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Abstract

Sequential simulation is a frequently used geostatistical simulation technique. The most widely used version of this

technique is sequential Gaussian simulation, where the data are transformed to follow a Gaussian distribution and the

entire multivariate distribution is then assumed to be Gaussian. This critical assumption greatly simplifies the

simulation process since every conditional distribution is Gaussian with parameters given by kriging. Direct sequential

simulation does not require any Gaussian assumption and simulates directly the data space; however, a longstanding

problem of direct simulation is that the histogram of the variable is not reproduced even though the mean, variance,

and variogram are reproduced. This lack of histogram reproduction is due to the unknown shape of the conditional

distributions, which are used for drawing the simulated values.

We derive a simple and theoretically valid approach by establishing the shapes of the sequentially constructed

conditional distributions. These shapes ensure histogram reproduction. The approach has been coded in FORTRAN 90

and called DSSIM-HR, where the extension HR refers to the feature of ‘‘Histogram Reproduction’’.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sequential simulation is often applied (Gom!ez-Hern-
!andez and Journel, 1993; Isaaks, 1990; Johnson, 1987).

It can be seen as Monte Carlo simulation from a

multivariate distribution by decomposing that multi-

variate distribution into a succession of conditional

distributions by recursive application of Bayes’ law. The

multivariate Gaussian distribution is systematically

applied to continuous variables because the shape of

all conditional distributions are Gaussian with mean and

variance given by simple (co-) kriging. Real Z-data are

never Gaussian; nevertheless, they can be transformed to

a Y -Gaussian variable. Simulation is done in Gaussian

space and the simulated y values are back transformed

to original z data units. Secondary data can also be used

after transformation to a Gaussian distribution and

assuming that both variables are jointly multivariate

Gaussian. The sequential Gaussian simulation program

(SGSIM) (Deutsch and Journel, 1997) is one implementa-

tion of the algorithm.

There are some significant limitations of using

Gaussian transformation. For a given covariance, the

Gaussian random function (RF) has maximum entropy,

which leads to ‘‘disconnectedness’’ of extreme values.

Multivariate Gaussianity also entails that the pattern of

spatial correlation is symmetric with respect to the

median, that is, there is symmetric destructuration of
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extreme values. Direct sequential simulation, presented

later, does not effectively remove our reliance on the

multivariate Gaussian distribution since the central limit

theorem is acting in the kriging/averaging step of

simulation. The main motivation for a ‘‘direct’’ method

is based on the increasing need to simultaneously

account for data at different scales, for example, core,

well log, and seismic data in a petroleum reservoir

modeling context.

Transformation of the data variable to a Gaussian

distribution is problematic when dealing with data of

different scale. The transform is non-linear and yet most

averaging is linear (volumetric/mass proportions) or

with very particular scaling laws (such as permeability).

The non-linear transformation to a Gaussian variable

entails that the Gaussian transformed value cannot be

averaged linearly. The Gaussian transformation must be

avoided to simultaneously account for multiscale data.

The notion of direct sequential simulation (DSS) was

developed at the same time as sequential Gaussian

simulation (Journel, personal communication, 1986). It

was shown early in the development of sequential

techniques that the variogram (covariance) structure

and the global mean can be reproduced without

transformation to Gaussian space provided that each

new simulated value is drawn randomly from local

conditional distributions centered at the simple (co-)

kriging estimates with a variance corresponding to the

simple (co-)kriging variance. These distributions can be

of any shape. Exercising this freedom, however, leads to

simulated realizations where the univariate histogram is

not controlled and therefore not reproduced. The

histogram is important; it is a first-order statistic that

has a first-order effect on the calculations made with the

simulated realizations. The inability of DSS to repro-

duce the input histogram has been a significant problem.

Aside from the Gaussian distribution, there is no general

distribution shape that ensures global histogram repro-

duction (Caers, 2000a; Deutsch, personal communica-

tion, 2000).

A number of researchers have proposed the use of

‘‘post processing’’ in order to transform the resulting

simulated values into another set of variables that

reproduce the input global histogram (Journel and Xu,

1994; Caers, 2000a). This post processing is the same

quantile-transformation procedure used to transform

original Z variable to Gaussian Y variable. This

procedure removes uncertainty (ergodic fluctuations)

from the final histogram and, more importantly, it

modifies any block data conditioning. Depending on

the success of the original simulation at honouring the

target distribution, severe adjustments may degrade the

Parameters for DSSIM-HR
***********************

START OF PARAMETERS:

...

...

...

170 170 300                         -discretization levels for mean, variance, quantile

1                                           -already generated database? (0=no, 1=yes)

l_quant_uniform_170.dbg   -file for conditional Z distributions

l_mstdr_uniform_170.dbg   -file for conditional Z mean and varance

0.50 0.29                              -global mean and variance

...

...

...

Fig. 1. Example parameter file for DSSIM-HR program.
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honouring of variogram and may also introduce spatial

discontinuities in the final result (Nowak and Srivastava, 1997).

Another approach has been to formulate an objective

function as a measure of difference between the input

global histogram and the histogram of the simulated

values (Caers, 2000b). This objective function can be

used to selectively accept/reject certain simulated values

to ensure that the final realization reproduces the input

global histogram. This approach can introduce artifacts

near locations early in the simulation path and also

removes ergodic fluctuations that are important for

uncertainity analysis.

Nowak and Srivastava (1997) proposed that simula-

tion proceed from a master list of values that exactly

match the intended global distribution. Each value in

the master list ends up being assigned to one grid node

and is chosen by the results of simple kriging. At each

step in the simulation the basic idea is to extract a subset

of values from the remaining values whose weighted

mean and variance are equal to SK results. The initial

master list is depleted as simulation proceeds. There are

some problems toward the end of each realization where

there is no suitable subset.

Soares (2001) proposed an approach to reproduce the

global histogram in DSS. The main idea of Soares’s

proposal is to draw the simulated values from those

intervals of the global distribution that are centered at

the simple kriging estimate. The interval range depends

on the SK estimation variance. Two methodologies are

proposed to define the intervals. The first approach is

very similar to Nowak and Srivastava’s idea of taking a

subset of values that give the right mean and variance.

The second approach uses the Gaussian transformation

to determine the sampling intervals. The local SK

estimate is transformed to a Gaussian value and the

standardized SK variance are used to identify a

Gaussian distribution to draw from; the drawn value is

back transformed using the global distribution. Soares

also extended this technique for the joint simulation of

different variables. As mentioned in the original paper,

there is a need for a local bias correction to account for

the problem resulting from the non-linear transforma-

tion of the SK estimate to its normal score equivalent.

This method appears similar to the one we implement;

therefore, more discussion and a comparison with our

proposal are given in an appendix.

Recently, Deutsch (2000) proposed an approach to

reproduce the input global histogram in DSS. The key

idea is to establish the shapes of the conditional

distributions using the global normal-score or Gaussian

transformation. There is a unique Gaussian distribution

that can be back transformed to provide a valid z-

distribution with the correct mean and variance given by

SK. The set of valid distributions can be calculated

ahead of time using a look-up table. Gaussian transfor-

mation is used only to contruct the look-up table. The

entire sequential simulation is performed with original

data values. The overall histogram is effectively repro-

duced within statistical fluctuations without any a-

posterior transformation or correction schemes.

Tran et al. (2001) extended this proposal to account

for multiple data sources. They showed that this

proposal is successful in reconciling various data types

including well, seismic and production data. DSS allows

for more direct integration of seismic or production
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Fig. 2. Three distributions used during application of DSSIM-

HR: lognormal, bimodal and uniform.
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(large scale) data whereas SGS only allows reproduction

of the large scale data.

This paper documents and implements this last

proposal. The new program is coded in FORTRAN

90. The code and the operation of the program are in the

style of GSLIB (Deutsch and Journel, 1997). The

approach and the implementation details are explained

with illustrative examples.

2. Methodology

Consider a continuous variable Z with a known

stationary global cdf FZðzÞ ¼ ProbfZozg and station-

ary variogram gZðhÞ at the original data scale. The

classical steps of sequential simulation:

1. Randomly choose a location u to be simulated.

2. Calculate the kriging estimate and variance using the

original data and all previously simulated values.

3. Draw a value from a distribution with a mean equal

to the kriging estimate and a variance equal to the

kriging variance.

4. Return to step 1 until all nodes have been

simulated.

The multiGaussian approach is typically used (SGS)

whereby the Gaussian or normal transformation is

applied to the data before simulation and a back

transformation is applied to the simulated values after

simulation.

If the local distributions are centered at the simple

(co-)kriging mean and variance, any shape of distribu-

tion can be chosen and the stationary variogram model

will be reproduced (Journel, 1986). The global histo-

gram, however, will typically depend on the shape of the

local distributions, the data distribution, and the normal

distribution inherent to the central limit theorem. The

central limit theorem is involved because of the

averaging of kriging. Arbitrary choice of the local
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Fig. 3. Local distributions for lognormal data set (from left to right: mean in normal space: �1:0=0:0=1:5; from top to bottom:

variance in normal space: 1.0/0.5/0.1).
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distribution shapes does not lead to reproduction of the

global distribution.

The correct shape of the local distributions is known

for the Gaussian case because we have a model for the

full multivariate distribution. The original Z variable

with stationary histogram FZðzÞ could be transformed to

a Gaussian Y variable with stationary standard normal

distribution GðyÞ: The quantile or normal-score trans-

formation is widely used for such transformation.

y ¼ G�1ðFZðzÞÞ: ð1Þ

This transformation can be reversed at any time to get

back to the original variable units:

z ¼ F�1
Z ðGðyÞÞ: ð2Þ

The cumulative distribution functions FZðzÞ and GðyÞ
and their inverse relations or quantile functions F�1

Z ðzÞ
and G�1ðyÞ are known; thus, we have direct link between

Z and Y units. This transformation is unique, reversible,

and non-linear.

Distributions of uncertainty in Z (data) space can be

determined from back transformation of non-standard

univariate Gaussian distributions by Monte–Carlo

simulation or by back transformation of L regularly

spaced quantiles, pl ; l ¼ 1;y;L:

zl ¼ F�1
Z ½GðG�1ðplÞsy þ ynÞ	; l ¼ 1;y;L; ð3Þ

where yn and sy are the mean and standard deviation of

the non-standard Gaussian distribution, and the pl ; l ¼
1;y;L are uniformly distributed values between 0 and 1.
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Fig. 4. Local distributions for bimodal data set (from left to right: mean in normal space: �1:0=0:0=1:5; from top to bottom: variance

in normal space: 1.0/0.5/0.1).
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The distribution of uncertainty in Z space, denoted

FZ;yn ;sy
ðzÞ; is assembled from the zl ; l ¼ 1;y;L values.

The Gaussian parameters, yn and sy; are added as

subscripts to the z-distribution to identify where it came

from. Although these distributions retain some of the

characteristics of the global distribution, FZðzÞ; the

shape of the conditional distributions, FZ;yn ;sy
ðzÞ; are

neither the original Z data distribution nor a Gaussian

distribution.

The predetermined distribution shapes can be used in

the direct sequential simulation algorithm. All kriging

and simulation is performed in original Z variable units.

The Gaussian transform is only used for obtaining the

shape of the conditional distributions. In concept, the

DSSIM-HR algorithm is very similar to the conventional

sequential Gaussian simulation with the following

modifications:

1. Look-up table construction: Generate non-standard

Gaussian distributions by choosing regularly spaced

mean values (approximately from �3:5 to 3.5) and

variance values (approximately from 0 to 2). Then,

using Eq. (3) calculate and store the z-conditional

distributions ðFZ;yn ;sy
ðzÞÞ; and their mean and var-

iance values.

2. Calculate the mean and variance of the local

distribution, znðuÞ and s2zðuÞ in original z units by

simple (co-)kriging using all relevant original data

and previously simulated values.

3. Retrieve the closest z-conditional distribution,

Fz;yn ;sy
ðzÞ; from the look-up table by searching for

the one with the closest mean and variance to the

(co-) kriging values.

4. A simulated value is drawn from the z-conditional

distribution by Monte–Carlo simulation, that is, zs ¼
F�1

z;yn ;sy
ðpÞ where zs is the simulated value and p is a

random number uniformly distributed between 0 and

1, Uð0; 1Þ:

This approach will create realizations that reproduce

the (1) local point and block data in the original

data units, (2) the mean, variance, and variogram

of the Z variable, and (3) the histogram of the Z

variable.
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Fig. 5. Local distributions for uniform data set (from left to right: mean in normal space: �1:0=0:0=1:5; from top to bottom: variance

in normal space: 1.0/0.5/0.1).
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The user specifies the discretization levels for the

Gaussian mean, variance, and number of quantiles for

the lookup table. As the level of discretization increases

the database becomes larger and the precision with

which the global distribution is reproduced increases.

These distributions take very little space and this is not a

practical concern.

The distribution with the closest mean and variance to

the simple (co-)kriging mean and variance is found in

the database via a fast searching algorithm. The closest

distribution will not have the exact mean and variance;

therefore, we rescale slightly the closest distribution to

have exactly the correct mean and variance.

The required variogram is calculated from the original

data with no normal or Gaussian transformation. All

statistical input comes from original data units.

3. Program details

The DSSIM-HR program is based on the FORTRAN

90 version of the SGSIM program from GSLIB. The

following presents the details specific to the implementa-

tion of DSSIM-HR.

The bldcond module builds the lookup table of

conditional distribution shapes. The input to this

module includes (1) the available data, (2) the discretiza-

tion levels for the mean ðnmÞ and variance ðnvÞ; and (3)

the number of quantiles ðnqÞ to represent each condi-

tional distribution shape. This module evenly divides the

range of Gaussian mean and variance and then back

transforms each non-standard Gaussian distribution.

The mean and variance of each z-conditional distribu-

tion is calculated in original units.

The kriging module returns with the local estimate,

Kest; and local estimation variance, Kstd : The getcond

module selects the closest local distribution from the

database.

The drawcond module draws a simulated value by

Monte–Carlo simulation from the nq quantiles. The

simulated value is rescaled so that it is drawn from a

distribution with the correct mean and variance:

vsimnode
¼ ðvsim � msimÞ 


Kstd

stdsim

þ Kest; ð4Þ
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Fig. 6. Reproduction of histograms for four different realizations generated by DSSIM-HR using input lognormal distribution.
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where vsim is the value drawn from the unscaled

distribution, msim and stdsim are the mean and standard

deviation of the unscaled distribution, Kest and Kstd are

calculated correct Kriging mean and standard deviation,

and vsimnode
is the final simulated value. The final

simulated value, vsimnode
; is assigned to the grid node

and simulation proceeds to the next grid node.

3.1. New parameters

The parameters are almost exactly the same as the

SGSIM program. An example parameter file is given in

Fig. 1. The z-local distributions of uncertainty and their

means and variances must be generated. These files are

created during the first execution of the DSSIM-HR

program; there is an option in the program so that they

do not have to be created again for subsequent

simulation runs.

The user specifies the discretization levels for mean,

variance, and the number of quantiles. For the para-

meter file given in Fig. 1, the input values are 170, 170,

and 300. Such detailed discretization will result in

excellent precision in reproduction of the input global

distribution.

An important advantage of DSSIM-HR is that the

simulation is performed with a variogram model defined

in the original data units. The input variogram should

not be standardized to a sill of 1.0; the sill should be in

units of the original data variance.

4. Example applications

A lognormal, bimodal and uniform distribution are

used in the examples shown below; see Fig. 2. Arbitrary

variogram models were chosen. The DSSIM-HR program

is shown to reproduce the input histograms and

variograms within expected statistical (ergodic) fluctua-

tions.

The shape of the local distributions are significantly

different from either the widely assumed Gaussian

distribution or the original global histograms. Consider
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Fig. 7. Reproduction of histograms for four different realizations generated by DSSIM-HR using input bimodal distribution.
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different Gaussian mean and variance values: �1:0; 0.0,
and 1.0 for the mean and 0.1, 0.5, and 1.0 for the

variance. The local distributions are defined by Eq. (3).

The distributions for the lognormal distribution are

shown in Fig. 3. The boxed histogram corresponds to a

Gaussian mean and variance of 0.0 and 1.0, yielding the

original distribution.

Some selected distributions for the bimodal and

uniform distributions are shown in Figs. 4 and 5. The

shapes of distributions differ from the global distribu-

tions and the Gaussian distribution. The skewness of the

distributions changes significantly. A recent study by Oz

(personal communication, 2002) showed that Hermite

polynomials and Disjunctive kriging would give the

exact same conditional distribution shapes.

4.1. Histogram reproduction

A 2-D simulation field of 150 by 150 grid nodes was

considered with an exponential variogram model with

20% nugget effect. Other variograms were also con-

sidered and the variograms are reproduced in all cases.

Four realizations were generated and the resulting

histograms are shown in Figs. 6–8. In all the cases the

realizations successfully reproduce the global histogram

and summary statistics such as the mean and variance.

There are statistical (ergodic) fluctuations that are due to

a finite domain size.

4.2. Variogram reproduction

Variogram reproduction is theoretically guaranteed;

nevertheless, it is good practice to ensure that there are

no implementation issues that artificially increase or

decrease spatial correlation. The variograms were

calculated for each realization and plotted with the

input variograms; see Fig. 9. Note the excellent repro-

duction in all cases.

5. Application to porosity data

Porosity data from 44 wells over a 5 km by 5 km area

were considered. The location map of the field is given in
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Fig. 8. Reproduction of histograms for four different realizations generated by DSSIM-HR using input uniform distribution.
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Fig. 10 (top figure). The histogram and the cumulative

distribution are also shown in Fig. 10. The ominidirec-

tional experimental variogram was calculated and fitted

with an isotropic exponential variogram model with a

1:3 km range.

The study area was discretized with 200 by 200 grid

nodes of size Dx ¼ Dy ¼ 250 m: The look-up table for

local conditional distributions was generated. One

simulated realization (bottom left figure in Fig. 10) for

the porosity was generated. The histograms on the third

row of Fig. 10 show close reproduction of the input

global histogram. The bottom right figure shows the

excellent variogram reproduction; the line is the input

model and the circles are calculated from the simulated

realization.

6. Conclusions

In traditional SGS, a multivariate Gaussian assump-

tion is taken after univariate transformation to a

Gaussian histogram. The value of working in original

data units, instead of transforming to a Gaussian

histogram, permits straightforward integration of multi-

scale data. Mean, variance, and variogram reproduction

is guaranteed with all implementations of sequential

simulation. Previous efforts to work in ‘‘direct’’ data

units have had difficulty in reproducing the shape and

details of non-Gaussian global histograms.

The Gaussian model is used to determine the

conditional distribution shapes for different mean and

variance values. Taken all together, these shapes ensure

that the global histogram is reproduced. This leads to a

direct sequential simulation DSSIM program with guar-

anteed histogram reproduction (DSSIM-HR). The new

program was written in Fortran 90 using GSLIB

conventions. Examples using synthetic and real data

were shown to demonstrate the successful histogram

reproduction capability of DSSIM-HR.

Appendix

Soares (2001) proposed a solution methodology

similar to our proposal; he also proposed to use

Gaussian transformation to get the shapes of the

conditional distributions. The main idea of Soares’s

proposal is to sample from the global distribution

using the local simple (co-)kriging estimate and variance.

The Gaussian transformation is used to determine

the sampling interval. The normal score transformed

local SK estimate and with the SK standardized

estimation variance are used to identify the interval

of the global distribution to be sampled. The aim of

this appendix is to highlight the similarities and

differences between Soares’s approach and the one

implemented.

Both proposals establish parameters of z-conditional

cumulative distributions in direct space using SK.

This gives zn and s2K ;Z : Both proposals also calculate
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Fig. 9. Reproduction of variogram for lognormal, bimodal,

and uniform distribution.
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Fig. 10. Top: Location map for porosity data, Second row: Original input histogram and cdf ,Third row: Simulated histogram and cdf,

Fourth row: One sample simulated realization and variogram reproduction (line for variogram model and circles are from simulated

realization).
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non-standard Gaussian parameters yn and s2K ;Y :
The major difference is in how these parameters are

estimated; see next. Both proposals draw from the non-

standard Gaussian cdf, ys ¼ G�1ðpÞsK ;Y þ yn; and back

transform to direct space: zs ¼ F�1
Z ðGððY sÞÞ:

In our proposal, we determine the yn and s2K ;Y that

exactly reproduce the SK estimate zn and variance s2K ;Z :
In Soares’s proposal, yn and s2K ;Y are calculated as

yn ¼ G�1F ðznÞÞ

and

s2K ;Y ¼ s2K ;Z=s
2;

where s2 is the variance of the input global histogram.

Due to non-linear characteristics of the normal score

transform Efysg ¼ yn but Efzsgazn: The Gaussian

distribution is not centered at the correct value

and does not have the correct variance. This leads to

the bias correction that should be done for each

simulated grid block during the direct sequential

simulation. The magnitude of each correction depends

on the difference between SK estimate zn and the mean

value that the observed value after back transformation

of the approximate Gaussian parameters. This bias

correction is similar to the variance term in lognormal

kriging.

We simulated a 100 by 100 2D field with a reference

lognormal distribution and plotted the yn
DSSIM-HR vs.

yn
Soares: As we can see from Fig. 11, most of the values do

not fall on the 451 line. Next, we used a bimodal

distribution; the corresponding cross-plots (yn
DSSIM-HR

vs. yn
Soares) are shown in Fig. 12. There is considerable

discrepancy that must be corrected somehow.

References

Caers, J., 2000a. Adding local accuracy to direct sequential

simulation. Mathematical Geology 32 (7), 815–850.

Caers, J., 2000b. Direct sequential indicator simulation.

In: Kleingeld, W.J., Krige, D.G. (Eds.), Proceedings of

the Geostatistics 2000. Cape Town, South Africa,

pp. 39–48.

Deutsch, C.V., Journel, A.G., 1997. GSLIB: Geostatistical

Software Library and User’s Guide, 2nd Edition. Oxford

University Press, New York, 339pp.

Gom!ez-Hern!andez, J., Journel, A.G., 1993. Joint sequential

simulation of multiGaussian fields. In: Soares, A. (Ed.),

Geostatistics Troia 1992, Vol. 1. Kluwer Academic Publish-

ers, Dordrecht, Netherlands, pp. 85–94.

Isaaks, E.H., 1990. The application of Monte Carlo method to

the analysis of spatially correlated data. Ph.D. Dissertation,

Stanford University, Stanford, CA, 213pp.

Johnson, M., 1987. Multivariate Statistical Simulation. Wiley,

New York, 237pp.

Journel, A.G., Xu, W., 1994. Posterior identification of

histograms conditional to local data. Mathematical Geol-

ogy 26 (6), 323–359.

Fig. 11. Scatterplot of Y n
DSSIM-HR vs. Y n

Soares (blue squares) for

lognormal distribution. Pink line is 451 line stands for situation

of Y n
Soares ¼ Y n

DSSIM-HR:

Fig. 12. Scatterplot of Y n
DSSIM-HR vs. Y n

Soares (blue squares) for

bimodal distribution from two different 2D field simulation.

Pink line is the 451 line stands for situation of Y n
Soares ¼

Y n
DSSIM-HR:

B. Oz et al. / Computers & Geosciences 29 (2003) 39–5150



Nowak, M.S., Srivastava, R.M., 1997. A geological conditional

simulation algorithm that exactly honours a predefined

grade-tonnage curve. In: Baafi, E.Y., Schofield, N.A. (Eds.),

Proceedings of the Geostatistics Wollongong 96, Vol. 2.

Kluwer Academic Publishers, Dordrecht, Netherlands,

pp. 669–682.

Soares, A., 2001. Direct sequential simulation and cosimula-

tion. Mathematical Geology 33 (8), 911–926.

Tran, T.T., Deutsch, C.V., Xie, Y., 2001. Direct geostatistical

simulation with multiscale well, seismic, and production Data.

SPE Annual Technical Conference and Exhibition, New

Orleans, September 30–October 3, SPE Paper Number 71323.

B. Oz et al. / Computers & Geosciences 29 (2003) 39–51 51


	DSSIM-HR: A FORTRAN 90 program for direct sequential simulation with histogram reproduction
	Introduction
	Methodology
	Program details
	New parameters

	Example applications
	Histogram reproduction
	Variogram reproduction

	Application to porosity data
	Conclusions
	Appendix
	References


