
∂l
= C

[
−0.5

a
+ 0.15l2

a3

]
, ∀a ≥ l (23)

By using the Equations (22) and (23), we can es-
timate easily the value of volume-dependent cross-
correlation coefficient when a ≥ l. This type of ap-
proximation may be used when we are upscaling along
the wellbore from core-scale to log-scale.

Actually, when we analyze the values calculated
from Equation (23), 0.5

a is the dominant term and
after some larger averaging values of l, the second
term 0.15l2

a3 also contributes. Therefore we can assume
that:

∂C̄(l)
∂l
∼= −C

0.5
a

(24)

We can rewrite the Equation (21) assuming:

γ̄ (l) ∼= C
l

2a
(25)

We can relate the Equations (24) and (25):

∂C̄(l)
∂l
∼= − γ̄ (l)

l
(26)

Although it has some limititations, Equation (26) is a
straightforward relationship depending on the aver-
age variogram and averaging length.

In order to test the efficiency of this approxi-
mation for 1D averaging, we used the same LMC
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model as Equation (15) to estimate the correlation
coefficients for different length scales. Our results
show an error of about 3 to 5% for small averaging
lengths, when we apply 1D scaling. When we go to av-
eraging lengths larger than the variogram range, we
can use another form of auxiliary function (Vargas-
Guzman, Myers, and Warrick, 2000) for the spherical
variogram:

C̄(l) = C
[

0.75 ∗ a
l
− 0.2 ∗ a2

l2

]
, ∀l ≥ a (27)

Then the derivative is given as:

∂C̄(l)
∂l
= C

[
−0.75 ∗ a

l2
+ 0.4 ∗ a2

l3

]
, ∀l ≥ a (28)

By using the appropriate forms of Equations (27) and
(28) in Equation (17), we can estimate the volume-
dependent cross-correlation coefficient via Equation
(18) for large averaging volumes.

Our aim here is to explore the governing equa-
tions of volume-dependent cross-correlation coef-
ficient and hightlight some critical terms. It is in-
tractable to present a general analytical equation for
complex coregionalization models. In general, we re-
sort to numerical techniques.

LIMIT VALUE OF VOLUME-DEPENDENT
CROSS-CORRELATION COEFFICIENT

As shown in all our case studies, the volume-
dependent cross-correlation coefficient converges to
a specific limit or “plateau” value for large averaging
volumes. In order to estimate this limit value, we need
to seek for a solution to Equation (29):

lim
V→∞

ρ(V) (29)

Inserting the definition of ρ(V) we get:

lim
V→∞

×
∫ V

0

∫ V
0 CZY (x − x′) dx dx′√∫ V

0

∫ V
0 CZZ (x − x′) dx dx′ ·

√∫ V
0

∫ V
0 CYY (x − x′) dx dx′

(30)

Equation (30) is a general equation for the limit
value of volume-dependent cross-correlation coeffi-
cient. Without going through intermediate steps, we
are giving directly a solution to Equation (30) by

assuming variograms are isotropic spherical models:

lim
V→∞

ρ(V) =
∑nst

i=1 Ci
ZY ai√[∑nst

j=1

∑nst
i=1 Ci

ZZ C j
YY ai a j

] (31)

where (Ci ) values are the sill contribution of either
direct variograms or cross variograms and the (ai )
are the range values of the isotropic variograms or
cross variograms for the corresponding nested struc-
ture component.

Assuming that direct variograms are same and
LMC model is composed of two nested structures,
then we can rewrite Equation (31):

lim
V→∞

ρ(V) = C1
ZY a1 + C2

ZY a2√[
C1

ZZ a1 + C2
ZZ a2

]2
(32)

Now, let us calculate the asymptotic value for Case 3
in Exploratory Research section:

lim
V→∞

ρ(V) = 0.5 ∗ 1+ 0.2 ∗ 5√[
0.5 ∗ 1+ 0.5 ∗ 5

]2
= 0.5 (33)

From the numerical calculations, this limit value is
expected to be between 0.5 and 0.51, which is close to
our analytical limit value of 0.50. When we look for
the limit value for the Case 5, we get 0.90, which is
close to the numerically estimated one.

INTERPRETATION OF RESULTS
AND CONCLUSIONS

• The theory of volume-dependent cross-
correlation coefficient is explained and a gen-
eral definition is provided by Equation (13).
The dependence of volume-dependent cross-
correlation coefficient on dispersion variance
and dispersion covariance has been discussed.
The concept and the calculation precedures
for dispersion variances and dispersion covari-
ances are presented. A numerical example is
given to illustrate a solution to the volume-
dependent cross-correlation coefficient given
by Equation (13).
• The cross-correlation exhibits a functional re-

lationship to averaging volumes. It can increase
or decrease with as volume support increases
depending on the relative importance of long-
and short-scale variogram structures. If the di-
rect and cross variograms are proportional,
there is no change in the cross correlation as
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the averaging volume changes. After some av-
eraging volume, the volume-dependent cross-
correlation coefficient reaches a stabilized-
value. This plateau value is controlled mainly
by the large-scale nested structure compo-
nent of cross-variogram and direct variograms.
Our study also shows that volume-dependent
cross-correlation coefficient is sensitive to the
shape and sill contribution structure of cross-
variogram and the asymmetry of the two direct
variograms
• Increasing the contribution of long-scale var-

iogram structures in the cross-variogram in-
creases the correlation coefficient; increasing
the contribution of short-scale decreases the
correlation coefficient. Increasing the asym-
metry of the direct variograms increases the
correlation coefficient. The volume-dependent
correlation coefficient stabilizes and reaches a
plateau-value for large averaging volumes.
• The trend for the numerically calculated

volume-dependent cross correlations and the
ones obtained from a real field example are
promising. Besides, they both approach to the
same limit or plateau value. This prompts us to
seek for analytical realations to estimate cross-
correlation coefficient as a function of averag-
ing volume.
• The general equations explaining the depen-

dency of the cross correlation on averaging
volume have been presented and explained.
Understanding the nature of this scaling for dif-
ferent coregionalization models is practically
important for the usual situation of data in-
tegration where the data are at different vol-
ume support, for example, large-scale seismic
data and small-scale well-log data. The control-
ling factors and limit values for large averaging
volumes have been derived.
• Additional work is warranted to extend the

analytical results to make them applicable to
the complexity of real problems; however,
the numerical solution is fast, accurate, and
adequate in all situations.
• Because cross correlation is the key ele-

ment for data-integretion techniques, the LMC
model of coregionalization should be selected
carefully. A wrong LMC model may cause
cross correlation to decrease instead of increas-
ing and vice versa. A significant conclusion
of this paper is that the volume-dependent

cross-correlation should be determined from
the available data instead of assuming that it is
independent of scale.
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